Сообщение на тему применение алканов и алкенов

Обновлено: 02.07.2024

II. Химические свойства алканов

1. Реакции замещения

а) Галогенирование

При действии света - hν или нагревании (стадийно – замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов )

В реакции образуются вещества галогеналканы RГ или С n H 2n+1 Г

(Г - это галогены F, Cl, Br, I)

CH 4 + Cl 2 hν → CH 3 Cl + HCl (1 стадия)

CH 3 Cl + Cl 2 hν → CH 2 Cl 2 + HCl (2 стадия)

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:


Электронная плотность связи С – Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода – частичный положительный заряд.

На атом углерода в метильной группе ( - СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С – Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T>400˚C.


б) Нитрование (реакция М.И. Коновалова , он провёл её впервые в 1888 г)

2. Реакции отщепления (дегидрирование)

б) При нагревании до 1500 С происходит образование ацетилена и водорода:

3. Реакции перегруппировки (изомеризация)

4. Реакции горения (горят светлым не коптящим пламенем)

Помните! Смесь метана с воздухом и кислородом взрывоопасна

5. Реакции разложения

а) Крекинг при температуре 700-1000°С разрываются (-С-С-) связи:

б) Пиролиз при температуре 1000°С разрываются все связи,

продукты – С и Н2:

в) Конверсия метана с образованием синтез – газа (СО + Н2)

III. Получение алканов

1. Получение в лаборатории

1. Гидролиз карбида алюминия (получение метана):

2. Реакция Вюрца (взаимодействие натрия с галогенпроизводными алканов):

(R- это радикал; Г- это галоген)

3. Термическое декарбоксилирование солей карбоновых кислот в присутствии щелочей:

(ацетат натрия+ едкий натр=(метан+карбонат натрия)

этилат натрия этан

4. Каталитическое гидрирование алкенов и алкинов:

5. Электролиз растворов солей карбоновых кислот - реакция КОЛЬБЕ

Пример. Электролиз водного раствора ацетата натрия

Катод (-): H2O , Na + - Процесс восстановления: 2H 2 O + 2ē → H 2 ↑ + 2OH -

Анод (+): H 2 O, CH3COO - (анионы органических кислот активнее воды) – Процесс окисления:

2H2O + 2CH3COONa эл . ток = H2 + 2NaHCO3 + C2H6

2. Получение в промышленности

1. Из природного и попутного нефтяного газа

Важнейшим источником алканов в природе является природный газ, минеральное углеводородное сырье - нефть и сопутствующие ей нефтяные газы. Природный газ на 95 процентов состоит из метана. Такой же состав имеет болотный газ, образующийся в результате переработки бактериями (гниения) углеводов.

Метан называют ещё и болотным; рудничным газом.

Попутные нефтяные газы состоят в основном из этана, пропана, бутана и частично пентана. Их отделяют от нефти на специальных установках по подготовке нефти. При отсутствии газоконденсатных станций попутные нефтяные газы сжигают в факелах, что является крайне неразумной и разорительной практикой в нефтедобыче. Одновременно с газами нефть очищается от воды, грязи и песка, после чего поступает в трубу для транспортировки. Из нефти при ее разгонке (перегонке, дистилляции) отбирая последовательно все более и более высококипящие фракции получают:

бензины - т. кип. от 40 до 180 С, (содержит углеводороды С510), состоит более, чем из 100 индивидуальных соединений, нормальных и разветвленных алканов, циклоалканов, алкенов и ароматических углеводородов;

легкий газойль (дизельное топливо) 230-305 С (С1317);

тяжелый газойль и легкий дистиллят смазочного масла 305-405 С (С1825);

смазочные масла 405-515 С (С2638).

Остаток после перегонки нефти называется асфальтом или битумом.

2. Синтезом из водяного газа:

3. Синтезом из простых веществ:

IV. Применение

1. Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.

2. Использование в качестве топлива – в котельных установках, бензин, дизельное топливо, авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит.

3. Вазелин используется в медицине, парфюмерии, косметике, высшие алканы входят в состав смазочных масел, соединения алканов применяются в качестве хладагентов в домашних холодильниках.

4. Смесь изомерных пентанов и гексанов называется петролейным эфиром и применяется в качестве растворителя. Циклогексан также широко применяется в качестве растворителя и для синтеза полимеров.

5. Метан используется для производства шин и краски.

6. Значение алканов в современном мире огромно. В нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Велико значение в медицине, парфюмерии и косметике.

Предельные углеводороды с общей формулой CnH2n+2, основным источником которых служат нефть, газ и каменный уголь, являются сырьевой базой для химической промышленности и основными природным источником энергии.

Применение алканов


Первоначально насыщенные углеводороды использовались как топливо — в результате горения высвобождается энергия:

Области применения алканов связаны с их физико-химическими свойствами:

  1. Газообразные алканы (метан, пропан и бутан). Горят бледно-голубым или бесцветным пламенем, при этом выделяется большое количество тепла. Применяются для бытовых нужд – как топливо в газовых плитах, зажигалках и газовых баллончиках для туристических горелок. В промышленных объемах — как топливо для газовых электростанций, вырабатывающих тепло и электроэнергию. Метан как часть природного газа — один из лучших природных субстратов, используемых в биотехнологии.
  2. Жидкие алканы. Являются основной частью горючего для двигателей внутреннего сгорания – от мотоциклетных до ракетных. Изомеры линейных алканов применяют как добавку для повышения качества топлива. Смесь предельных углеводородов с длиной цепочки не более 15 атомов углерода — вазелиновое масло применяют в косметологии и медицине. В промышленности применяют гудрон (остаточный продукт после переработки нефти) для производства строительных кровельных и дорожных битумов и кокса.
  3. Твердые алканы. Смесь жидких и твердых углеводородов с цепочкой до 25 атомов углерода – вазелин — густая масса, используется в медицине и косметических целях. Смесь алканов С2035 называют парафином и используют для производства свечей, обработки упаковочных материалов и спичек. Парафиновые углеводороды служат основным сырьем для биосинтеза.

Применение в промышленности

Парафины являются основой для производства целого ряда веществ:

  • азотной кислоты HNO3;
  • насыщенных одноатомных cпиртов СnH2n+1OH;
  • сажа (аморфный углерод) — для типографской краски и резины;
  • галогензамещенных растворителей и хладонов;
  • алкенов;
  • альдегидов, которые используются в производстве органических кислот и пластмасс;
  • как нефтехимическое сырье для производства ПАВ.

Алканы применяются при производстве синтетических моющих средств.

Исходными веществами для этого служат парафины фракции С4144 .

Применение в медицине и фармации


Смесь жидких и твердых парафинов с С Значение алканов

Предельные углеводороды применяются в пищевой и химической промышленности, в энергетике, косметологии и медицине.

Алканы служат растворителями и сырьем для производства лаков, красок, мазей. Их используют в качестве топлива и компонентов для различных битумов.

Химическое производство пластика, ПАВов и синтетических тканей использует в качестве сырья алканы.

С развитием технологий сферы применения насыщенных углеводородов расширяется.


Алканы получают из нефтепродуктов, природного газа, каменного угля. Главное применение алканов – использование в качестве топлива. Из веществ также изготавливают растворители, косметические средства, асфальт.

Описание

Алканы – класс насыщенных или предельных углеводородов. Это значит, что молекулы алканов содержат максимальное количество атомов водорода. Общая формула соединений гомологического ряда алканов – CnH2n+2. Названия веществ составляются из греческого обозначения числительных и суффикса -ан.

Физические и химические свойства алканов зависят от их строения. С возрастанием количества атомов углерода в молекуле происходит переход от газообразных веществ к твёрдым соединениям.

Агрегатное состояние алканов в зависимости от количества атомов углерода:

Парафиновые свечи

Рис. 1. Парафиновые свечи.

С увеличением молекулярной массы в гомологическом ряду повышаются температуры плавления и кипения.

Применение

Алканы выделяют из полезных ископаемых – нефти, газа, каменного угля. На разных этапах переработки получают бензин, керосин, мазут. Алканы используются в медицине, косметологии, строительстве.


Рис. 2. Нефть содержит жидкие алканы.

В таблице описаны основные области применения предельных углеводородов.

Область

Что используют

Как используют

Бензин, керосин, мазут

В качестве ракетного, моторного топлива

В качестве бытового газа для приготовления пищи

Петролейный эфир (смесь изопентанов и изогексанов),

Изготовление растворителей, смазочных масел, пропитки

Изготовление вазелинового масла (смесь жидких алканов), вазелина (смесь жидких и твёрдых алканов), свечей, моющих средств, лаков, эмалей, мыла. В качестве пропитки спичек. Использование при производстве органических кислот

Изготовление спиртов, альдегидов, кислот

Вазелин, вазелиновое масло

В качестве пропеллентов для изготовления аэрозолей

Изготовление увлажняющих косметических средств

Гудрон (дёготь) – конечный продукт переработки нефти, содержащий смесь алканов, циклоалканов, аренов, металлов, неметаллов

Для изготовления асфальтовых дорог

В качестве пропитки упаковочной бумаги

Производство жевательных резинок

Гудрон

Рис. 3. Гудрон.

Алканы используются при изготовлении каучука, синтетических тканей, пластмасс, поверхностно-активных веществ. В качестве заправки баллонов для тушения пожаров используются пропан и бутан в сжиженном виде.

Что мы узнали?

Узнали кратко об области применения алканов. Насыщенные углеводороды в газообразном, жидком, твёрдом состоянии используются в химической, пищевой, бумажной, энергетической отраслях, в косметологии и строительстве. Из алканов производят растворители, краски, лаки, мыло, свечи, мази, асфальт. Бензин, керосин, мазут, состоящие из жидких алканов, используют в качестве топлива. Газообразные алканы применяются в быту и для производства аэрозолей. Основные источники алканов – нефть, природный газ, каменный уголь.

Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только Q-связями, и не содержащие циклов. В алканах атомы углерода находятся в степени гибридизацииsp3 .

1.2 Методы получения алканов.

Главным природным источником предельных углеводородов яв­ляется нефть, а для первых членов гомологического ряда — природный газ. Однако выделение индивидуальных соединений из нефти или продуктов ее крекинга- весьма трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к синтетическим методам полу­чения.

1. Алканы образуются при действии металлического натрия на моногалогенпроизводные — реакция Вюрца:

НзС-СН2—Вг + Вг-СН2-СH3 СНз-СН2—СН2—СНз + 2NaBr

Если взяты разные галогенпроизводные, то образуется смесь трех различных алканов, так как вероятность встречи в реакционном комплексе молекул одинаковых или разных равна, а реакционная способность их близка:

3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI

2. Алканы могут быть получены при восстановлении алкенов или алкинов водородом в присутствии катализаторов :

3. Самые разнообразные производные алканов могут быть восста­новлены при высокой температуре иодистоводородной кислотой:

CHBr +2HI CH2 + HBr + I2

Однако в этих случаях иногда наблюдается частичная изомеризация углеродного скелета — образуются более разветвленные алканы.

4. Алканы могут быть получены при сплавлении солей карбоновых кислот со щелочью. Образующийся при этом алкан содержит на один атом углерода меньше, чем исходная карбоновая кислота:

СНз—С +NaOH CH4+Na2C03

1.3 Представители алканов

Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят от их состава и строения. Рассмотрим на примере предельных углеводородов изменение физических свойств в гомоло­гическом ряду .

Четыре первых члена гомологического ряда, начиная с метана, газообразные вещества. Начиная с пентана и выше, нормальные угле­водороды представляют собой жидкости. Метан сгущается в жидкость лишь при —162 °С. У последующих членов ряда температура кипения возрастает, причем при переходе к следующему гомологу она воз­растает приблизительно на 25°.

Плотность углеводородов при температуре кипения для нижних членов ряда увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до величины, несколько большей 0,78 .Температура плавления нормальных углеводородов в гомологичес­ком ряду увеличивается медленно. Начиная с углеводорода С16Н34, высшие гомологи при обычной температуре — вещества твердые.

Температура кипения у всех разветвленных алканов ниже, чем у нормальных алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы. Это видно, например, из сравнения температур кипения трех изомерных пентанов. Наоборот, температура плавления оказывается самой высокой у изомеров с макси­мально разветвленной углеродной цепью. Так, из всех изомерных октанов лишь гекса-метилэтап (СН3)3С—С (СНз)3 является твердым веществом уже при обычной темпе­ратуре (т. пл. 104° С). Эти закономерности объясняются следующими причинами.

Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодей­ствия между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше температура кипения вещества, следовательно, в гомологическом ряду тем­пература кипения должна равномерно расти. Если сравнить силы взаимодействия молекул н -пентана и неопентана, то ясно, что эти силы больше для молекулы с нор­мальной цепью углеродных атомов, чем для разветвленных, так как в молекуле неопентана центральный атом вообще выключен из взаимодействия.

Главным фактором, влияющим на температуру плавления вещества, является плотность упаковки молекулы в кристаллической решетке. Чем симметричнее моле­кула, тем плотнее ее упаковка в кристалле и тем выше температура плавления (у н -пентана —132° C, у неопентана —20° С)

2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)

Углеводороды, в молекуле которых помимо простых Q-связей углерод — углерод и углерод — водород имеются углерод-углеродные

-связи, называются непредельными. Так как образование -связи формально эквивалентно потере молекулой двух атомсв годорода, то непредельные углеводороды содержат на 2п атомов иодорода меньше, чем предельные, где n число - связей

Ряд, члены которого отличаются друг от друга на (2Н)n, называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексан, гексены, гексадиены, гексины, гексатриены и бензол.

Углеводороды, содержащие одну - связь (т. е. двойную связь), называваются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда — CnH2n

2.2 Методы получения алкенов

При действии спиртовых растворов едких щелочей на галоген производные: отщепляется галогенводород и образуется двойная связь:

Бромистый пропил Пропилен

Если в α-положении к атому углерода, связанному с галогеном, находится третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется третичный атом водорода, в меньшей степени вторичный и тем более первичный (правило Зайцева):

H3C-C-CI H3C-C + KCL + H2O

H3C CH3 H3C CH3

Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем больше заместителей имеет алкен у винильных атомов углерода, тем выше его устойчивость.

2. Действием на спирты водоотнимающих средств: а) при про­пускании спиртов над окисью алюминия при 300—400° С.

Втор -Бутиловый спирт

б) при действии на спирты серной кислоты в мягких условияхреакция идет через промежуточное образование эфиров серной кислоты:

НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2

При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же закономерность в отщеплении водородных атомов разного типа, как и при отщеплении галогенводорода.

Первой стадией этого процесса является протонирование спирта, после чего от­щепляется молекула воды и образуется карбкатион:

СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-

Образовавшийся карбкатион стабилизируется выбросом протона из соседнего поло­жения с образованием двойной связи (β-элиминирование). В этом слу­чае тоже образуется наиболее разветвленный алкен (термодинамическиболее устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов связанные с изомеризацией углеродного скелета:

CH3 C-CH – CH3 CH3 C-CH-CH3

CH3 CH3 CH3 CH3

CH3 CH3 CH3 CH3

3. При действии Zn или Mg на дигалогенпроизводные с двумя

атомами галогена у соседних атомов углерода:

H3C – C CH2CIH3C - C - CH2+MgCI2

2.3 Представители алкенов.

Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях — газы, а начиная с С5 — низкокипящие жидкости (см. табл. ).

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворителях, за исключением метилового спирта; все они имеют меньшую плотность, чем вода.

3.1 АЛКИНЫ (ацетиленовые углеводороды)

Алкинами называются углеводороды, содержащие кроме Q-связей две

-связи (тройную связь) у одной пары углеродных атомов. Общая формула гомологического ряда ацетиленовых углеводородов СnН2n-2образование одной-связи формально эквивалентно потере двух атомов водорода.

Различными физическими методами доказано, что ацетилен C2H2 — I простейший представитель гомологического ряда алкинов — имеет линейную молекулу, в которой длина углерод-углеродной тройной связи равна 1,20 А, а длина связей углерод—водород 1,06 A.

3.2Методы получения алкинов.

Наиболее общим способом получения ацетиленовых углеводородов является действие спиртового раствора щелочей на дигалогенпроиз-водные предельных углеводородов с вицинальным (а) или геминаль-ным (б) расположением атомов галогена

a) CH2Br –CH2Br-> СНСН + 2НВг

б) СНз—СН2—СНСl2-> СHз-ССН+2ИСl

CH3-CH2-CCl2-CH3-> СНз-СС-СНз + 2НС1

Так как вицинальные дигалогенпроизводные обычно получают присоединением галогенов к этиленовым углеводородам, то реакцию (а) можно рассматривать как реакцию превращения этиленовых угле­водородов в ацетиленовые.

Геминальные дигалогенпроизводные (оба атома галогена у одного атома углерода) являются производными кетонов или альдегидов и, следовательно, с помощью реакций (б) можно осуществить переход от карбонильных соединений к алкинам. При отщеплении галогенводородов действует уже известное правило Зайцева, что водород отщеп­ляется от углеродного атома, содержащего меньшее количество атомов водорода.

Ацетилен можно получать непосредственно при высокотемператур­ном крекинге (термическом или электротермическом) метана или более , сложных углеводородов:

3.3 Представители алкинов.

Как у алканов и алкенов, низшие члены гомологического ряда алкинов в обычных условиях—газообразные вещества. Данные табл. 22 показывают, что основные физико-химические характеристики углеводородов рассмотренных классов мало отличаются друг от друга (см. таблицу).

HCC- CH2CH3 СНзСCСНз

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКИНОВ, АЛКЕНОВ

Алкены вместе с алканами, ацетиленом и ароматическими уг­леводородами являются одним из главных сырьевых источников промышленности тяжелого (многотоннажного) органического син­теза.

Этилен в громадных количествах используется для переработки в полиэтилен и этиловый спирт, он идет на переработку в этилен-гликоль и употребляется в теплицах для ускорения вызревания плодов.

Пропилен перерабатывается в полипропилен, ацетон, изопропиловый спирт.

Ацетилен играет исключи­тельно важную роль в про­мышленности. Его мировое производство достигает не­скольких миллионов тонн. Громадное количество ацети­лена используется для свар­ки металлов, при его горении

в кислороде температура достигает 2800° С. Это значительно более высокая температура, чем при сгорании водорода в кислороде, не говоря уже о сгорании метана. Причина этого в значительно меньшей теплоемкости СО2 по сравнению с Н2О, которой образуется больше при сгорании алканов, чем алкинов:

2СзН6 + 7O2 -> 4СО2 +6Н2О

2С2 Н2+ 5O2-> 4СО2 + ЗН2О

Неприятный запах ацетилена, получаемого из карбида, обусловлен примесями PH3 и AsH3, чистый ацетилен пахнет, как и все низшие углеводороды (бензин). Ацетилен и его смеси с воздухом крайне взрывчаты; ацетилен хранят и транспортируют в баллонах в виде ацетоновых растворов, пропитывающих пористые материалы.

НЕФТЬ И ЕЕ ПЕРЕРАБОТКА

Состав нефти. Главным природным источником предельных углеводородов является нефть. Состав нефтей различается в зависимости от месторождения, однако все нефти при простой перегонке обычно разделяются на следующие фракции: газовая фракция, бензин, реак­тивное топливо, керосин, дизельное топливо, парафин, нефтяной гудрон.

Газовая фракция (т. кип. до40◦C) содержит нормальные и развет­вленные алканы до С,, в основном пропан и бутаны. Природный газ из газовых месторождений состоит в основном из метана и этана.

Бензин авиационный (т. кип. 40—180 °С) содержит углеводороды С6 — С10 В бензине обнаружено более 100 индивидуальных соедине­ний, в число которых входят нормальные и разветвленные алканы, циклоалканы и алкилбензолы (арены).

Реактивное топливо (т. кип. 150—280°С).

Керосин тракторный (т, кип. 110—300 °С) содержит углеводороды С7—С14.

Дизельное топливо (т. кип. 200—330 °С), в состав которого входят углеводороды C13 — C18, в больших масштабах подвергается крекингу, превращаясь в алканы (и алкены) с меньшей молекулярной массой (см. ниже).

Смазочные масла (т. кип. 340—400°С) содержат углеводороды C18 — C25.

Парафин нефтяной (т. кип. 320—500 °С), в его состав входят угле­водороды С26—С38, из которых выделяют вазелин. Остаток после перегонки обычно называют асфальтом или гудроном.

Помимо углеводородов самых различных классов в нефти содер­жатся кислородные, сернистые и азотсодержащие вещества; иногда их суммарное содержание доходит до нескольких процентов.

Хотя общепризнанно, что нефть является наиболее ценным природ­ным источником химического сырья, до сих пор основное количество нефти и нефтепродуктов сгорает в двигателях внутреннего сгорания (бензин), дизелях и реактивных двигателях (керосин).

Моторное топливо. Октановое число. Бензины различного проис­хождения по-разному ведут себя в двигателях внутреннего сгорания.

Стремясь к максимальному повышению мощности двигателя при малых габаритах и массе, стараются увеличить степень сжатия горючей смеси в цилиндре. Однако в быстроходных четырехтактных двигателях, работающих с принудительным зажиганием, при этом иногда происхо­дит преждевременное воспламенение смеси — детонация. Это снижает мощность мотора и ускоряет его износ. Это явление связано с составом жидкого топлива, так как углеводороды разного строения при исполь­зовании их в качестве моторного топлива ведут себя различно. Наихуд­шие показатели — у парафинов нормального строения.

За стандарт горючего вещества с большой способностью к детона­ции принят нормальный гептан. Чем больше разветвлена углеродная цепь парафинового углеводорода, тем лучше протекает сгорание его в цилиндре и тем большей степени сжатия горючей смеси можно достичь. В качестве стандарта моторного топлива принят 2, 2, 4-триметилпентан (который обычно называют изооктаном) с хорошими антидетонационными свойствами. Составляя в различных пропорциях смеси этого октана с я-гептапом, сравнивают их поведение в моторе с поведением испытуемого бензина. Если смесь, содержащая 70% изооктана, ведет себя так же, как исследуемый бензин, то говорят, что последний имеет октановое число 70 (октановое число изооктана принято за 100; октановое число н -гептана принято равным нулю).

Одним из путей повышения детонационной стойкости топлив для двигателей с зажиганием от искры является применение антидетона­торов.

Антидетонаторы — это вещества, которые добавляют к бензинам (не более 0,5%) для улучшения аптидетопацнонных свойств. Доста­точно эффективным антидетонатором является тетраэтилсвинец (ТЭС) РЬ (C2H5)4

Однако бензин с ТЭС и продукты его сгорания очень токсичны. В настоящее время найдены новые антидетонаторы на основе марганец-органических соединений типа циклопентадиеиклпснтакарбонилмарганца С5Н5Мn (СО)5: они менее токсичны и обладают лучшими анти­детонационными свойствами. Добавление этих антидетонаторов к хоро­шим сортам бензина позволяет получать топливо с октановым числом до 135.

Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с нормальной цепью углеродных атомов, обладающие наиболее низкой температурой воспламенения. Эту характеристику принято

оценивать в цетановых числах. Цетановое число 100 имеет углеводород н-Сц,Нд4, а цетаповое число 0 — 1-метилнафталин.

Синтез углеводородовиз CO+H2.Пропуская над мелко раздробленнымнике­лем смесь окиси углерода (II) и водорода при 250° С, можно получитьметан:

Если эту реакцию проводить при давлении 100—200 атм и температуре до 400°С, получается смесь, состоящая главным образом из кислородсодержащих продуктов, среди которых преобладают спирты; смесь эта была названа счшполом .

При применении железо-кобальтовых катализаторов и температуре 200° С образуется смесь алканов — синтин.

nСО + (2n + 1) Н2 СnН2n +2 + H2О

Синтин и синтол являются продуктами многотоннажного органического синтеза и широко используются в качестве сырья для многих химических производств.

Клатраты. Синтин и бензиновые фракции нефти состоят из смесей углеводо­родовнормального строения и с разветвленными цепями. Недавно был найден эффек­тивный метод разделения органических соединений с нормальными цепями и развет­вленных, получивший в общем случае название метода клатратного разделения. Для разделения углеводородовбыла использована мочевина. Кристаллы мочевины построены таким образом, что внутри кристаллов имеются узкие шестигранные ка­налы. Диаметр этих каналов таков, что внутрь их может пройти и задержаться за счет адсорбционных сил только углеводород нормального строения. Поэтому при обработке смеси органических соединений мочевиной (или некоторыми другими соеди­нениями) вещества с нормальной цепью углеродных атомов кристаллизуются вместе с ней в виде комплексов. Этот метод имеет, безусловно, очень большое будущее — когда будет найдено большее число эффективных клатратообразователей.

Мы приступаем к новому разделу - органической химии. Совершенно необязательно (и даже преступно по отношению к собственному времени!) знать наизусть, зубрить свойства органических веществ.

По мере изучения вы поймете, что свойства вещества определяются его строением, и научитесь легко предсказывать ход реакций ;)

Нафазолина нитрат

  • Атомы в молекуле соединены в определенной последовательности, в соответствии с их валентностью. Порядок связи атомов отражает химическое строение.
  • Зная свойства веществ, можно установить их химическое строение, и наоборот, зная строение вещества можно сделать вывод о его свойствах.
  • Атомы или группы атомов оказывают взаимное влияние друг на друга непосредственно или через другие атомы
  • Свойства вещества зависят от количественного и качественного состава, а также от химического строения молекулы

Теория Бутлерова о химическом строении

Алканы (парафины) - насыщенные углеводороды, имеющие линейное или разветвленное строение, содержащие только простые связи. Относятся к алифатическим углеводородам, так как не содержат ароматических связей.

Алканы являются насыщенными соединениями - содержат максимально возможное число атомов водорода. Общая формула их гомологического ряда - CnH2n+2.

Номенклатура алканов

Номенклатура (от лат. nomen - имя + calare - созывать) - совокупность названий индивидуальных химических веществ, а также правила составления этих названий. Названия у алканов формируются путем добавления суффикса "ан": метан, этан, пропан, бутан и т.д.

Номенклатура алканов

Гомологами называют вещества, сходные по строению и свойствам, отличающиеся на одну или более групп CH2

Перечисленные выше алканы, являются по отношению друг к другу гомологами, то есть составляют один гомологический ряд (греч. homólogos - соответственный).

Названия алканов формируются по нескольким правилам. Если вы знаете их, можете пропустить этот пункт, однако я должен познакомить читателя с ними. Итак, алгоритм составления названий следующий:

  • В структурной формуле вещества необходимо выбрать самую длинную (пусть и изогнутую на рисунке!) цепь атомов углерода
  • Атомы выбранной цепи нумеруют, начиная с того конца, к которому ближе разветвление (радикал)
  • В начале название перечисляют радикалы и другие заместители с указанием номеров атомов углерода, с которыми они связаны. Если в молекуле имеется несколько одинаковых радикалов, то цифрой указывают нахождение каждого из них в главной цепи и перед их названием соответственно ставят частицы ди-, три-, тетра- и т.д.
  • Основой названия служит наименование предельного углеводорода с тем же количеством атомов углерода, что и в главной цепи

Внимательно изучите составленные для различных веществ названия ниже.

Составление названия алканов

В углеводородной цепочке различают несколько типов атомов углерода, в зависимости от того, с каким числом других атомов углерода соединен данный атом. Различают первичные, вторичные, третичные и четвертичные атомы углерода.

Типы атомов углерода

Изомерами (греч. isomeros - составленный из равных частей) называют вещества, имеющие одну молекулярную формулу, но отличающиеся по строению (структурная изомерия) или расположению атомов в пространстве (пространственная изомерия).

Изомерия бывает структурной (межклассовая, углеродного скелета, положения функциональной группы или связи) и пространственной (геометрической, оптической). По мере изучения классов органических веществ вы узнаете о всех этих видах.

Виды изомерии

В молекулах алканов отсутствуют функциональные группы, кратные связи. Для алканов возможна изомерия только углеродного скелета. Так у пентана C5H12 существует 3 структурных изомера.

Изомеры пентана

  • В молекулах алканов присутствуют одиночные сигма-связи (σ-связи), длина которых составляет 0,154 нм
  • Тип гибридизации атомов углерода - sp 3
  • Валентный угол (между химическими связями) составляет 109°28'

Молекула метана напоминает тетраэдр

Природный газ и нефть

Алканы входят в состав природного газа: метан 80-97%, этан 0.5-4%, пропан 0.2-1.5% , бутан 0.1-1%, пентан 0-1%. Состав нефти нельзя выразить одной формулой, он непостоянен и зависит от месторождения.

В состав нефти входят алканы с длинными углеродными цепочками, например: C8H18, C12H26. Путем крекинга из нефти получают алканы.

Природный газ и нефть

Получение алканов

В ходе крекинга нефти получается один алкан и один алкен.

Данный синтез заключается в сплавлении соли карбоновой кислоты с щелочью, в результате образуется алкан.

Получение алканов

Эта реакция заключается во взаимодействии галогеналкана с металлическим натрием, калием или литием. В результате происходит удвоение углеводородного радикала, рост цепи осуществляется зеркально: в том месте, где находился атом галогена.

Реакция Вюрца

В ходе синтеза Гриньяра с помощью реактива Гриньяра (алкилмагнийгалогенида) получают различные органические соединения, в том числе несимметричные (в отличие от реакции Вюрца).

Синтез Гриньяра

На схеме выше мы сначала получили реактив Гриньяра, а потом использовали его для синтеза. Однако можно записать получение реактива Гриньяра и сам синтез в одну реакцию, как показано на примерах ниже.

Реакция Гриньяра

В результате электролиза солей карбоновых кислот может происходить образование алканов.

Синтез Кольбе

В результате разложения карбида алюминия образуется метан и гидроксид алюминия.

Химические свойства алканов

Атом галогена замещает атом водорода в молекуле алкана. Запомните, что легче всего идет замещение у третичного атома углерода, чуть труднее - у вторичного и значительно труднее - у первичного.

Галогенирование метана

Реакции с хлором на свету происходят по свободнорадикальному механизму. На свету молекула хлора распадается на свободные радикалы, которые и осуществляют атаку на молекулу углеводорода.

Галогенирование

Реакция Коновалова заключается в нитровании алифатических (а также ароматических) соединений разбавленной азотной кислотой. Реакция идет при повышенном давлении, по свободнорадикальному механизму.

Для удобства и более глубокого понимания, азотную кислоту - HNO3 - можно представить как HO-NO2.

Нитрование, реакция Коновалова

Все органические вещества, в их числе алканы, сгорают с образованием углекислого газа и воды.

В ходе каталитического, управляемого окисления, возможна остановка на стадии спирта, альдегида, кислоты.

Каталитическое окисление

Пиролиз (греч. πῦρ - огонь + λύσις - разложение) - термическое разложение неорганических и органических соединений. Принципиальное отличие пиролиза от горения - в отсутствии кислорода.

В реакциях, по итогам которых образуются изомеры, используется характерный катализатор AlCl3.

Реакция изомеризации

Вам уже известно, что в результате крекинга образуется один алкан и один алкен. Это не только способ получения алканов, но и их химическое свойство.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: