Сообщение на тему транспорт питательных веществ в бактериальную клетку

Обновлено: 05.07.2024

Большинство бактерий живет в среде, мало подходящей для того, чтобы поддерживать строгое соотношение воды, солей и органических веществ, без которого невозможна жизнь. Это обусловливает необходимость постоянного и тщательного регулирования обмена различными веществами, который происходит между клеткой и внешней средой и контролируется клеточной мембраной. Она проницаема для многих веществ, поток их идет в обоих направлениях (из клетки и в клетку), но структура мембраны такова, что она обладает избирательной и неравномерной проницаемостью, определяющей механизмы питания бактерий.

Питательные вещества из внешней среды поступают в бактериальную клетку с помощью трех основных механизмов: пассивной диффузии, облегченной диффузии и активного транспорта (рис. 17).

Пассивная диффузия осуществляется за счет различного содержания питательных веществ в среде и в клетке и происходит в направлении от большей концентрации к меньшей, т. е. по градиенту концентрации. Когда концентрация вещества по ту и другую сторону мембраны уравнивается, пассивная диффузия прекращается. Ее скорость зависит от величины градиента, но она имеет определенный предел. Таким путем в клетку проникает (и покидает ее) вода вместе с растворенными в ней различными мелкими молекулами, способными проходить через мелкие поры мембраны. Для пассивной диффузии характерно отсутствие субстратной специфичности, и она не требует затраты энергии.

Облегченная диффузия характеризуется выраженной субстратной специфичностью и протекает при обязательном участии специфических белков, локализованных в мембране; синтез некоторых из них индуцируется соответствующими субстратами. Эти белки, получившие название пермеаз (англ. permeate – проникать, проходить сквозь), обладают субстратной специфичностью. Они распознают и связывают молекулу субстрата на внешней стороне мембраны и обеспечивают каким-то образом ее перенос через мембрану. На внутренней поверхности мембраны комплекс пермеаза – субстрат диссоциирует, освободившаяся молекула субстрата включается в общий метаболизм клетки, а пермеаза повторяет очередной цикл переноса своего субстрата, который не способен проникать через мембрану путем простой диффузии. Главное свойство пермеаз – способность проходить через мембрану как с присоединенной молекулой субстрата, так и без нее. Однако облегченная диффузия происходит только по градиенту концентрации, но не против него, поэтому она не требует затраты энергии. Пермеазы, присоединившись к субстрату, повышают его способность проникать через мембрану. Облегченная диффузия протекает со значительно более высокой скоростью, чем пассивная. Ее скорость подчиняется закону Михаэлиса – Ментен, и при достижении равновесия концентрация субстрата, доставляемого посредством облегченной диффузии, на внутренней и внешней поверхностях мембраны становится одинаковой.

Рис. 17

Рис. 17

Разная длина стрелок указывает на сдвиг равновесия реакции в сторону более длинной стрелки. S и s означают соответственно высокую и низкую концентрации растворенных веществ; © – белок-переносчик (пермеаза); R – белок HРr; R-ф – фосфо-HРr; ф – фосфатная группа

Активный транспорт. С помощью механизмов активного транспорта растворенные вещества могут поступать в клетку против градиента концентрации, поэтому активный транспорт требует от клетки затраты энергии. У бактерий этот механизм питания является преобладающим. С его помощью они обеспечивают такие концентрации растворенных питательных веществ внутри клетки, которые могут во много раз превышать их концентрации во внешней среде и обеспечивают им высокие скорости метаболизма даже при низкой концентрации химических веществ в окружающей среде. У многих бактерий, в особенности грамотрицательных, в активном транспорте принимают участие особые связывающие белки, не идентичные пермеазам и не входящие в структуру мембраны, а локализованные в периплазматическом пространстве. У связывающих белков отсутствует каталитическая активность, но они обладают очень высоким сродством к определенным питательным веществам – к различным аминокислотам, сахарам, неорганическим ионам. Выделено и изучено более 100 различных связывающих белков, которые образуют прочные комплексы со своими субстратами и необходимы для их активного переноса через мембрану. Связывающие белки функционируют только в комплексе со специфическими пермеазами, осуществляющими активный перенос субстрата через мембрану. Метаболическая энергия, необходимая для этого, используется для снижения сродства пермеазы к своему субстрату на внутренней поверхности мембраны по сравнению с ее сродством к нему на внешней стороне мембраны. В результате этих превращений происходит изменение скорости выхода субстрата наружу, она становится во много раз меньше скорости его поступления в клетку. При этом механизме активного транспорта через мембрану в клетку поступают против градиента концентрации химически не измененные питательные вещества. У бактерий, вместе с тем, существуют и такие транспортные системы, которые переводят питательные вещества в химически измененную форму, не способную проникать через мембрану. К их числу относится фосфотрансферазная система, широко распространенная среди бактерий. С помощью этой системы транспортируются многие сахара и их производные, в процессе переноса они фосфорилируются и поступают в клетку в виде сахарофосфатов. Поскольку мембрана для последних непроницаема, сахарофосфаты остаются внутри клетки.

Фосфотрансферазная система состоит из двух неспецифических компонентов: ферментов I и HPr и набора субстрат-специфических белков, связанных с мембраной и обозначенных как ферменты II. Фермент I обеспечивает перенос богатой энергией фосфатной группы от фосфоенолпирувата на гистидиновый остаток фермента HPr, который превращается в фосфо-HPr. Последний является общим донором фосфорильной группы для всех субстратов, переносимых фосфотрансферазной системой. Фосфорилирование же их осуществляется субстрат-специфическими белками из группы ферментов II, которые выполняют также и функции пермеаз. У мутантных бактерий, лишенных фермента I или белка HPr, ферменты II осуществляют облегченную диффузию своих субстратов.

Транспортные системы в жизни клетки выполняют две основные функции:

1) поддерживают на высоком уровне внутриклеточные концентрации всех субстратов, необходимых для осуществления важнейших биохимических реакций с максимальными скоростями даже при низких концентрациях этих химических веществ во внешней среде;

2) регулируют внутриклеточное осмотическое давление, поддерживают оптимальную для метаболической активности концентрацию растворенных веществ (небольших молекул и ионов).

Вещества питательной среды могут поступать в клетку только в растворенном состоянии. Нерастворимые сложные органические соединения должны подвергнуться расщеплению на более простые вне клетки, что происходит с помощью экзоферментов микроорганизмов.

Клеточная стенка проницаема и задерживает лишь макромолекулы. Цитоплазматическая мембрана обладает полупроницаемостью. Она служит осмотическим барьером, проницаемость её для различных веществ неодинакова.

Мембранные белки - пермеазы или транслоказы - обладают ферментативными свойствами и помогают осуществлять транспорт веществ в клетку.

Различают следующие виды транспорта:

1) Пассивный транспорт (без затраты Е)

– простая диффузия(не специфична, для нее имеет значение только величина молекул, путем простой диффузии в клетку проникают чужеродные для нее вещества - яды, ингибиторы, лекарственные препараты)

- облегченная диффузия (по градиенту концентрации, в клетку проникают те молекулы, концентрация которых в цитоплазме ниже, чем в окружающей среде. Этот процесс осуществляется благодаря субстрат-специфической пермеазе. Затрат энергии при этом не происходит­)

2) Активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны)

*(лекция из мудла)

Наиболее известны два пути проникновения веществ в клетку: осмос и адсорбция (специфический перенос). Активная роль в этих процессах принадлежит цитоплазматической мембране.

О с м о с представляет собой диффузию веществ в растворах через полупроницаемую мембрану. Возникает осмос под действием разности осмотических давлений в растворах по обе стороны полупроницаемой мембраны. Чем больше разность осмотических давлений (концентраций растворов) по обе стороны полупроницаемой мембраны, тем с большей интенсивностью осмотирует растворитель (вода) в раствор с большим осмотическим давлением. Осмотируют растворённые в воде вещества; при этом каждое диффундирует в соответствии с его собственным (парциальным) осмотическим давлением, то есть в раствор с его меньшей концентрацией.

Таким образом, при осмотическом проникновении питательных веществ в клетку движущей силой служит разность осмотических давлений между средой и клеткой. Такой пассивный перенос веществ не требует затраты энергии и протекает до выравнивания концентрации с наружным раствором.

Второй путь поступления веществ в клетку – активный– путём переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти переносчики, называемые пермеазами, обладают субстратной специфичностью. При таком переносе веществ затрачивается энергия. При этом транспортируемое вещество может подвергнуться изменению, например из не растворимого в мембране переходит в растворимое состояние.

Цитоплазматическая мембрана, таким образом, является не только осмотическим барьером, но и обладает избирательной проницаемостью

Примером активного транспорта служит концентрирование лактозы в клетках кишечной палочки. Эта система известна как β-галактозидпермеазная система. Энергия используется для снижения сродства пермеазы к лактозе на внутренней стороне ЦПМ по сравнению с ее сродством к тому же субстрату на внешней. В результате скорость выхода вещества наружу становится меньше, чем скорость его поступления внутрь клетки, и концентрация лактозы в клетке возрастает.

Транспорт, обусловленный фосфорилированием — энергозависимый процесс, используемый при утилизации углеводов. Основной механизм транспорта связан с фосфорилированием субстрата, что делает невозможным его выход из клетки. Данный тип транспорта не рассматривают как активный, поскольку концентрация неизменённого питательного вещества внутри клетки может быть одинаковой с его внеклеточным содержанием.

Выход продуктов метаболизма из бактериальной клетки в окружающую среду так же осуществляется путем неконтролируемой диффузии или при участии транспортных систем - в тех случаях, когда в результате процессов брожения, неполного окисления или нарушений метаболизма вещества накапливаются в клетке в количествах, превышающих физиологическую норму.


Транспорт питательных веществ – это процесс прохождения веществ из окружающей среды через цитоплазматическую мембрану (ЦПМ) в бактериальную клетку [1] .

Выделяют несколько типов транспортных систем, которые позволяют различным веществам преодолевать преграду цитоплазматической мембраны (ЦПМ) и попадать внутрь клетки микроорганизма. Это пассивная диффузия, облегченная диффузия, активный транспорт. Отмечается, что только активный транспорт способствует аккумуляции (накоплению) веществ внутри клетки [1] .

Транспорт питательных веществ - Схема процесса пассивной диффузии

Схема процесса пассивной диффузии

Транспорт питательных веществ - Схема процесса пассивной диффузии

Пассивная диффузия

Пассивная или простая диффузия – неспецифический процесс. Он происходит за счет разницы концентраций. Передвижение молекул осуществляется из более концентрированного раствора в менее концентрированный (по градиенту их концентрации).Этот процесс не связан с затратой энергии. Таким путем в клетку попадают низкомолекулярные вещества: кислород, липофильные соединения (спирты, жирные кислоты), вода, яды и другие, чужеродные для клетки вещества. Таким же образом происходит удаление продуктов обмена. Скорость перемещения веществ путем пассивной диффузии невелика и зависит от размеров транспортирующихся молекул [4] [3] .

Транспорт питательных веществ - Схема процесса облегченной диффузии

Схема процесса облегченной диффузии

Транспорт питательных веществ - Схема процесса облегченной диффузии

Облегченная диффузия

Облегченная диффузия – перенос веществ через цитоплазматическую мембрану по градиенту их концентрации с участием пермеаз (транслоказ) – специфических мембранных белков, способствующих прохождению веществ через цитоплазматическую мембрану [3] [1] .

Параллельно отмечается, что облегченная диффузия более характерна для эукариотических организмов [4] .

Транспорт питательных веществ - Схема активного транспорта

Схема активного транспорта

Транспорт питательных веществ - Схема активного транспорта

Активный транспорт

Активный транспорт является основным механизмом избирательного переноса вещества через цитоплазматическую мембрану в клетку против градиента концентрации. Этот процесс протекает при участии локализованных в цитоплазматической мембране переносчиков – пермеаз. Это вещества белковой природы, высокочувствительные к субстрату [3] .

Активным транспортом в цитоплазму бактериальной клетку поступает подавляющее большинство разнообразных веществ (ионы, углеводы, аминокислоты, липиды) [4] .

Для активного транспорта необходимы затраты энергии. Ее получают в виде АТФ, либо за счет протондвижущей силы энергизованной мембраны [3] .

У многих микробов, чаще у грамотрицательных бактерий, в активном транспорте принимают участие связующие белки. Эти вещества не входят в структуру мембраны, не идентичны пермеазам. Они локализованы в периплазматическом пространстве. Связующие белки не имеют каталитической активности, но обладают высоким сродством к определенным питательным веществам, аминокислотам, углеводам, неорганическим ионам. Выделено и изучено более 100 различных связующих белков [3] .

Активный транспорт осуществляется двумя путями:

  1. Без химической модификации переносимого вещества [4] .
  2. С химической модификацией переносимого вещества [4] .

Во втором случае наблюдается следующие последовательные процессы:

Отмечается, что молекулы субстрата аккумулируются в цитоплазме клеток и теряют способность выйти из них именно за счет фосфорилирования [4] .

Отдельные авторы второй путь активного транспорта (с химической модификацией переносимого вещества) выделяют в отдельный (четвертый) способ транспорта питательных веществ – транслокацию (перенос) групп (радикалов) [1] [3] .

1. Пассивная диффузия (осмос) - поступление питательных веществ из окружающей среды через клеточную стенку и цитоплазматическую мембрану в результате разницы концентраций питательных веществ внутри бактериальной клетки и в питательной среде. Процесс осуществляется по направлению градиента концентрации вещества без затрат энергии АТФ. Посредством пассивной диффузии в клетку поступает вода и некоторые ионы.

2. Облегченная диффузия. Осуществляется по направлению градиента концентрации с участием специальных белков-переносчиков, которые называются пермеазами. Пермеаза на внешней стороне цито­плазматической мембраны специфически связывается с молекулой субстрата. На внутренней поверхности мембраны происходит диссоциация комплекса пермеаза - субстрат. При этом транспортируемое вещество высвобождается в цитоплазму, а пермеаза вновь принимает первоначальное положение. Облегченная диффузия осуществляется без затрат энергии АТФ.

3. Активный транспорт.Осуществляется против градиента концентрации с помощью пермеаз и с затратой энергии АТФ. По этому механизму в бактериальные клетки поступает основное количество питательных веществ.

4. Перенос групп. Сущность этого механизма состоит в переносе питательного вещества внутрь клетки против градиента концентрации с помощью пермеаз в химически измененной форме с затратой энергии АТФ. По этому механизму внутрь клетки поступают крупные молекулы питательных веществ.

Питательные среды, их классификация

Микроорганизмы культивируют на питательных средах. Питательные среды подразделяются на группы в зависимости от свойств.

По физическому состоянию питательные среды подразделяются на:

- твердые (плотные) среды;

Жидкие среды представляют собой настои, отвары, бульоны, приготовленные на основе мяса, рыбы, овощей (естественные среды), а также композиции определенных концентраций химических соединений (искусственные среды). Полужидкие среды получают путем добавления к жидким средам 0,5-0,9% агар-агара (желеобразующее вещество, получаемое из морских водорослей). К плотным питательным средам относят среды, содержащие 2-3% агара.

По сложности питательные среды подразделяются на:

- простые, или обычные среды (пептонная вода, мясо-пептонный бульон, мясо-пептонный агар);

- сложные, или специальные среды (кровяной агар, асцитический агар и бульон, мясо-пептонный сахарный бульон, сывороточный агар и бульон, свернутая сыворотка, кровяной бульон).

По происхождению питательные среды подразделяются на:

Естественные питательные среды - это природные органические среды непостоянного состава, которые включают продукты животного или растительного происхождения. К ним относятся пептоны, кровь, отвары и экстракты, полученные из природных субстратов (мясо, рыба, крупы).

Полусинтетические среды кроме органических и неорганических веществ известного состава содержат продукты природного происхождения (картофельная среда с глюкозой, дрожжевая среда).

Синтетические питательные среды состоят из определенных количеств органических и неорганических химических соединений известного состава.

По набору питательных веществ выделяют:

- минимальные среды, которые содержат лишь источники питания,
достаточные для роста;

- богатые среды, в состав которых входят многие дополнительные
вещества.

В зависимости от назначения питательных сред различают:

- элективные (селективные) среды;

- накопительные среды (среды обогащения).

К основным средамотносятся мясо-пептонный агар и мясо-пептонный бульон. На этих средах растет большинство бактерий.

Дифференциально-диагностические среды - это сложные среды, позволяющие изучать биохимические свойства бактерий. Эти среды используются для определения вида бактерий.

Элективные (селективные) питательные среды содержат вещества, подавляющие рост одних бактерий, и не влияющие на рост других бактерий. Эти среды служат для выделения определенного вида бактерий из смешанных популяций.

Накопительные питательные среды (среды обогащения) - это среды, на которых определенные виды культур растут быстрее и интенсивнее сопутствующих.

Бактериологический метод исследования




Целью бактериологического исследования является выделение чистой культуры возбудителя, его идентификация и определение чувствительности к антибактериальным препаратам.

Бактериологический метод исследования включает 4 этапа:

- посев исследуемого материала на питательные среды;

- выделение чистой культуры возбудителя;

- идентификация возбудителя (определение вида бактерий) и определение чувствительности к антибактериальным препаратам;

- учет результатов и выдача заключения.

Первый этап. Техника посева материала на питательные среды

Материалом для бактериологического исследования служат: кровь, моча, отделяемое раны, мокрота, фекалии, рвотные массы, смывы с кожи и слизистых оболочек и др. Поступивший в лабораторию материал подвергают бактериологическому исследованию в тот же день.

На первом этапе исследуемый материал высевают в жидкую питательную среду (для накопления возбудителя и определения характера его роста) и на плотную питательную среду (для выделения чистой культуры возбудителя).

Техника посева зависит от характера исследуемого материала и консистенции питательной среды.

Жидкий материал для посева берут бактериологической петлей или стерильной пипеткой. Все манипуляции проводят вблизи пламени горелки. Бактериологическую петлю перед взятием материала и по окончании посева стерилизуют прокаливанием в пламени горелки. Пипетки после посева погружают в дезраствор.

При посеве в жидкую питательную среду петлю с материалом погружают в среду и легким покачиванием смывают материал. Пипетку погружают в среду и материал сливают.

При посеве на скошенный питательный агар в пробирке петлю с материалом вносят вблизи пламени горелки в пробирку и материал штрихом распределяют по поверхности агара.

Посев материала на агар в чашке Петри проводят с помощью бактериологической петли, шпателя или тампона. Посев бактериологической петлей проводят штрихом по поверхности агара. С помощью шпателя или тампона исследуемый материал распределяется по поверхности среды круговыми движениями.

Для посева в толщу питательной среды материал вносят в стерильную чашку Петри или в пробирку, добавляют остуженный (40-45 О С) расплавленный агар и перемешивают.

Посев уколом в столбик питательной среды проводят с помощью бактериологической иглы или петли путем прокалывания столбика среды.

Контрольные вопросы по теме занятия:

1. Действие физических факторов на микроорганизмы.

2. Действие химических факторов на микроорганизмы.

3. Методы и режимы стерилизации.

4. Методы дезинфекции.

5. Назовите основные группы дезинфицирующих и антисептических веществ, механизмы их антибактериального действия.

6. Типы питания микробов и механизмы поступления питательных веществ внутрь микробной клетки.

7. Классификация питательных сред, примеры питательных сред.

8. Техника посева исследуемого материала на питательные среды.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А. Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

2. О.К. Поздеев. Медицинская микробиология. М., ГЭОТАР-МЕДИА, 2005.

ЗАНЯТИЕ 4

ТЕМА ЗАНЯТИЯ: Характер роста микробов на жидких и плотных питательных средах. Колонии микроорганизмов. Пигментообразование у бактерий. Бактериологический метод (второй этап). Выделение чистой культуры бактерий.

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ: Изучить характер роста микробов на жидких и плотных питательных средах. Изучить характеристику колоний микроорганизмов. Ознакомиться с пигментообразованием у бактерий. Освоить второй этап бактериологического исследования - выделение чистой культуры бактерий.

ЗАДАЧИ ЗАНЯТИЯ:

1. Изучить характер роста микробов на жидких и плотных питательных средах.

2. Освоить характеристику колоний микроорганизмов.

3. Ознакомиться с пигментообразованием у бактерий.

4. Освоить второй этап бактериологического исследования - выделение чистой культуры бактерий.

Для того, чтобы питательные вещества мог­ли подвергнуться превращениям в цитоплаз­ме клетки, они должны проникнуть в клетку через пограничные слои. Ответственность за поступление в клетку питательных веществ лежит на ЦПМ.

Существует два типа переноса веществ в бак­териальную клетку:

1.пассивный

2.активный.

При пассивном переносе вещество прони­кает в клетку только по градиенту концентра­ции. Затрат энергии при этом не происходит. Различают две разновидности пассивного пе­реноса:

1.простую диффузию

2.облегченную диффузию.

Простая диффузия — неспецифи­ческое проникновение веществ в клетку, при этом решающее значение имеет величина мо­лекул и липофильность. Скорость переноса незначительна.

Облегченная диффузия проте­кает с участием белка-переносчика. Скорость этого способа переноса зависит от концентра­ции вещества в наружном слое.

Культивирование бактерий в системах in vi­tro осуществляется на питательных средах. Искусственные питательные среды должны отвечать следующим требованиям:

1.Каждая питательная среда должна со­держать воду, так как все процессы жизнеде­ятельности бактерий протекают в воде.

2.Для культивирования гетероорганотрофных бактерий в среде должен содержаться органический источник углерода и энергии.Эту функцию выполняют различные органи­ческие соединения: углеводы, аминокислоты, органические кислоты, липиды. Наибольшим энергетическим потенциалом обладает глюко­за, так как она непосредственно подвергается расщеплению с образованием АТФ и ингре­диентов для биосинтетических путей. Часто используется в этих целях пептон— продукт неполного гидролиза белков, состоящий из поли-,олиго- и дипептидов. Пептон также поставляет аминокислоты для построения
бактериальных белков.

3.Для синтеза белков, нуклеотидов, АТФ, коферментов бактериям требуются источни­ки азота, серы, фосфаты и другие минераль­ные вещества, в том числе микроэлементы.

Источником азота может служить пептон; кроме того, большинство бактерий способны использовать соли аммония в качестве источ­ника азота.

Серу и фосфор бактерии способны утили­зировать в виде неорганических солей: суль­фатов и фосфатов.

Для нормального функционирования фер­ментов бактериям требуются ионы Са 2+ , Mg 2+ , Mn 2+ , Fe 2+ , которые добавляют в питательную среду в виде солей, чаще всего фосфатов.

4. Решающее значение для роста мно­гих микроорганизмов имеет рН среды. Поддерживание определенного рН имеет значение для предотвращения гибели мик­роорганизмов от ими же образованных про­дуктов обмена. С этой целью питательную среду забуферивают, чаще всего используя фосфатный буфер. При сильном выделении бактериями кислот, как продуктов обмена, добавляют к питательной среде карбонат кальция СаС12.

5. Среда должна обладать определенным ос­мотическим давлением.Большинство бакте­рий способны расти на изотоничных средах, изотоничность которых достигается добавле­нием NaCl в концентрации 0,87 %. Некоторые
бактерии не способны расти на средах при концентрации соли в них ниже 1 %. Такие бактерии называются галофильными.

Так как устойчивость к осмотическому дав­лению определяется наличием у бактерий клеточной стенки, бактерии, лишенные кле­точной стенки, микоплазмы L-формы могут расти на питательных средах, содержащих гипертонический раствор, обычно сахарозы.

При необходимости к питательной среде добавляют факторы роста, ингибиторы роста определенных бактерий, субстраты для дейс­твия ферментов, индикаторы.

6. Питательные среды должны быть сте­рильными.

В зависимости от консистенции питатель­ные среды могут быть:

1.жидкими,

2.полужидки­ми

3.плотными.

Плотность среды достигается добавлением агара.

Агар— полисахарид, получаемый из водо­рослей. Он плавится при температуре 100 °С, но при охлаждении остывает при температу­ре 45-50 °С. Агар добавляют в концентрации 0,5 % — для полужидких сред и 1,5—2 % — для создания плотных сред.

Преимуществом плотных питательных сред является воз­можность получения чистых культур микроорганизмов, а также сообществ микроорганизмов (колоний, бактериальных газо­нов), имеющих макроскопические размеры.

По составу питательные среды могут быть простыми и сложными.

К простым средамот­носятся пептонная вода, питательный бульон, мясопептонный агар.

На основе этих простых сред готовят сложные, например сахарный и сывороточный бульоны, кровяной агар.

В бактериологической практике используют среды,различ­ные по происхождению.

Синтетическимипитательными сре­дами называют такие, которые состоят из растворов химически чистых соединений в точно установленных дозировках. Пре­имуществом синтетических сред являются их строго постоян­ный состав и воспроизводимость.

Полусинтетическиесреды включают наряду с химически чистыми соединениями перера ботанные нативные компоненты неопределенного состава — гидролизаты мяса, дрожжевой экстракт и т.д.

Натуральныепитательные среды представляют собой неизмененные натив­ные (природные) компоненты (сыворотка крови, яичный белок и др.).

Различные потребности микробов отдельных видов обуслов­ливают большое разнообразие питательных сред.

По целевому назначениюпитательные среды делят на основ­ные, элективные и дифференциально-диагностические.

К основнымотносятся среды, применяемые для выращива­ния многих бактерий. Это пептические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду — питательный бульон и плотную — пи­тательный агар. Такие среды также служат основой для приго­товления сложных питательных сред — сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бак­терий.

Элективныепитательные среды предназначены для избира­тельного выделения и накопления микроорганизмов опреде­ленного вида (или определенной группы) из материалов, со­держащих разнообразную постороннюю микрофлору. При со­здании элективных питательных сред исходят из биологичес­ких особенностей, которые отличают данные микробы от боль­шинства других. Например, избирательный рост стафилокок­ков наблюдается при повышенной концентрации хлорида на­трия, холерного вибриона — в щелочной среде и т.д.

В состав дифференциально-диагностической среды входят следующие компоненты: а) основная питательная среда, обеспечивающая размножение бактерий, б) определенный углевод (например, лактоза), способность использовать который явля­ется диагностическим признаком для данного вида, в) цвет­ной индикатор (например, индикатор Андреде), изменение цвета которого свидетельствует о сдвиге рН среды в кислую сторону вследствие ферментации соответствующего углевода. Дифференциально-диагностические среды широко использу­ют в лабораторных микробиологических диагностических исследованиях для дифференциации и идентификации бак­терий.

Культивирование бактерий

а Выделение чистой культуры бактерий

Выделение отдельных видов бактерий из исследуемого ма­териала, содержащего, как правило, смесь различных микро­организмов, является одним из этапов любого бактериологи­ческого исследования, проводимого с различными целями: диагностики заболеваний, определения микробной обсемененности окружающей среды и т.д.

Чистой культуройназывается популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному при­знаку на биологические варианты — биовары. Биовары, разли­чающиеся по биохимическим свойствам, называют хемоварами, по антигенным свойствам — сероварами, по чувствитель­ности к фагу — фаговарамии т.д. Культуры микроорганизмов одного и того же вида или биовара, выделенные из различных источников либо в разное время из одного и того же источни­ка, называют штаммами, которые обычно обозначают номера­ми, какими-либо символами.

Колонияпредставляет собой видимое изолированное сооб­щество микроорганизмов одного вида, образующееся в резуль­тате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее).

Читайте также: