Сообщение на тему поляроиды

Обновлено: 02.07.2024

Начало XIX века для физики ознаменовалось развитием волновой теории света, которым занимались ученые Т. Юнг и О. Френель. В то время природа световых волн оставалась неизвестной. Изначально предполагалось, что свет является распространяющимися в некоторой гипотетической среде – эфире продольными волнами. Однако в процессе изучения явлений дифракции и интерференции вопрос о том, продольные или поперечные световые волны, стал второстепенен. На тот момент казалось невозможным, что свет – это поперечные волны, по той причине, что по аналогии с механическими волнами пришлось бы признать эфир твердым телом, ведь поперечные механические волны не обладают возможностью распространяться в газообразной или же жидкой среде.

Несмотря ни на что, постепенно копились свидетельствующие в пользу поперечности световых волн экспериментально полученные факты.

Еще в конце XVII века было обнаружено, что кристалл исландского шпата ( CaCO 3 ) обладает свойством, позволяющим ему раздваивать проходящие сквозь него лучи. Данное явление было названо двойным лучепреломлением (рис. 3 . 11 . 1 ).

Поляризация света

Рисунок 3 . 11 . 1 . Прохождение света через кристалл исландского шпата (двойное лучепреломление). При повороте кристалла относительно направления первоначального луча оба луча, которые проходят через кристалл, тоже поворачиваются.

Поляризация света

Поляризация света - это явление выделения из пучка естественного света лучей с определенной ориентацией электрического вектора.

Как же получить поляризованный свет?

Французским инженером Э. Малюсом в 1809 году был открыт названный в его честь закон. В экспериментах Малюса свет последовательно пропускался сквозь пару одинаковых пластинок из турмалина (прозрачное кристаллическое вещество зеленоватого оттенка). Они могли поворачиваться друг относительно друга на угол φ , как это проиллюстрировано на рисунке 3 . 11 . 2 .

Поляризация света

Рисунок 3 . 11 . 2 . Наглядный пример закона Малюса.

Интенсивность прошедшего света оказалась прямо пропорциональной cos 2 φ :

Двойное лучепреломление точно также, как и закон Малюса не может быть объяснено с точки зрения теории продольных волн. Для продольных волн направление распространения луча представляет собой ось симметрии. В них любые направления в плоскости, нормальной, то есть перпендикулярной, лучу, равноправны.

В поперечной волне, к примеру, в бегущей по резиновому жгуту волне, направление колебаний и перпендикулярное ему направление не равноправны (рис. 3 . 11 . 3 ).

Рисунок 3 . 11 . 3 . Поперечная волна в резиновом жгуте. Частицы совершают колебательные движения вдоль оси y . При повороте щели S затухнет волна.

Выходит, что асимметрия относительно направления распространения луча – это решающий признак, отличающий поперечную и продольную волны. Первым высказал догадку о поперечности световых волн Т. Юнг в 1816 году. Независимо от Юнга Френель тоже выдвинул концепцию поперечности световых волн, и даже смог обосновать ее с помощью большого количества опытов. Им была создана теория двойного лучепреломления света в кристаллах.

В середине 60 -х годов XIX века Максвелл, взяв за основу совпадение известных значений скоростей распространения света и электромагнитных волн, сделал вывод о природе света. Ученый решил, что свет – это частный случай электромагнитных волн. К тому времени экспериментальным путем была подтверждена поперечность световых волн. По этой причине Максвелл предположил, что она является еще одним важным аргументом в пользу его выводов насчет электромагнитной природы света.

Пропала необходимость во введении особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело. Благодаря этому электромагнитная теория света приобрела должную стройность.

В условиях электромагнитной волны вектора E → и B → направлены перпендикулярно друг к другу и находятся в плоскости, которая перпендикулярна направлению распространения волны плоскости. (рис. 2 . 6 . 3 )

Поляризация света

Рисунок 2 . 6 . 3 . Синусоидальная (гармоническая) электромагнитная волна. Векторы E → , B → и υ → взаимно перпендикулярны.

В каждом из процессов взаимодействия света с веществом электрический вектор E → играет основную роль. По данной причине его называют световым вектором.

Виды поляризации света

Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, то подобная волна носит название линейно поляризованной или плоско поляризованной. Отметим, что термин поляризации волн ввел Малюс применительно к поперечным механическим волнам.

Плоскость, в которой колеблется световой вектор E → , носит название плоскости колебаний (то есть плоскость y z , изображенная на рисунке 2 . 6 . 3 ), а плоскость, в которой совершает колебание магнитный вектор B → , является плоскостью поляризации (плоскость x z на рисунке 2 . 6 . 3 ).

В случае, когда две поляризованные в двух взаимно перпендикулярных плоскостях монохроматические волны распространяются вдоль одного и того же направления, в общем случае результатом их сложения будет эллиптически поляризованная волна (смотрите рисунок 3 . 11 . 4 ).

Виды поляризации света

Рисунок 3 . 11 . 4 . Сложение двух взаимно перпендикулярно поляризованных волн и образование эллиптически поляризованной волны.

В нормальной (то есть перпендикулярной) направлению распространения волны эллиптически поляризованной волне в каждой плоскости P конец результирующего вектора E → за период светового колебания обходит некоторый эллипс, носящий название эллипса поляризации.

Его размер и форма характеризуются амплитудами a x и a y линейно поляризованных волн и фазовым сдвигом Δ φ между ними.

Волна, обладающая круговой поляризацией ( a x = a y , Δ φ = ± π 2 ) представляет собой частный случай эллиптически поляризованной волны.

Данные, получаемые при просмотре рисунка 3 . 11 . 5 , дают представление о пространственной структуре эллиптически поляризованной волны.

Виды поляризации света

Рисунок 3 . 11 . 5 . Электрическое поле в эллиптически поляризованной волне.

Линейно поляризованный свет производится лазерными источниками. В случае отражения или рассеяния свет может стать поляризованным. В частности, голубой свет от неба частично или полностью поляризован. Однако, свет, который испускают обычные источники, такие как, например, солнечный свет и излучение ламп накаливания, является неполяризованным. Свет, исходящий от подобных источников, в любой момент состоит из вкладов огромного числа независимо излучающих атомов, обладающими различной ориентацией светового вектора в волнах, которые они излучают. По этой причине в результирующей волне вектор E → хаотично меняет свою ориентацию во времени, из-за чего в среднем все направления колебаний получаются равноправными.

Неполяризованный свет также называют естественным светом.

В любой момент времени вектор E → может быть спроецирован на две взаимно перпендикулярные оси (смотри рисунок 3 . 11 . 6 ).

Виды поляризации света

Рисунок 3 . 11 . 6 . Разложение вектора E → по осям О х и О у .

Это значит, что любую волну, вне зависимости от того, поляризованная она или же нет, можно представить в виде суперпозиции двух линейно поляризованных во взаимно перпендикулярных направлениях волн: E → ( t ) = E x → ( t ) + E y → ( t ) . В поляризованной волне обе составляющие E x ( t ) и E y ( t ) когерентны, то есть разность фаз между E x ( t ) и E y ( t ) не претерпевает изменений, а в неполяризованной – некогерентны, значит разность фаз представляет собой случайную функцию времени.

Явление двойного лучепреломления света основывается на том, что в кристаллических веществах показатели преломления линейно поляризованных во взаимно нормальных направлениях волн, зачастую различны. По данной причине кристалл раздваивает лучи, которые проходят сквозь него так, как это показано на рисунке 3 . 11 . 1 . Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях.

Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными.

Прибегая к разложению вектора E → на составляющие по осям, можно объяснить закон Малюса (рис. 3 . 11 . 2 ).

У значительной части кристаллов поглощение света кардинально зависимо от направления электрического вектора в световой волне. Такое явление носит название дихроизма.

В частности, данным свойством обладают использованные в знакомых нам опытах Малюса пластины турмалина. При некоторой толщине пластинка турмалина практически полностью поглощает одну из взаимно перпендикулярно поляризованных волн (как, к примеру, E x ) и частично пропускает вторую волну (то есть E y ).

Направление колебаний электрического вектора в прошедшей волне является разрешенным направлением пластины.

Пластинка турмалина может применяться как для создания поляризационного света, то есть в качестве поляризатора, так и для анализа характера поляризации света, как анализатор.

В наше время часто применяются искусственные дихроичные пленки, называющиеся поляроидами.

Поляроиды пропускают практически всю волну разрешенной поляризации и не пропускают поляризованную в нормальном направлении волну. Исходя из всего вышесказанного, можно заявить, что поляроиды – это идеальные поляризационные фильтры.

Разберем последовательное прохождение естественного света через пару идеальных поляроидов П 1 и П 2 (рисунок 3 . 11 . 7 ), чьи разрешенные направления развернуты друг относительно друга на угол φ . Первый поляроид в приведенном тандеме занимает место поляризатора. Он преобразовывает естественный свет в линейно поляризованный. Второй поляроид применяется в качестве анализатора.

Виды поляризации света

Рисунок 3 . 11 . 7 . Прохождение естественного света через два идеальных поляроида. y y ' представляет собой разрешенные направления поляроидов.

Обозначение амплитуды линейно поляризованной волны после прохождения света через первый поляроид в виде E 0 = I 0 2 приводит к тому, что пропущенная вторым поляроидом волна приобретает амплитуду E = E 0 cos φ . Таким образом, интенсивность I линейно поляризованной волны на выходе второго поляроида может быть записана в виде следующего выражения:

I = E 2 = E 0 2 cos 2 φ = 1 2 I 0 cos 2 φ .

Выходит, что в электромагнитной теории света закон Малюса находит естественное объяснение, чья основа заключается в разложении вектора E → на его составляющие.

Поляроид-поляризационный светофильтр; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками). Поляроиды впервые разработаны группой американских учёных во главе с Е. Лэндом около 1932, серийно изготовляются с 1935. Поляроиды широко применяются в близкой ультрафиолетовой, видимой и близкой инфракрасной областях диапазона оптического излучения (популярный пример — для защиты глаз водителей от слепящего действия фар встречных автомашин).

Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где I0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора.

Установлен Э. Л. Малюсом в 1810 году.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса.

По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.

  • Поляро́ид — светофильтр, один из типов оптических линейных поляризаторов. Представляет собой тонкую поляризационную плёнку, в которой происходит двойное лучепреломление, как правило заклеенную между двумя прозрачными плёнками или стёклами для защиты от влаги и механических повреждений.

Поляризационая плёнка обладает линейным дихроизмом (плеохроизмом): неодинаково поглощает линейно поляризованные перпендикулярно друг к другу составляющие падающего на него света. Вследствие этого неполяризованный (естественный) свет, проходя сквозь поляроид, превращается в плоскополяризированный.

Хорошим поляризатором являются кристаллы турмалина — уже при толщине кристалла турмалина около 1 мм в них практически полностью поглощается обыкновенный луч. Ещё лучше поляризует йодохинина сульфат (герапатит) — один из лучей практически полностью поглощается уже при толщине кристалла 0,1 мм. Аналогичными свойствами обладают органические молекулы некоторых полимеров, если их сориентировать в одном направлении, например путём растяжения плёнки. В частности, плёнки из поливинилена.

Оригинальный материал запатентован в 1929 году и затем усовершеннствован в 1932 Эдвином Гербертом Лэндом. Он содержит множество микроскопических кристаллов герапатита, внедрённых в прозрачную полимерную плёнку из нитроцеллюлозы. В процессе производства игольчатые кристаллы упорядочиваются путём применения электрических или магнитных полей. Cерийно изготавливается с 1935 года.

Связанные понятия

Светочувстви́тельные материа́лы, Фотографи́ческие материа́лы, Фотоматериа́лы — материалы, предназначенные для получения на них фотографических изображений. Любой фотоматериал состоит из подложки, на которую нанесены один или несколько светочувствительных слоёв. В качестве подложки фото- и киноплёнок используются ацетилцеллюлоза или лавсан, а для фотобумаг основой служат листы высококачественной бумаги. Фотоматериалы делятся на галогеносеребряные, в которых в качестве светочувствительного вещества.

Колло́дий (от греч. κολλώδης (kollodes) — вязкий, клейкий) — 4 % раствор коллоксилина в смеси этанола и диэтилового эфира в соотношении 1:7 (в медицине 20 на 76 частей).

Матирование стекла — технология создания матовой поверхности, придание шероховатости и непрозрачности (операция, противоположная полировке). При помощи матирования можно создавать матовый рисунок на поверхности стекла.

Ква́рцевое стекло́, пла́вленый кварц — однокомпонентное стекло из чистого оксида кремния, получаемое плавлением природных разновидностей кремнезёма — горного хрусталя, жильного кварца и кварцевого песка, а также синтетического диоксида кремния.

Пигме́нтная фотопеча́ть — технология фотопечати, основанная на получении изображения с помощью пигментов, смешанных с желатиной. Благодаря использованию пигментов вместо красителей, фотографии, изготовленные таким способом, отличаются высокой устойчивостью к выцветанию и долговечностью, выгодно отличаясь от хромогенной и даже гидротипной печати.

Боросиликатное стекло — силикатное стекло, где щелочные компоненты в исходном сырье заменены на оксид бора (B2O3). От обычного стекла отличается повышенной термической стойкостью и повышенной стойкостью к механическим повреждениям. Впервые синтезировано Отто Шоттом в 1887 году.

Ситаллы — стеклокристаллические материалы, полученные объёмной кристаллизацией стёкол и состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Разработаны советским физикохимиком И. И. Китайгородским.

Флинт (от англ. flint — кремень), или флинтглас (от нем. Flintglas) — тип бесцветных оптических стёкол, отличающихся малыми (менее 50) значениями коэффициента средней дисперсии, называемого также числом Аббе. Такие стёкла с относительно малыми показателями преломления называют лёгкими флинтами (ЛФ), а с большими — тяжёлыми (ТФ).

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Монохромная фотоплёнка — разновидность хромогенных фотоматериалов, позволяющая получать на фотоплёнке чёрно-белый (монохромный) негатив при обработке по унифицированному процессу C-41, предназначенному для цветных негативных плёнок.

Желатиносеребряный фотопроцесс — современный фотографический процесс, основанный на использовании в качестве связующего элемента светочувствительных галогенидов серебра фотографической желатины. Фотоэмульсия такого состава наносится на подложку из стекла, бумаги или гибкой плёнки и сохраняет светочувствительность и пригодность для лабораторной обработки в течение многих лет. Процесс допускает использование любых галогенидов серебра, но часто упоминается под названием сухая броможелатиновая эмульсия.

Светочувстви́тельность — способность вещества изменять свои химические или физические свойства под действием света (электромагнитного излучения в диапазоне, видимом человеческим глазом), за исключением теплового воздействия.

Процесс Липпмана — технология цветной фотографии, основанная на прямой регистрации спектрального состава излучения. Для этого фиксируется картина распределения стоячих волн, образующихся в толстом эмульсионном слое в результате интерференции света. Первый цветной снимок был получен Габриэлем Липпманом с помощью этого процесса в 1891 году, а годом позднее результаты успешных опытов продемонстрированы в Парижской академии наук.

Дихрои́зм — явление, состоящее в различном поглощении веществом света в зависимости от его поляризации. Различают следующие виды дихроизма.

Электро́нная литогра́фия или электро́нно-лучева́я литогра́фия — метод нанолитографии с использованием электронного пучка.

Фототехническая плёнка — светочувствительный материал, предназначенный для репродукционных работ и для изготовления фотошаблонов и фотоформ, главным образом, в полиграфии и фотолитографии. Фототехнические плёнки выпускаются преимущественно листовыми, часто на безусадочной лавсановой подложке.

Тонкоплёночный транзистор (TFT, англ. thin-film transistor) — разновидность полевого транзистора, при которой как металлические контакты, так и полупроводниковый канал проводимости изготавливаются в виде тонких плёнок (от 1/10 до 1/100 микрона).

То́нер — обладающий особыми свойствами чёрный или цветной порошок, который переносится с помощью электрографического принципа на заранее специальным образом заряженный фотобарабан и формирует на нём видимое изображение, которое затем переносится на бумагу.

Поляриза́тор — устройство, предназначенное для получения полностью или частично поляризованного оптического излучения из излучения с произвольным состоянием поляризации. В соответствии с типом поляризации, получаемой с помощью поляризаторов, они делятся на линейные и круговые. Линейные поляризаторы позволяют получать плоскополяризованный свет, круговые — свет, поляризованный по кругу.

Диэлектри́ческое зе́ркало — зеркало, отражающие свойства которого формируются благодаря покрытию из нескольких чередующихся тонких слоёв из различных диэлектрических материалов. Используются в разнообразных оптических приборах. При надлежащем выборе материалов и толщин слоёв можно создать оптические покрытия с требуемым отражением на выбранной длине волны. Диэлектрические зеркала могут обеспечивать очень большие коэффициенты отражения, (так называемые суперзеркала), которые обеспечивают отражение.

Подложка — термин, используемый в материаловедении для обозначения основного материала, поверхность которого подвергается различным видам обработки, в результате чего образуются слои с новыми свойствами или наращивается плёнка другого материала.

Альбуми́новая печа́ть — фотографический процесс, основанный на использовании альбумина, получаемого из белков яиц, для удержания светочувствительных веществ на бумаге. Технология представлена 27 мая 1850 года Луи Дезире Бланкар-Эвраром (фр. Louis Désiré Blanquart-Evrard) на заседании Французской академии наук, став первым коммерчески успешным методом получения фотоотпечатка на светочувствительном слое, нанесённом поверх бумажной подложки, а не пропитавшем её, как в калотипии. Процесс стал доминирующим.

Фотолитогра́фия — метод получения определённого рисунка на поверхности материала, широко используемый в микроэлектронике и других видах микротехнологий, а также в производстве печатных плат. Один из основных приёмов планарной технологии, используемой в производстве полупроводниковых приборов.

Апохрома́т — оптическая конструкция, у которой исправлены сферическая аберрация и хроматические аберрации для трёх и более цветов. Как правило, является усложнённым ахроматом с линзами из стекла специальных сортов (например, курцфлинт) и некоторых кристаллов (флюорит, квасцы).

Конде́нсор (лат. condenso — уплотняю) — линзовая, зеркальная или зеркально-линзовая оптическая система, собирающая лучи от источника света и направляющая их на рассматриваемый или проецируемый предмет.

Майлар (англ. Mylar; также BoPET (Biaxially-oriented polyethylene terephthalate), Melinex, Hostaphan) — торговая марка компании DuPont для плёнки на основе синтетического полиэфирного волокна (полиэтилентерефталата, в СССР называемого лавсан).

Негати́в (лат. negativus — отрицательный), в чёрно-белой фотографии и кинематографии образованное зёрнами металлического серебра изображение объекта съёмки, в котором относительное распределение яркостей при рассматривании в проходящем свете обратно яркостям деталей объекта съёмки. Другими словами, распределение оптических плотностей негатива соответствует распределению яркостей объекта. В цветных фотопроцессах изображение объекта съёмки формируется красителями, цвета которых дополнительны к цветам.

Телевизор проекционный — разновидность телевизора, изображение которого рассматривается зрителями на большом экране после его оптического увеличения. В большинстве случаев при этом на кинескопах или других устройствах создаётся небольшое изображение, которое при помощи оптической системы увеличивается и проецируется на большой экран.

поляризационный светофильтр, один из основных типов оптических линейных Поляризаторов; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками). П. впервые разработаны группой американских учёных во главе с Е. Лэндом около 1932, серийно изготовляются с 1935. Плёнки П. обладают линейным дихроизмом (см. Плеохроизм), т. е. неодинаково поглощают две линейно поляризованные перпендикулярно одна к другой составляющие падающего на них света (Оптическое излучение с любыми поляризационными характеристиками всегда можно преобразовать в совокупность таких составляющих; см. Поляризация света). Различие в поглощения показателях (См. Поглощения показатель) П. для этих составляющих столь велико, что при типичной толщине плёнки Поляроид 0,05—0,1 мм одна из них поглощается практически нацело, в то время как другая, лишь несколько ослабляясь, проходит через П. Поляризующие (поглощающие) среды П. могут быть кристаллическими (плёнки-монокристаллы или множество мельчайших кристалликов, одинаково ориентированных и впрессованных в полимерную плёнку-матрицу), но чаще их действие обусловлено дихроизмом органических молекул полимера (или отд. участков этих молекул), тоже пространственно однородно ориентированных. Ориентацию осуществляют с помощью растяжения, сдвиговых деформаций или иной спец. технологии. Все П. отличает значит. рабочая апертура поляризации, т. е. наибольший угол раствора сходящегося или расходящегося пучка падающих лучей, при котором прошедший свет ещё максимально поляризован. Для кристаллических герапатитовых П. она составляет около 60°, для молекулярных и однополивиниловых достигает 80°. Эти П. относительно нестойки к воздействиям влаги и температуры св. 80 °С. Более стойки молекулярные поливиниленовые П. Важными преимуществами П. (помимо больших рабочих апертур) являются компактность, технологичность изготовления и возможность получения их с площадями поверхностей до нескольких м 2 . В то же время поглощение в них (а следовательно, и степень поляризации) больше зависит от длины волны, чем в поляризационных призмах (См. Поляризационные призмы). Меньше и их Пропускание вообще (Поляроид 30%), что в сочетании с невысокой термостойкостью снижает возможности их использования с повышением интенсивности светового потока. П. широко применяются в близкой ультрафиолетовой, видимой и близкой инфракрасной областях диапазона оптического излучения (популярный пример — для защиты глаз водителей от слепящего действия фар встречных автомашин).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд.. М., 1973; Шишловский А. А., Прикладная физическая оптика, М., 1961.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Поляроид" в других словарях:

ПОЛЯРОИД — (поляризационный светофильтр), один из осн. типов оптич. линейных поляризаторов; представляет собой тонкую поляризац. плёнку, заклеенную для защиты от механич. повреждений и действия влаги между двумя прозрачными пластинками (плёнками). Плёнки П … Физическая энциклопедия

поляроид — светофильтр Словарь русских синонимов. поляроид сущ., кол во синонимов: 1 • светофильтр (2) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

ПОЛЯРОИД — разновидность (см.) в виде светофильтра, представляющего собой поляризующую свет плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками) … Большая политехническая энциклопедия

Поляроид — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/23 октября 2012. Пока процесс обсуждения не завершён, статью можн … Википедия

поляроид — (гр. eidos вид) разновидность поляризатора в виде светофильтра, представляющего собой поляризующую свет пленку. Новый словарь иностранных слов. by EdwART, , 2009. поляроид а, м. ( … Словарь иностранных слов русского языка

поляроид — poliaroidas statusas T sritis Standartizacija ir metrologija apibrėžtis Optinis įtaisas šviesai poliarizuoti. atitikmenys: angl. polaroid vok. Polaroid, n rus. поляроид, m pranc. polaroïd, m; polaroïde, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas

поляроид — poliaroidas statusas T sritis chemija apibrėžtis Optinis įtaisas šviesai poliarizuoti. atitikmenys: angl. polaroid rus. поляроид … Chemijos terminų aiškinamasis žodynas

поляроид — poliaroidas statusas T sritis fizika atitikmenys: angl. polaroid vok. Polaroid, n rus. поляроид, m pranc. polaroïde, m … Fizikos terminų žodynas

поляроид — (поляро + греч. eidos вид) см. Светофильтр поляризационный … Большой медицинский словарь

На передней грани призмы естественный луч, параллельный реб­ру СВ, раздваивается на два луча: обык­новенный (n0=1,66) и необыкновенный (ne=1,51). Получаем. При соответствующем подборе угла падения ( равного или большего пре­дельного), обыкновенный луч испытывает полное отражение (канадский бальзам для него является средой оптически менее плотной), а затем поглощается зачернен­ной боковой поверхностью СВ. Необыкно­венный луч свободно проходит через слой канадского бальзама (для него канадский бальзам оптически более плотен), выходит из кристалла парал­лельно падающему лучу, незначительно смещенному относительно него (ввиду преломления на наклонных гранях АС и BD). Т.о. призма Николя преобразует естественный свет в линейно поляризованный, плоскость колебаний которого совпадает с главной плоскостью призмы, проходящей через луч и оптическую ось ОО’.

Двоякопреломляющие призмы исполь­зуют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга. Примером двоякопреломляющих призм могут служить призмы из исланд­ского шпата и стекла, призмы, составлен­ные из двух призм из исландского шпата со взаимно перпендикулярными оптическими осями. Для первых призм обыкновенный луч преломляется в шпате и стекле два раза и, следовательно, сильно отклоняется, необыкновенный луч при соответствующем подборе показателя пре­ломления стекла п проходит при­зму почти без отклонения. Для вторых призм различие в ориентировке оптиче­ских осей влияет на угол расхождения между обыкновенным и необыкновенным лучами. Все двоякопреломляющие кристаллы поглощают свет, причем коэффициент поглощения зависит от ориентации электрического вектора световой волны, т.е. неодинаков для обыкновенного и необыкновенного лучей и зависит от направления распространения света к кристалле - свойстводихроизма.

Опр.19.6. Дихроизм - различ­ное поглощение света в зависимости от ориентации электрического вектора свето­вой волны. Двоякопреломляющие кристаллы называютсядихроичными кристаллами.

Примером сильно дихроичного кристалла является турмалин, в кото­ром из-за сильного селективного поглоще­ния обыкновенного луча уже при толщине пластинки 1 мм из нее выходит только нео­быкновенный луч (обыкновенный луч полностью поглощается). Такое различие в по­глощении, зависящее, кроме того, от дли­ны волны, приводит к тому, что при осве­щении дихроичного кристалла белым светом кристалл по разным направлениям оказывается различно окрашенным.

Дихроичные кристаллы приобрели важное значение в связи с изобрете­ниемполяроидов. Примером поляроида может служить тонкая пленка из целлуло­ида, в которую вкраплены кристаллики герапатита (сернокислого иод-хинина). Герапатит — двоякопреломляющее ве­щество с очень сильно выраженным дих­роизмом в области видимого света. Уста­новлено, что такая пленка уже при толщи­не мм полностью поглощает обыкно­венные лучи видимой области спектра, являясь в таком тонком слое совершенным поляризатором. Преимущество полярои­дов перед призмами — возможность изго­товлять их с площадями поверхностей до нескольких квадратных метров. Однако степень поляризации в них сильнее за­висит от , чем в призмах. Кроме того, их меньшая по сравнению с призмами про­зрачность (приблизительно 30 %) в соче­тании с небольшой термостойкостью не позволяет использовать поляроиды в мощ­ных световых потоках. Поляроиды при­меняются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта.




Разные кристаллы создают различ­ное по значению и направлению двойное лучепреломление, поэтому, пропуская че­рез них поляризованный свет и измеряя его изменение после прохождения кристаллов, можно определить их оптиче­ские характеристики и производитьмине­ралогический анализ. Для этой цели ис­пользуютсяполяризационные микроскопы.

В основе работы поляризационных при­способлений, служащих для получения по­ляризованного света, лежит явление двой­ного лучепреломления. Наиболее часто для этого применяютсяпризмы и полярои­ды.

Призмы делятся на два класса:

1) призмы, дающие только плоскополяризованный луч(поляризационные при­змы);

На передней грани призмы естественный луч, параллельный реб­ру СВ, раздваивается на два луча: обык­новенный (n0=1,66) и необыкновенный (ne=1,51). Получаем. При соответствующем подборе угла падения ( равного или большего пре­дельного), обыкновенный луч испытывает полное отражение (канадский бальзам для него является средой оптически менее плотной), а затем поглощается зачернен­ной боковой поверхностью СВ. Необыкно­венный луч свободно проходит через слой канадского бальзама (для него канадский бальзам оптически более плотен), выходит из кристалла парал­лельно падающему лучу, незначительно смещенному относительно него (ввиду преломления на наклонных гранях АС и BD). Т.о. призма Николя преобразует естественный свет в линейно поляризованный, плоскость колебаний которого совпадает с главной плоскостью призмы, проходящей через луч и оптическую ось ОО’.

Двоякопреломляющие призмы исполь­зуют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга. Примером двоякопреломляющих призм могут служить призмы из исланд­ского шпата и стекла, призмы, составлен­ные из двух призм из исландского шпата со взаимно перпендикулярными оптическими осями. Для первых призм обыкновенный луч преломляется в шпате и стекле два раза и, следовательно, сильно отклоняется, необыкновенный луч при соответствующем подборе показателя пре­ломления стекла п проходит при­зму почти без отклонения. Для вторых призм различие в ориентировке оптиче­ских осей влияет на угол расхождения между обыкновенным и необыкновенным лучами. Все двоякопреломляющие кристаллы поглощают свет, причем коэффициент поглощения зависит от ориентации электрического вектора световой волны, т.е. неодинаков для обыкновенного и необыкновенного лучей и зависит от направления распространения света к кристалле - свойстводихроизма.

Опр.19.6. Дихроизм - различ­ное поглощение света в зависимости от ориентации электрического вектора свето­вой волны. Двоякопреломляющие кристаллы называютсядихроичными кристаллами.

Примером сильно дихроичного кристалла является турмалин, в кото­ром из-за сильного селективного поглоще­ния обыкновенного луча уже при толщине пластинки 1 мм из нее выходит только нео­быкновенный луч (обыкновенный луч полностью поглощается). Такое различие в по­глощении, зависящее, кроме того, от дли­ны волны, приводит к тому, что при осве­щении дихроичного кристалла белым светом кристалл по разным направлениям оказывается различно окрашенным.

Дихроичные кристаллы приобрели важное значение в связи с изобрете­ниемполяроидов. Примером поляроида может служить тонкая пленка из целлуло­ида, в которую вкраплены кристаллики герапатита (сернокислого иод-хинина). Герапатит — двоякопреломляющее ве­щество с очень сильно выраженным дих­роизмом в области видимого света. Уста­новлено, что такая пленка уже при толщи­не мм полностью поглощает обыкно­венные лучи видимой области спектра, являясь в таком тонком слое совершенным поляризатором. Преимущество полярои­дов перед призмами — возможность изго­товлять их с площадями поверхностей до нескольких квадратных метров. Однако степень поляризации в них сильнее за­висит от , чем в призмах. Кроме того, их меньшая по сравнению с призмами про­зрачность (приблизительно 30 %) в соче­тании с небольшой термостойкостью не позволяет использовать поляроиды в мощ­ных световых потоках. Поляроиды при­меняются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта.

Разные кристаллы создают различ­ное по значению и направлению двойное лучепреломление, поэтому, пропуская че­рез них поляризованный свет и измеряя его изменение после прохождения кристаллов, можно определить их оптиче­ские характеристики и производитьмине­ралогический анализ. Для этой цели ис­пользуютсяполяризационные микроскопы.

Читайте также: