Сообщение на тему сетевые технологии

Обновлено: 05.07.2024

Содержание

ВВЕДЕНИЕ 3
ГЛАВА 1. ТОПОЛОГИИ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ. 4
1.1 Физические топологии локальных сетей. 4
1.2 Логические топологии локальных сетей. 6
ГЛАВА 2. ТЕХНИЧЕСКИЕ СРЕДСТВА ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ. 8
2.1 Соединители и разъёмы. 8
2.2 Коаксиальный кабель. 9
2.3 Витая пара. 11
2.4 Передача информации по волоконно-оптическим кабелям. 13
2.5 Коммуникационная аппаратура 16
2.6 Аппаратура и технологии беспроводных сетей 20
ГЛАВА 3. АДРЕСАЦИЯ КОМПЬЮТЕРОВ В СЕТИ И ОСНОВНЫЕ СЕТЕВЫЕ ПРОТОКОЛЫ. 23
3.1 Сетевые средства ОС MS Windows. 28
3.2 Настройка параметров сетевых компонентов. 33
ЗАКЛЮЧЕНИЕ. 37
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 38

Работа содержит 1 файл

СЕТЕВЫЕ ТЕХНОЛОГИИ.doc

Министерство образования и науки Республики Казахстан

Центрально- Казахстанский Университет МГТИ-Лингва

По дисциплине: Новый информационные технологии

На тему: Сетевые технологии

Выполнил: ст. группы ИС-09-31

Проверил: маг., преп. Мергенбекова А.Н.

СОДЕРЖАНИЕ

2.6 Аппаратура и технологии беспроводных сетей

3.1 Сетевые средства ОС MS Windows.

3.2 Настройка параметров сетевых компонентов.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

ГЛАВА 1. ТОПОЛОГИИ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ

Все компьютеры абонентов (пользователей), работающие в рамках локальной вычислительной сети должны иметь возможность взаимодействовать друг с другом, т.е. быть связанными между собой. Способ организации таких связей существенно влияет на характеристики локальной вычислительной сети и называется её топологией (архитектурой, конфигурацией). Различают физическую и логическую топологии. Под физической топологией локальной вычислительной сети понимают физическое размещение компьютеров, входящих в состав сети и способ их соединения друг с другом проводниками. Логическая топология определяет способ прохождения информации и очень часто не совпадает с выбранной физической топологией соединения абонентов локальной вычислительной сети.

1.1 Физические топологии локальных вычислительных сетей

Существует четыре основных физических топологии, используемых при построении локальных вычислительных сетей.

В топологии кольцо (рис. 2) каждый абонент сети связан с двумя близлежащими абонентами. Достоинства и недостатки аналогичны рассмотренным для топологии шина.

С точки зрения надежности и скорости обмена информацией наилучшими характеристиками обладает полносвязная топология (рис. 4). В этом случае абонентам сети предоставляется отдельный канал связи с каждым из остальных абонентов. Однако по стоимости данная топология проигрывает всем остальным вариантам.

Перечисленные топологии являются базовыми. Большинство локальных вычислительных сетей, создаваемых в различных организациях, имеют более сложную структуру и являются различными вариантами комбинирования вышеупомянутых топологий.

1.2 Логические топологии локальных вычислительных сетей

Логическая топология звезда (и её версия – дерево) ориентирована на установление канала связи между приёмником и передатчиком средствами коммутаторов. Т.е. при отсутствии коммутатора невозможно связаться между собой даже двум абонентам сети. При передаче данных от одного абонента к другому, все остальные ждут окончания передачи.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Сетевые технологии, каналы связи и их основные характеристики.

Обучать основам сетевых технологий.

Развивать познавательный интерес.

Воспитывать информационную культуру.


П роверка домашнего задания.

Х од урока:

Сетевая технология — это согласованный набор стандартных протоколов и программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети.
Сегодня Интернет – это объединение большого количества сетей. Каждая сеть состоит из десятков и сотен серверов. Серверы соединены между собой напрямую различными линиями связи: кабельными, наземной радиосвязью, спутниковой радиосвязью. К каждому серверу подключается большое количество компьютеров и локальных компьютерных сетей, которые являются клиентами сети. Клиенты могут соединяться с сервером не только по прямым линиям, но и по обычным телефонным каналам.
Каналами связи называют технические средства, позволяющие осуществлять передачу данных на расстоянии. В рассматриваемом нами контексте каналами связи будем называть средства установления связи для передачи информации между удаленными компьютерами . В качестве технических средств передачи информации могут использоваться обычные каналы связи (телефонные, телеграфные, спутниковые и т. д.). Сейчас более прогрессивными средствами считаются каналы связи, построенные специально для передачи цифровой информации. К таковым относятся, например, оптоволоконные сети.


Классификация компьютерных каналов связи:

по способу кодирования: цифровые и аналоговые ;

по способу коммуникации: выделенные (постоянное соединение) и коммутируемые (временное соединение);

по способу передачи сигнала: кабельные (витая пара, коаксиальный кабель, оптико-волоконные, оптические (световоды), радиорелейные, беспроводные, спутниковые; телефонные , радио (радиорелейные, спутниковые).

Витая пара состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы.


Коаксиальный кабель по сравнению с витой парой обладает более высокой механической прочностью, помехозащищённостью.

Оптоволоконный кабель - идеальная передающая среда, он не подвержен действию электромагнитных полей и сам практически не имеет излучения.

поурочные планы по информатике, госо 2013

Линии связи:

Радиорелейные линии связи (РРЛ) предназначены для передачи сигналов в диапазонах дециметровых, сантиметровых и миллиметровых волн. Передача ведется через систему ретрансляторов, расположенных на расстоянии прямой видимости.


Беспроводное сетевое оборудование предназначено для передачи по радиоканалам информации между компьютерами, сетевыми и другими специализированными устройствами.


Спутниковые линии связи работают в 9 - 11 диапазонах частот и, в перспективе, в оптических диапазонах. В этих системах сигнал с земной станции посылается на спутник, содержащий приемопередающую аппаратуру, там усиливается, обрабатывается и посылается обратно на Землю, обеспечивая связь на большие расстояния и перекрывая большие площади.


В качестве физического процесса, осуществляющего передачу данных на расстоянии, используют сигналы . На этот процесс могут влиять различные явления, создающие помехи (например, это может быть напряжение постороннего происхождения, появляющееся в каналах связи и ограничивающее дальность передачи полезных сигналов).


В зависимости от источника возникновения и от характера их воздействия помехи делятся на:

собственные помехи канала связи;

взаимные , создаваемые влиянием каналов друг на друга;

внешние - от посторонних электромагнитных полей.


Прокси-сервер - промежуточный, транзитный веб-сервер, используемый как посредник между браузером и конечным веб-сервером. Основная причина использования прокси-сервера - экономия объема передачи информации и увеличение скорости доступа за счет кэширования. Например, если большинство сотрудников компании часто пользуются одним и тем же веб-сервером, содержащим актуальный курс валют, то эта информация сохранится в прокси, и, таким образом, страницы будут запрошены с оригинального сервера всего 1 раз. При использовании прокси компании нужен всего один публичный IP-адрес.


Протокол (protocol) - совокупность правил, регламентирующих формат и процедуры обмена информацией между двумя независимыми процессами или устройствами.

Протокол сетевой (network protocol) - совокупность правил и соглашений, использующихся при передаче данных.


Различают три основных типа протоколов, работающих в разных сетях и с разными операционными системами: Novell IPX (Inter Packet Exchange), TCP/IP, NetBEUI (Network BIOS User Interface).
Протокол управления передачей/межсетевой протокол TCP/IP (Transmission Control Protocol/Internet Protocol) - набор протоколов, разработанный для Интернета и ставший его основой. TCP гарантирует, что каждый посланный байт дойдет до получателя без потерь. IP присваивает локальные IP-адреса физическим сетевым адресам, обеспечивая тем самым адресное пространство с которым работают маршрутизаторы.

В семейство TCP/IP входят:

протокол Telnet, который позволяет удаленным терминалам подключаться к удаленным узлам (компьютерам);

система доменной адресации DNS, дающая возможность пользователям адресоваться к узлам сети по символьному доменному имени вместо цифрового IP-адреса;

протокол передачи файлов FTP, который определяет механизм хранения и передачи файлов;

Аннотация: Приведены основные элементы и устройства телекоммуникационных сетей, их классификация, описание семиуровневой модели взаимодействия открытых систем.

1.1. Основы сетевых технологий

При создании сетей телекоммуникаций невозможно соединить всех абонентов между собой отдельными (выделенными) линиями связи . Это нецелесообразно экономически и невыполнимо практически. Поэтому соединение многочисленных абонентов (А), находящихся на большом расстоянии, обычно производится через транзитные (телекоммуникационные) узлы (ТУ) связи ( рис. 1.1).

Телекоммуникационная сеть

В некоторых сетях все возможные маршруты уже созданы и необходимо только выбрать наиболее оптимальный. Процесс выбора оптимального маршрута получил название маршрутизация, а устройство, ее реализующее, – маршрутизатор. Выбор оптимального маршрута узлы производят на основе таблиц маршрутизации (или коммутации) с использованием определенного критерия – метрики.

В настоящее время в соответствии с концепцией Единой сети электросвязи Российской Федерации создаются сети нового (следующего) поколения ( Next Generation Network – NGN ), в которых все виды трафика передаются по единой сети связи в цифровой форме. Подобные сети также называют мультисервисными ( Internet Multi Service – IMS ), в отличие от ранее существовавших моносервисных сетей.

В сетях NGN обеспечивается слияние ( конвергенция ) всех существующих сетей в единую информационную сеть для передачи мультимедийной информации. Пользователи такой сети должны иметь широкий выбор услуг с гарантированным качеством, что обеспечивается соответствующим уровнем управления, транспортным уровнем и уровнем доступа пользователей к мультисервисной сети ( рис. 1.2).

Уровни мультисервисной сети NGN

Транспортный уровень сети NGN создается на базе IP -сетей с распределенной коммутацией пакетов . Доступ к транспортной сети обеспечивается через соответствующие устройства и шлюзы .

Сети следующего поколения NGN обеспечивают широкий набор услуг с гибкими возможностями по их управлению. Телекоммуникационные сети нового поколения используются для передачи различных видов информации: дискретных данных, аудио- и видеоинформации. Услуга передачи указанной триады (голоса, данных и видеоинформации) по единой мультисервисной сети получила название Triple Play.

Структурная схема телекоммуникационной сети

1.2. Классификация сетей передачи данных

Методы и устройства, используемые в вычислительных (компьютерных) сетях передачи данных , широко применяются при создании сетей NGN. Поэтому в настоящем курсе лекций основное внимание уделено аппаратным и программным средствам вычислительных (компьютерных) сетей, т. е. сетей передачи данных , на базе которых и создаются современные мультисервисные сети. В сетях передачи данных (компьютерных или вычислительных) поток может быть представлен различными информационными единицами: битами, байтами, кадрами, пакетами, ячейками, образующими информационный поток . Сети передачи данных, как правило, относятся к сетям с коммутацией пакетов.

Согласно одной из классификаций сети передачи данных подразделяются на локальные и глобальные ( рис. 1.4). Сеть может размещаться на ограниченном пространстве, например, в отдельном здании, в аудитории. При этом она называется локальной вычислительной сетью – ЛВС ( Local Area Network – LAN ). Основными технологиями локальных вычислительных сетей , которые применяются в настоящее время, являются Ethernet , Fast Ethernet , Gigabit Ethernet . Другие технологии ЛВС ( Token Ring , 100VG-AnyLAN , FDDI и др.) используются редко.

Классификация сетей передачи данных

Совокупность нескольких локальных сетей называют составной, распределенной или глобальной сетью ( Internetwork , Internet ). В составную сеть могут входить подсети ( Subnet ) различных технологий. Крупные фирмы (корпорации) создают свои собственные корпоративные сети ( Intranet ), которые используют технологии как глобальных, так и локальных сетей. Таким образом, объединение пользователей, расположенных на широком географическом пространстве, например в разных городах, для совместного использования информационных данных, производится с помощью глобальных вычислительных сетей – ГВС (Wide Area Network – WAN ).

Глобальные сети передачи данных часто классифицируют ( рис. 1.4) на:

  • сети с коммутацией каналов ;
  • сети, использующие выделенные линии;
  • сети с коммутацией пакетов .

Сети с коммутацией каналов и с использованием выделенных линий строят на основе различных сетевых технологий . При этом применяются следующие технологии и линии связи :

  • цифровые линии, которые бывают постоянные, арендуемые, а также коммутируемые. В цифровых линиях применяют технологии плезиохронной цифровой иерархии ( Plesiochronous Digital Hierarchy – PDH ), синхронной цифровой иерархии ( Synchronous Digital Hierarchy – SDH ), а также технологии оптических линий связи спектрального уплотнения по длине волны ( Wave -length Division Multiplexing – WDM, Dense WDM – DWDM );
  • цифровые сети интегральных служб с коммутацией каналов ( Integrated Services Digital Network – ISDN );
  • цифровые абонентские линии (Digital Subscriber Line – DSL );
  • аналоговые выделенные линии и линии с коммутацией каналов ( dialup ) с применением модемов, т. е. аналоговые АТС.

Технологии PDH и SDH характеризуются высокой скоростью передачи данных. Например, скорость передачи данных по сетям технологии PDH составляет от 2 Мбит/с до 139 Мбит/с; технологии SDH – от 155 Мбит/с до 2,5 Гбит/с и выше. Дальнейшее увеличение скорости передачи данных достигнуто в системах со спектральным уплотнением по длине волны (технологии WDM и DWDM ) на волоконно-оптических кабелях. Основными аппаратными средствами высокоскоростных технологий с коммутируемыми цифровыми линиями являются мультиплексоры ( MUX ).

Широкое распространение в настоящее время получили сети с коммутацией пакетов, в которых применяются следующие сетевые технологии :

Технологии виртуальных каналов предусматривают предварительное соединение конечных узлов (источника и назначения), при этом прокладывается маршрут ( виртуальный канал ), по которому затем передаются данные. Получение данных подтверждается приемной стороной. Технология X.25 ориентирована на ненадежные аналоговые линии связи , поэтому характеризуется низкой скоростью передачи данных (до 48 Кбит/с). Однако данная технология применяется до настоящего времени, например в сетях банкоматов, из-за своей высокой надежности при ненадежных линиях. Технология Frame Relay обеспечивает более высокую по сравнению с Х.25 скорость передачи данных – до 2-4 Мбит/с. Но линии связи должны быть более надежными по сравнению с Х.25. Наибольшую скорость передачи данных (155 Мбит/c, 620 Мбит/c, а также 2,4 Гбит/c) обеспечивают сети АТМ. Однако развитие этих сетей сдерживает их высокая стоимость .


Оглавление

Приведённый ознакомительный фрагмент книги Сети и телекоммуникации. Для студентов предоставлен нашим книжным партнёром — компанией ЛитРес.

1 ВВЕДЕНИЕ В СЕТЕВЫЕ ТЕХНОЛОГИИ

1.1 Основные определения

Передача данных — физический перенос данных в виде сигналов от точки к точке или от точки к нескольким точкам средствами связи по каналу передачи данных. Примерами подобных каналов могут служить медные провода, волокно-оптические линии связи, беспроводные каналы передачи.

Сетевая инфраструктура включает в себя три категории компонентов сети:

2. Среда передачи;

Устройства и среды передачи — это физические элементы или аппаратное обеспечение сети. Аппаратное обеспечение зачастую является видимой частью сетевой платформы: ноутбук, ПК, коммутатор, маршрутизатор, беспроводная точка доступа или кабели, используемые для соединения устройств.

Примерами оконечных устройств могут служить:

1. Настольные персональные компьютеры;

5. Беспроводной планшетный компьютер;

Примерами промежуточных устройств могут служить:

3. Межсетевой экран;

Типы физических сред передачи данных:

1. Медный кабель;

2. Оптоволоконный кабель;

3. Беспроводная связь.

Сетевая топология — граф, вершинами которого являются оконечные и промежуточные устройства, а ребрами — физические и информационные связи между вершинами. Схема обеспечивает наглядный способ понимания, каким образом устройства в большой сети связаны между собой. Подразделяется на несколько типов:

1. Физическая топология — отображает физическое расположение промежуточных устройств и кабельных линий;

2. Логическая топология — отображает устройства, порты и схемы адресации.

Изображения топологий приведены на рисунках 1 и 2.


Рисунок 1 — Пример физической топологии


Рисунок 2 — Пример логической топологии

Сетевая карта — устройство, позволяющее взаимодействовать с другими устройствами в сети.

Физический порт — разъем на сетевом устройстве, через который кабели подключены к компьютеру или другому сетевому устройству.

Интерфейс — специализированные порты в сетевом устройстве, которые подключаются к отдельным сетям. Поскольку маршрутизаторы соединяют между собой сети, порты маршрутизатора называются сетевыми интерфейсами.

Сети сильно отличаются по площади покрытия, количества пользователей, типа и объема предоставляемых услуг пользователям. Наиболее распространенными типами сетевых инфраструктур являются локальные сети LAN и глобальные сети WAN.

Локальная сеть (LAN) — сетевая инфраструктура, предоставляющая высокоскоростной доступ пользователям и оконечным устройствам на небольшой территории. Обычно является домашней сетью, сетью малого или крупного предприятия. Управляется одним квалифицированным лицом или отдельным IT-отделом на предприятии.

Глобальная сеть (WAN) — сетевая инфраструктура, предоставляющая доступ к другим сетям на большой территории. Принадлежит провайдерам телекоммуникационных услуг и находится под их управлением.

Интернет — всемирное объединение взаимосвязанных сетей для хранения и передачи информации.

Экстранет — защищённая от несанкционированного доступа корпоративная сеть, использующая Интернет-технологии для внутрикорпоративных целей, а также для предоставления части корпоративной информации и корпоративных приложений деловым партнерам компании.

Интранет — частные сети LAN и WAN, которые принадлежат организации и доступны только ее членам, сотрудникам и прочим авторизованным лицам.

Для сети Экстранет особенно важны аутентификация пользователя (который может и не являться сотрудником компании) и, особенно, защита от несанкционированного доступа, тогда как для приложений Интранет они играют гораздо менее существенную роль, поскольку доступ к этой сети ограничен физическими рамками компании.

Для доступа к Интернет существует множество способов подключения. Домашние пользователи, удаленные сотрудники компаний и малые офисы, как правило, для доступа в Интернет нуждаются в подключении к поставщикам услуг Интернета. Варианты подключения существенно меняются в зависимости от провайдера, географического местоположения и развития инфраструктуры. Популярные варианты включают в себя широкополосную кабельную сеть, широкополосную цифровую абонентскую линию (DSL), беспроводные глобальные сети и мобильные сервисы.

1.3 Надежность сетей

Для поддержания работоспособности и надежности сети требуется, чтобы она соответствовала четырем основным требованиям:

3. Качество обслуживание;

Масштабируемость — свойство сети, позволяющая быстро расширить, обеспечив поддержку новых пользователей и приложений без снижения эффективности обслуживания существующих.

Качество обслуживания (QoS — Quality of Service) — технология предоставления различным классам трафика различных приоритетов в обслуживании во избежание перегрузки сети.

Обеспечение безопасности инфраструктуры сети включает в себя физическую защиту всех устройств, которые необходимы для сетевых подключений, и предотвращение несанкционированного доступа к установленному на них ПО управления.

Безопасность информации означает защиту пакетов данных, передаваемых по сети, а также информации, хранящейся на подключенных к сети устройствах.

1. Конфиденциальность — только указанные и авторизованные получатели могут иметь доступ к данным;

2. Целостность — гарантия того, что информация не была изменена в процессе передачи от исходного пункта к месту назначения;

3. Доступность — своевременный и надежный доступ к данным для авторизованных пользователей.

1.4 Коммуникация и протоколы

В сетях существует несколько способов передачи данных:

1. Индивидуальная (Unicast);

2. Групповая (Multicast);

3. Широковещательная (Broadcast).

Unicast подразумевает собой передачу данных одному единственному адресату в сети. При передаче данных способом Multicast данные получают одновременно несколько адресатов в сети. Broadcast означает, что данные получат все узлы в сети за исключением того, кто информацию и передает.

Набор протоколов представляет собой множество протоколов, которые используются вместе для предоставления комплексных сетевых сервисов. Набор протоколов может быть определен организацией по стандартизации или разработан производителем сетевого оборудования.

К примеру, набор протоколов TCP/IP является открытым стандартом. Данные протоколы находятся в свободном доступе, и любой разработчик может использовать эти протоколы в аппаратном или программном обеспечении. Каждый стандартный протокол принят отраслевыми компаниями и утвержден организацией по стандартизации. Использование стандартов в разработке и реализации протоколов гарантирует, что продукты от разных производителей будет успешно взаимодействовать между собой.

Открытые стандарты способствуют совместимости, конкуренции и инновациям. Кроме того, они гарантируют, что продукт отдельной компании не сможет монополизировать рынок или получить несправедливое преимущество по сравнению с конкурентами. Пример — покупка беспроводного маршрутизатора для дома. Существует множество вариантов маршрутизаторов различных производителей, каждый из которых включает стандартные протоколы, такие как IPv4, DHCP, 802.3 (Ethernet) и 802.11 (беспроводная сеть LAN). Открытые стандарты также позволяют клиенту с операционной системой OS X от компании Apple загрузить веб-страницу с веб-сервера под управлением GNU/Linux. Это связано с тем, что обе операционные системы используют протоколы открытых стандартов, например из набора протоколов TCP/IP.

Организации по стандартизации обычно являются независимыми от поставщиков некоммерческими организациями, созданными для разработки и продвижения концепции открытых стандартов.

Некоторые протоколы являются проприетарными. Это означает, что описание протокола и принципы его работы определяются одной конкретной компанией или поставщиком. Примерами частных протоколов являются устаревшие наборы протоколов AppleTalk и Novell Netware. Нередко поставщик (или группа поставщиков) разрабатывает частный протокол для удовлетворения потребностей своих заказчиков, а затем способствует принятию этого частного протокола в качестве открытого стандарта.

Примеры различных протоколов различных компаний продемонстрированы на рисунке 3.


Рисунок 3 — Примеры сетевых протоколов и их расположение на различных уровнях стека TCP/IP

1.5 Введение в эталонную модель сети

Чтобы представить взаимодействие между различными протоколами, принято использовать многоуровневые модели. Многоуровневая модель изображает работу протоколов, происходящую внутри каждого уровня, а также взаимодействие с уровнями выше и ниже.

Есть ряд преимуществ в использовании многоуровневой модели для описания сетевых протоколов и операций. Преимущества в использование многоуровневой модели:

1. Упрощение разработки протоколов, поскольку протоколы, работающие на определенном уровне, определяют формат обрабатываемых данных и интерфейс верхних и нижних уровней;

2. Стимулирование конкуренции, так как продукты разных поставщиков могут взаимодействовать друг с другом;

3. Предотвращение влияния изменений технологий или функций одного уровня на другие уровни (верхние и нижние);

4. Общий язык для описания функций сетевого взаимодействия.

Эталонная модель OSI определяет широкий список функций и сервисов, реализуемых на каждом уровне. Кроме того, она описывает взаимодействие каждого уровня с вышестоящими и нижестоящими уровнями. Всего модель насчитывает семь уровней. На рисунке 4 представлен стек модели OSI с указанием единицы данных, с которым работает каждый из уровней.


Рисунок 4 — Эталонная модель стека OSI

Описание каждого уровня:

7. Прикладной уровень содержит протоколы для обмена данными между приложениями;

6. Уровень представления обеспечивает общее представление данных, передаваемых между службами прикладного уровня;

5. Сеансовый уровень передает сервисы на уровень представления для организации его диалога и управления обмена данными;

4. Транспортный уровень определяет сервисы для сегментации, передачи и сборки данных для отдельных коммуникаций между оконечными устройствами;

3. Сетевой уровень представляет функции для обмена отдельными частями данных по сети между указанными оконечными устройствами;

Читайте также: