Сообщение о двигателях подводной лодки

Обновлено: 05.07.2024

Если немецкие специалисты развивают воздухонезависимые силовые установки на основе топливных элементов, то их шведские коллеги еще с 1960-х годов прорабатывают возможность применения на субмаринах двигателя Стирлинга. Этот тип двигателя был запатентован шотландским священником Робертом Стирлингом еще в 1816 году. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Двигатель Стирлинга может преобразовывать в работу любую разницу температур.

От всех известных преобразователей энергии прямого цикла (дизелей, паровых и газовых турбин, карбюраторных двигателей внутреннего сгорания, электрохимических генераторов и др.), которые могут использоваться в составе воздухонезависимых установок, двигатели Стирлинга выгодно отличаются целым рядом качеств, которые обуславливают перспективу их применения на подлодках. Это практическая бесшумность в работе из-за отсутствия взрывных процессов в цилиндрах двигателя и клапанного механизма газораспределения и достаточно плавного протекания рабочего цикла при относительно равномерном крутящем моменте, что напрямую влияет на акустическую скрытность подлодки. Высокий к, п. д. (до 40 %), что значительно выше соответствующего показателя лучших образцов дизелей и карбюраторных двигателей. Кроме того, возможность использования в качестве горючего нескольких типов углеводородного топлива (соляровое топливо, сжиженный природный газ, керосин и др.). Эксплуатация двигателей Стирлинга, работающих на традиционном топливе, не требует создания сложной береговой инфраструктуры (в отличие от электрохимических генераторов). Моторесурс современных двигателей Стирлинга составляет 20-50 тыс. часов, что в три — восемь раз превышает срок жизни топливных элементов (около 6 тыс. часов). При сроке эксплуатации ПЛ порядка 25-30 лет п рименение двигателей Стирлинга позволит сократить необходимое количество подводных лодок на 35-40 % по сравнению с потребным числом лодок с электрохимическими генераторами (из-за более высокой надежности).





Подводные лодки - невероятные технологии. Не так давно военно-морская сила полностью работала над водой; с добавлением подводной лодки к стандартному военному арсеналу, мир под поверхностью стал полем битвы.

Адаптации и изобретения, позволяющие матросам не только сражаться, но и жить в течение месяцев или даже лет под водой, являются одними из самых ярких событий в военной истории.

В этой статье вы узнаете, как подводная лодка погружается и движется под водой, как поддерживается жизнеобеспечение, как получает свое военное превосходство, как ориентируется в глубоком океане и как подводные лодки могут быть спасены при аварийных ситуациях.

ПОГРУЖЕНИЕ И ДВИЖЕНИЕ

Подводные лодки или корабли могут плавать, потому что вес воды, которую они вытесняют, равен весу судна. Это разность уровней воды создает выталкивающую силу, называемую силой Архимеда. Действует эта сила против силы тяжести, которая тянет корабль вниз. В отличие от корабля, подводная лодка может управлять своей плавучестью, что позволяет ей погружаться и всплывать по своему усмотрению.

Чтобы поддерживать уровень подводной лодки на любой заданной глубине, подводная лодка поддерживает баланс воздуха и воды в цистернах, чтобы общая плотность была равна плотности воды (нейтральная плавучесть). Когда подводная лодка достигает своей крейсерской глубины, гидропланы выровняются так, что подводная лодка перемещается в воде. Для управления используют хвостовой руль, чтобы повернуть направо или налево и гидропланы для управления передним углом лодки. Кроме того, некоторые субмарины оснащены подвижным вторичным двигателем, который может поворачиваться на 360 градусов.

Для поднятия на поверхность, сжатый воздух вытекает из воздушных емкостей в балластные цистерны, и вода вытесняется из подводной лодки, пока ее общая плотность не будет меньше чем у окружающей воды (положительная плавучесть), и подводная лодка всплывает. Гидропланы располагают под углом, так чтобы вода поднималась над кормой, что заставляет корму двигаться вниз; при этом нос субмарины направлен ​​вверх. В аварийной ситуации балластные цистерны могут быстро заполняться воздухом высокого давления, чтобы очень быстро вывести подводную лодку на поверхность.

ЖИЗНЕОБЕСПЕЧЕНИЕ

В закрытой среде подводной лодки существуют три основные проблемы жизнеобеспечения: воздух, пригодный для дыхания; наличие пресной воды; поддержание температуры.

Поддержание качества воздуха

Воздух, которым мы дышим, состоит из четырех газов: азот (78%), кислород (21%); аргон (0,94%); двуокись углерода (0,04%).

Когда мы дышим воздухом, наши тела потребляют его кислород и превращают его в двуокись углерода. Выдыхаемый воздух содержит около 4,5% углекислого газа. Наши тела ничего не делают с азотом или аргоном. Подводная лодка - это запечатанный контейнер, содержащий людей и ограниченный запас воздуха. Есть три вещи, которые должны происходить, чтобы воздух на подводной лодке был пригоден для дыхания:

- Кислород нужно периодически пополнять, поскольку он потребляется. Если процент кислорода в воздухе уменьшается, человек задыхается;

- Углекислый газ необходимо удалять из воздуха. По мере того, как концентрация углекислого газа повышается, он становится токсином;

- водяные пары, которые мы выдыхаем, должны быть удалены.

Двуокись углерода может быть удалена из воздуха химически, используя газированную известь (гидроксид натрия и гидроксид кальция) в устройствах, называемых скрубберами. Двуокись углерода задерживается в газированной извести химической реакцией и удаляется из воздуха. Другие подобные реакции могут достигать той же цели.

Влага может быть удалена с помощью осушителя или химических веществ. Это предотвращает конденсацию на стенах и оборудовании внутри корабля.

Кроме того, другие примеси, такие как окись углерода или водород, которые генерируются оборудованием или сигаретным дымом, могут быть удалены с помощью горелок. Наконец, фильтры используются для удаления частиц грязи и пыли из воздуха.

Поддержание снабжения пресной водой

Большинство подводных лодок имеют дистилляционный аппарат, который может из морской воды производить пресную. Дистилляционная установка нагревает морскую воду до состояния водяного пара, в котором нет солей, а затем охлаждает водяной пар в сборный резервуар пресной воды. Дистилляционная установка на некоторых подводных лодках может производить от 40 000 до 150 000 литров пресной воды в день. Эта вода используется в основном для охлаждения электронного оборудования (например, компьютеров и навигационного оборудования) и для поддержки экипажа (например, питья, приготовления пищи и личной гигиены).

Температура океана, окружающего подводную лодку, обычно составляет около 4 градусов Цельсия. Металл субмарины хорошо проводит внутреннее тепло к окружающей воде. Таким образом, для поддержания комфортной температуры внутри лодки используют электрические нагреватели. Электричество для нагревателей получают от ядерного реактора, дизельного двигателя или батарей (аварийного).

ИСТОЧНИК ПИТАНИЯ

На атомных подводных лодках используются ядерные реакторы, паровые турбины и редукторы для привода главного карданного вала, который обеспечивает прямое и обратное движение в воде (электродвигатель управляет одним и тем же валом при движении или в аварийной ситуации).

Подводные лодки также нуждаются в электроэнергии для управления оборудованием на борту. Для обеспечения этой мощности подводные лодки оснащены дизельными двигателями, которые сжигают топливо или ядерные реакторы, которые используют ядерное деление. На подводных лодках также есть аккумуляторы для подачи электроэнергии. Электрооборудование часто запускается от батарей, а питание от дизельного двигателя или ядерного реактора используется для зарядки батарей. В чрезвычайных ситуациях батареи могут быть единственным источником электроэнергии для запуска подводной лодки.

Дизельная подводная лодка - очень хороший пример гибридного устройства. Большинство дизельных субмарин имеют два или более дизельных двигателя. Дизельные двигатели могут работать с гребными винтами или могут запускать генераторы, которые перезаряжают очень большой аккумуляторный блок. Или они могут работать в комбинации, один двигатель управляет винтом, а другой - генератором. Используют дизельный двигатель для движения и зарядки батарей, когда лодка находится на поверхности (либо на небольшой глубине – воздух в двигатель подают через специальную кишку, один конец которой находится на поверхности). Как только батареи будут полностью заряжены, подводная лодка может погружаться под воду. Батареи питают электрические двигатели, управляющие винтами. Работа от батареи - единственный способ передвижения лодки под водой. Пределы технологии батареи серьезно ограничивают время, в течение которого дизель может оставаться под водой – периодически необходимо всплывать для подзарядки.

Из-за этих ограничений, было признано, что ядерная энергия на подводной лодке принесет огромную пользу. Ядерным реакторам не нужен кислород, поэтому ядерная субмарина может оставаться под водой в течение нескольких недель. Кроме того, поскольку ядерное топливо работает намного дольше, чем дизельное топливо (годы), атомная подводная лодка не должна выходить на поверхность или в порт для дозаправки и может оставаться в море гораздо дольше.

Ядерные подводные лодки и авианосцы оснащены ядерными реакторами, которые почти идентичны реакторам, используемым на электростанциях. Реактор производит тепло для генерирования пара, который приводит в действие паровую турбину. Турбина на судне непосредственно управляет винтами, а также электрогенераторами. Два основных различия между реакторами на электростанции и корабле: реактор на ядерном судне меньше и использует высокообогащенное топливо, чтобы выделять большое количество энергии при меньших размерах.

НАВИГАЦИЯ

Свет не проникает глубоко в океан, поэтому подводные лодки должны перемещаться в воде практически вслепую. Однако они оснащены сложным навигационным оборудованием. Если на поверхности сложная глобальная система позиционирования точно определяет широту и долготу, то эта система не может работать, когда подводная лодка погружена. Под водой субмарина использует инерционные системы ведения (электрические, механические), которые отслеживают движение судна с фиксированной начальной точки с помощью гироскопов. Инерционные системы ведения должны быть точными и синхронизированными с другими навигационными системами, зависящими от поверхности. С помощью этих систем на борту подводная лодка может точно перемещаться и находиться в пределах ста метров от намеченного курса.

Чтобы найти цель, на подводной лодке используется активный и пассивный сонар. Активный сонар испускает импульсы звуковых волн, которые проходят через воду, отражаются от цели и возвращаются на корабль. Зная скорость звука в воде и время, перемещения звуковой волны к цели и обратно, компьютеры могут быстро рассчитать расстояние между подводной лодкой и мишенью. Киты, дельфины и летучие мыши используют ту же технику для обнаружения добычи (эхолокация). Пассивный сонар включает в себя прослушивание звуков, генерируемых мишенью. Системы сонара также могут использоваться для перестройки инерциальных навигационных систем путем определения известных характеристик океанского дна.

ВЫЖИВАНИЕ

Когда подводная лодка тонет из-за столкновения с чем-то или бортового взрыва, экипаж будет вещать радиосигнал бедствия или запускать буй, который будет передавать сигнал бедствия и местоположение лодки. В зависимости от обстоятельств катастрофы ядерные реакторы будут остановлены, а подводная лодка может работать только на батарее.

Если это так, то экипаж подводной лодки сталкивается с четырьмя основными опасностями:

- Наполнение водой субмарины должно быть сведено к минимуму;

- Использование кислорода должно быть сведено к минимуму, чтобы доступное количество кислорода хватило до возможных попыток спасения;

- Уровни углекислого газа повысятся и могут вызвать опасные токсические эффекты;

- Если батареи разрядятся, тогда системы отопления не работают, и температура внутри лодки понизится.

Спасение с поверхности должно происходить быстро, обычно в течение 48 часов после аварии. Попытки, как правило, связаны с попыткой получить какой-либо тип спасательного транспортного средства, чтобы вывезти экипаж, или прикрепить какой-либо тип устройства для подъема подводной лодки с морского дна. Аварийные транспортные средства включают мини-подводные лодки и спасательные колокола.

Мини-субмарина может самостоятельно подплыть к затонувшей подводной лодке, пристыковаться со спасательным люком, создать воздухонепроницаемое уплотнение, чтобы люк можно было открыть и загрузить часть экипажа. Колокола обычно опускается с судна поддержки до подводной лодки, где происходит аналогичная операция.

Чтобы поднять подводную лодку, как правило, после того, как экипаж был извлечен, понтоны могут быть размещены вокруг субмарины и раздуты, чтобы выплыть на поверхность.

Есть и другие способы спасения экипажа. Важными факторами успеха спасательной операции являются глубина, очертание морского дна, течения вблизи лодки, положение субмарины, море и погодные условия на поверхности.

На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ

В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии. Так, деление каждого ядра урана-235 сопровождается освобождением приблизительно 200 мегаэлектроновольт энергии. Из них примерно 83 % приходится на долю кинетической энергии осколков деления, которая в результате торможения осколков преобразуется в основном в тепловую энергию. Остальные 17 % ядерной энергии освобождаются в виде энергии свободных нейтронов и различных видов радиоактивного излучения. Вновь образованные нейтроны в свою очередь участвуют в делении других ядер.

Lebedev_r

ПЕРВЫЕ ШАГИ

ОБЩАЯ КОНСТРУКЦИЯ

Основной элемент ядерных энергетических установок — ядерный реактор — специальное устройство, в котором происходит управляемая цепная ядерная реакция. В его состав входят активная зона, отражатель нейтронов, стержни управления и защиты, биологическая защита реактора. Активная зона реактора содержит в себе ядерное горючее и замедлитель нейтронов. В ней протекает управляемая реакция цепного деления ядерного горючего. Ядерное топливо размещается внутри так называемых тепловыделяющих элементов (ТВЭЛ), которые имеют форму цилиндров, стержней, пластин или трубчатых конструкций. Эти элементы образуют решетку, свободное пространство которой заполняется замедлителем. Основными материалами для оболочек тепловыделяющих элементов служат алюминий и цирконий. Нержавеющая сталь применяется в ограниченных количествах и только в реакторах на обогащенном уране, так как сильно поглощает тепловые нейтроны. Для отвода тепла через активную зону прокачивается жидкий теплоноситель.

В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).

Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.

ОСНОВНЫЕ РАЗНОВИДНОСТИ

В современных атомных установках ядерная энергия превращается в механическую только посредством тепловых циклов. Во всех механических установках атомных подводных лодок рабочим телом цикла является пар. Паровой цикл с промежуточным теплоносителем, передающим теплоту из активной зоны рабочему телу в парогенераторах, приводит к двухконтурной тепловой схеме энергетической установки. Такая тепловая схема с водо-водяным реактором получила самое широкое распространение на атомных подводных лодках. Первому контуру необходима защита, так как при прокачке теплоносителя через активную зону реактора содержащийся в воде кислород становится радиоактивным. Весь второй контур нерадиоактивен.

С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ


Подлодки
Корабли
Карта присутствия ВМФ
Рейтинг ВМФ России и США
Военная ипотека условия

КМЗ как многопрофильное предприятие

Как новое оборудование
увеличивает выручку
оборонного предприятия

Читайте также: