Сообщение на тему обмен белков

Обновлено: 02.07.2024

Углеводный обмен – совокупность биохимических реакций, за счет которых происходит усвоение и использование углеводов в организме человека.

Усвоение углеводов заключается в их гидролизе до глюкозы. При этом неважно, какой именно углевод попадает в организм (полисахариды типа крахмала или гликогена или дисахариды, типа сахарозы, или моносахариды, такие как фруктоза). Ферменты, содержащиеся в слюне (мальтаза), желудке и кишечнике (амилаза) катализируют гидролиз сахаридов до глюкозы. Таким образом, проходя ротовую полость, пищевод, желудок углеводы усваиваются ворсинками кишечника уже в форме простой глюкозы, которая попадает в кровь и разносится по органам, в частности к мозгу, печени, почкам, легким и мышцам.

Организм использует усвоенную глюкозу. Большая ее часть окисляется с выделением энергии и образованием CO2 и H2O. При окислении глюкозы выделяется меньше энергии, чем при расщеплении жиров, однако, это происходит быстрее, что делает углеводы незаменимыми участниками энергетических процессов в организме. Энергия используется для нормального функционирования органов, а продукты окисления глюкозы выводятся из организма.

Оставшаяся часть глюкозы перерабатывается в гликоген, запасающийся в печени – источник энергии для функционирования мышц. Для нормального протекания этого процесса, необходимо, чтобы количество глюкозы в печени оставалось постоянным. Это достигается действием гормона щитовидной железы – инсулина. При этом, нарушение содержания в печени самого инсулина приводит к сахарному диабету. Предотвратить развитие диабета может ведение здорового образа жизни и здоровое питание.

• Белки. Состоят из аминокислот (органические вещества с основно-кислотными свойствами). Все ферменты - белковые вещества. Существует всего 25 аминокислот, 12 из которых – незаменимые.

Обмен белков - аминокислоты по воротной вене попадают в печень. В этом органе из некоторых из них синтезируются более сложные вещества — полипептиды.

Из печени аминокислоты и полипептиды разносятся с кровью по всему организму и вступают в соединение с белками различных клеток, занимая место использованных аминокислот.

Важнейшими конечными продуктами распада белка в организме являются аммиак, мочевина и мочевая кислота.

• Жиры (липоиды) – входят в состав клеточных оболочек. Состоят из глицерина и жирных кислот, которые образуются путём расщепления липоидов в адипоцитах под действием липазы или дегидрогиназы. В дальнейшем - процесс окисления жирных кислот до углекислого газа и воды, в результате чего освобождается энергия, необходимая для жизнедеятельности организма.

Нарушения – гиперсекреция инсулина ведёт к накоплению жира и отложение углеводов в виде жиров. Как следствие – ожирение.

• Углеводы - весь сахар, всосавшийся в кишечнике, поступает по кровеносным сосудам в печень, которая задерживает излишки сахара, превращая его в животный крахмал (или гликоген), и откладывать в запас.

При избыточном углеводном питании сахар переходит в организме в жир. При недостаточном углеводном питании углеводы, наоборот, могут образоваться из жира.

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.


Мы подошли к наиважнейшему аспекту в планировании питания спортсмена. Тема нашей статьи – белковые обменные процессы. В новом материале вы найдёте ответы на вопросы: что такое обмен белков, какую роль протеины и аминокислоты играют в организме и что бывает, если нарушается белковый метаболизм.

Общая суть

Из белка (протеина) состоит большая часть наших клеток. Это основа жизнедеятельности организма и его строительный материал.

Белки регулируют следующие процессы:

  • мозговую деятельность;
  • переваривание тригидроглицеридов;
  • синтез гормонов;
  • передачу и хранение информации;
  • движение;
  • защиту от агрессивных факторов;

Примечание: наличие белка напрямую связано с синтезом инсулина. Без достаточного количества аминокислот, из которых синтезируется этот элемент, повышение сахара в крови становится лишь вопросом времени.

  • создание новых клеток – в частности, за счет белковых структур регенерируют клетки печени;
  • транспортировку липидов и других важных соединений;
  • преобразование липидных связей в смазочные материалы для суставов;
  • контроль метаболизма.

обмен белков в организме

И еще десятки различных функций. Фактически белок – это мы. Поэтому люди, которые отказываются от употребления мяса и других животных продуктов, все равно вынуждены искать альтернативные источники белка. В противном случае, их вегетарианская жизнь будет сопровождаться дисфункциями и патологическими необратимыми изменениями.

Как бы это странно не звучало, но небольшой процент белка есть во многих продуктах. Например, крупы (все, за исключением манной) имеют в своем составе до 8% белка, пусть и с неполным аминокислотным составом. Это частично компенсирует дефицит белка, если вы хотите сэкономить на мясе и спортивном питании. Но помните, что организму нужны разные белки – одной гречкой не удовлетворить потребности в аминокислотах. Не все белки расщепляются одинаково и все по разному влияют на деятельность организма.

В пищеварительном тракте белок расщепляется под воздействием специальных ферментов, которые тоже состоят из белковых структур. Фактически, это замкнутый круг: если в организме есть длительный дефицит белковых тканей, то и новые белки не смогут денатурировать до простых аминокислот, что вызовет еще больший дефицит.

Важный факт: белки могут участвовать в энергетическом обмене наравне с липидами и углеводами. Дело в том, что глюкоза – необратимая и самая простейшая структура, которая превращается в энергию. В свою очередь белок, пускай и со значительными энергетическими потерями в процессе окончательной денатурации, может быть превращен в гликоген. Другими словами, организм в критической ситуации способен использовать белок в качестве топлива.

В отличие от углеводов и жиров, белки усваиваются ровно в том количестве, которое необходимо для функционирования организма (включая поддержание постоянного анаболического фона). Никаких протеиновых излишков организм не откладывает. Единственное, что может изменить этот баланс – это прием тестостероновых стимуляторов и аналогов гормона тестостерона (анаболических стероидов). Первичная задача таких препаратов – вовсе не повышение силовых показателей, а увеличение синтеза АТФ и белковых структур, за счет чего и растут мышцы.

расщепление белка до пептидов и аминокислот

Этапы белкового обмена

Белковые обменные процессы гораздо сложнее углеводных и липидных. Ведь если углеводы – это всего лишь энергия, а жирные кислоты поступают в клетки практически в неизменном виде, то главный строитель мышечной ткани претерпевает в организме целый ряд изменений. На некоторых этапах по белок и вовсе может метаболизироваться в углеводы и, соответственно, в энергию.

превращение белков в организме

Рассмотрим основные этапы обмена белков в организме человека, начиная с их поступления и запечатывания слюной денатурата будущих аминокислот и заканчивая конечными продуктами жизнедеятельности.

Примечание: мы поверхностно рассмотрим биохимические процессы, которые позволят понять сам принцип переваривания белков. Для достижения спортивных результатов этого будет достаточно. Однако при нарушениях белкового обмена лучше обратится к врачу, который определит причину патологии и поможет устранить её на уровне гормонов или синтеза самих клеток.

Этап Что происходит Суть
Первичное попадание белков Под воздействием слюны расщепляются основные гликогеновые связи, превращаясь в простейшую глюкозу, остальные фрагменты запечатываются для последующей транспортировки. На этом этапе основные белковые ткани в составе продуктов питания выделяются в отдельные структуры, которые затем будут перевариваться.
Переваривание белков Под воздействием панкреатина и других ферментов происходит дальнейшая денатурация до белков первого порядка. Организм настроен таким образом, что может получать аминокислоты только из простейших цепочек белков, для чего он воздействует кислотой, чтобы сделать белок более расщепляемым.
Расщепление на аминокислоты Под воздействием клеток внутренней слизистой оболочки кишечника, денатурированные белки всасываются в кровь. Уже упрощенный белок организм расщепляет на аминокислоты.
Расщепление до энергии Под воздействием огромного количества инсулиновых заменителей и ферментов для переваривания углеводов белок распадается до простейшей глюкозы В условиях, когда организму не хватает энергии, он не денатурирует белок, а при помощи специальных веществ расщепляет его сразу до уровня чистой энерги.
Перераспределение аминокислотных тканей Циркулируя в общем кровотоке, белковые ткани под воздействием инсулина транспортируются по всем клеткам, отстраивая необходимые аминокислотные связи. Белки, путешествуя по организму, восстанавливают недостающие части, как в мышечных структурах, так и в структурах связанных с гормоностимуляцией, мозговой активностью или последующей ферментацией.
Составление новых белковых тканей В мышечных тканях аминокислотные структуры, связываясь с микроразрывами, составляют новые ткани, вызывая гипертрофию мышечных волокон. Аминокислоты в нужном составе превращаются в мышечную-белковую ткань.
Вторичный белковый обмен При наличии переизбытка белковых тканей в организме, они под вторичным воздействием инсулина снова попадают в кровоток для превращения их в другие структуры. При сильном мышечном напряжении, долгом голоде или во время болезни организм использует мышечные белки для компенсации аминокислотного недостатка в других тканях.
Транспортировка липидных тканей Свободно циркулирующие белки, соединенные в фермент липазу, помогают транспортировать и переваривать вместе с желчью полинасыщенные жирные кислоты. Белок участвует в транспортировке жиров и синтезе холестерина из них. В зависимости от аминокислотного состава белка синтезируются как полезный, так и вредный холестерин.
Выведение окисленных элементов (конечных продуктов) Отработанные аминокислоты в процессе катаболизма выводятся с продуктами жизнедеятельности организма. Мышечные ткани, поврежденные в результате нагрузок, транспортируются из организма.

Нарушение метаболизма белков

Нарушения белкового обмена опасны для организма не менее, чем патологии метаболизма жиров и углеводов. Белки участвуют не только в формировании мышц, но практически во всех физиологических процессах.

Что может пойти не так? Как мы все знаем, важнейший энергетический элемент в организме – это молекулы АТФ, которые, путешествуя по крови, раздают клеткам необходимые нутриенты. При нарушении обмена белков “ломается” синтез АТФ и нарушаются процессы, которые косвенно или напрямую влияют на синтезирование из аминокислот новых белковых структур.

В числе наиболее вероятных последствий метаболических нарушений:

  • острый панкреатит;
  • некроз тканей желудка;
  • раковые новообразования;
  • общее отекание организма;
  • нарушение водно-солевого баланса;
  • потеря веса;
  • замедление умственного развития и роста у детей;
  • невозможность переваривания жирных кислот;
  • невозможность транспортировки продуктов жизнедеятельности по кишечнику без раздражения сосудистых стенок;
  • резкие катаболические реакции;
  • разрушение костной и мышечной ткани;
  • разрушение нейрон-мышечной связи;
  • ожирение; ;
  • нарушение всасывания микроэлементов в крови;
  • нарушение гормонального фона;
  • деградация интеллекта.

Это далеко не полный список того, что может произойти с организмом в случае, если будет нарушен белковый обмен. Однако не все так страшно. Чтобы вывести из строя механизм белкового обмена, нужно, чтобы одновременно совпало хотя бы несколько факторов из перечисленных:

  1. Под воздействием белковых коктейлей (без натуральной пищи) организм перестаёт вырабатывать пищеварительные ферменты, направленные на регуляцию и последующее расщепление белковых тканей.
  2. Под воздействием изменений в гормональном балансе катаболические реакции превалируют над анаболическими.
  3. Без поступления белка из пищи возникает недостаток основных синтезируемых аминокислот.
  4. В отсутствии достаточного поступления углеводов остаточные белки катаболизируются в метаболиты сахара.
  5. Полное отсутствие жировой прослойки.
  6. Есть патологии почек и печени.

Обмен веществ_виды.jpg

В результате окисления \(1\) г белка происходит выделение \(17,2\) кДж (\(4,1\) ккал) энергии. Но в качестве источника энергии белки обычно не используются, так как они выполняют другие функции: строительную, защитную, каталитическую и т. д.

В процессе пищеварения белки пищи расщепляются под действием пищеварительных ферментов до аминокислот. Аминокислоты всасываются ворсинками тонкого кишечника и попадают в кровь, которая доставляет их к клеткам. В клетках из аминокислот синтезируются новые белки, свойственные организму человека.

В белковом обмене важную роль играет печень. Она управляет содержанием отдельных аминокислот в крови, осуществляет синтез белков плазмы крови. Одним из продуктов распада аминокислот является ядовитый аммиак. Клетки печени преобразуют аммиак в менее опасную мочевину, которая удаляется из организма с мочой и частично с потом.

Расщепление белков.jpg

Основная функция углеводов в организме — энергетическая. \(1\) г углеводов при окислении даёт \(17,2\) кДж (\(4,1\) ккал) энергии.

С пищей в наш организм поступают разные углеводы. Чаще всего это крахмал (из растительных продуктов), гликоген (из животных продуктов), сахароза, лактоза и др. Эти соединения распадаются в органах пищеварения до глюкозы, которая всасывается стенками тонкого кишечника и попадает в кровь.

Обмен углеводов.jpg

Основная часть глюкозы окисляется в клетках до углекислого газа и воды, которые удаляются с выдыхаемым воздухом или с мочой. Неиспользованная глюкоза превращается в гликоген (животный крахмал) и накапливается в клетках печени и в мышцах.

В крови содержание глюкозы поддерживается на уровне \(0,10\)–\(0,15\) % . В регуляции уровня глюкозы участвуют гормоны поджелудочной железы инсулин и глюкагон. Инсулин ускоряет превращение глюкозы в гликоген, а также затормаживает его распад. Глюкагон обладает противоположным действием. Он, наоборот, способствует расщеплению гликогена и повышению уровня глюкозы в крови.

Если поджелудочная железа вырабатывает недостаточное количество инсулина, то содержание глюкозы в крови увеличивается, и это может привести к тяжёлой болезни — сахарному диабету.

Расщепление углеводов.jpg

Если с пищей в организм поступает слишком много углеводов, они преобразуются в жиры и накапливаются в разных органах.

Окисление жиров в два раза эффективнее окисления углеводов или белков. \(1\) г жира даёт \(38,9\) кДж (\(9,3\) ккал) энергии.

Жиры — это вещества, образованные жирными кислотами и глицерином. В органах пищеварения жиры расщепляются на составные части под влиянием ферментов поджелудочной железы и тонкого кишечника. Образовавшиеся продукты поступают в лимфатические сосуды ворсинок тонкого кишечника, а затем вместе с лимфой попадают в кровеносную систему и доставляются к клеткам.

Обмен жиров.jpg

Расщепление жиров.jpg

  • Окисление жиров обеспечивает энергией работу внутренних органов.
  • Липиды образуют все клеточные мембраны, выполняют функции медиаторов и гормонов.
  • Откладываются в запас в подкожной жировой клетчатке и сальнике, защищают органы от механических повреждений.
  • Жиры плохо проводят тепло и защищают организм от перегревания и переохлаждения, способствуя поддержанию постоянной температуры тела.

Ежедневно рекомендуется употреблять \(80\)–\(100\) г разных жиров. Лишний жир запасается под кожей, но может откладываться также в печени и в кровеносных сосудах.

3 (2).jpg

Органические вещества могут взаимно превращаться. Из белков образуются жиры и углеводы. Углеводы превращаются в жиры, и наоборот, источником углеводов могут стать жиры. Но заменить белки другими веществами невозможно.

Установлено, что взрослому человеку в сутки необходимо получить с пищей не менее \(1500\)–\(1700\) ккал. Причём на обеспечение процессов жизнедеятельности тратится \(15\)–\(35\) % полученной энергии, а остальная энергия тратится на поддержание постоянной температуры тела.

Обмен белков и аминокислот в организме

В последние десятилетия были предприняты значительные усилия, направленные на понимание регуляции белкового обмена у новорожденных. Эта область исследования является наиболее актуальной, поскольку на протяжении того же периода количество случаев преждевременного родоразрешения в США значительно увеличилось. В 2005 г. гестационный возраст 12,5% детей, родившихся в США, составлял менее 37 нед (повышение на 31% по сравнению с 1981 г.).

Повышенная частота преждевременных родов и очень низкая масса тела детей при рождении создают многочисленную популяцию новорожденных, которым необходима дополнительная нутритивная поддержка. Большинство неонатологов согласятся с тем, что, хотя усовершенствование процесса перинатальной помощи увеличило выживаемость, современные нормы питания для многих недоношенных детей и детей с ОНМТ не являются оптимальными.

Итак, существует необходимость в дальнейшем изучении проблемы, каким образом с помощью нутритивной поддержки можно обеспечить максимальный рост новорожденных.

Технологический прогресс, достигнутый благодаря использованию меченных изотопами аминокислот в качестве индикаторов и основным достижениям молекулярной биологии, начал проливать свет на механизм и клиническое воздействие аминокислот на интенсификацию роста и увеличение объема белков в растущем организме новорожденных.

Данные, полученные в результате этих исследований, показывают, что текущие рекомендации по употреблению в пищу белков и аминокислот могут быть неадекватными в плане обеспечения максимального роста и увеличения объема белков у младенцев, родившихся преждевременно.

Нарушения поступления белка в организм

В задачи дальнейших статей на сайте входит, во-первых, провести обзор основных представлений о белковом обмене, синтезе и кругообороте белка, уделяя больше внимания потребностям новорожденных, необходимым для их роста. Во-вторых, сделать обзор текущих рекомендаций по кормлению недоношенных детей, уделяя особое внимание потреблению белка.

Процесс, при котором белки организма непрерывно разрушаются и ресинтезируются, называют кругооборотом белка. Этот термин, используемый в собирательном значении, обозначает как синтез белка, так и его распад. В дополнение к обмену аминокислот, который происходит при образовании и распаде белков, аминокислоты также необратимо утрачиваются, распадаясь в процессе метаболизма. В организме, в котором сохраняется белковый баланс, количество аминокислот, утраченных в результате распада, эквивалентно количеству аминокислот, полученных с пищей.

Деградация белков заключается в удалении азота, главным образом в виде мочевины и аммиака, а также в расщеплении оставшихся углеродов, относящихся к углеродному скелету. Конечным результатом деградации углеродного скелета является обеспечение организма энергией либо непосредственно, либо через формирование простых соединений, например глюкозы и жирных кислот, которые затем могут быть сохранены или метаболизированы для получения энергии. Потребности организма регулируют интенсивность подачи (потока) аминокислот с помощью метаболических путей.

Энергетический баланс и баланс азота влияют на то, используются ли для синтеза аминокислот и/или углеводов аминокислоты и их углеродный скелет или же они окисляются для выработки энергии. Следует отметить, что, если бы продукты, образовавшиеся в результате распада содержащихся в организме белков, были на 100% утилизированы повторно для образования 20 классических аминокислот, необходимость потреблять белок в рационе сводилась бы к минимуму. Тем не менее отдельные аминокислоты не могут быть синтезированы в человеческом организме даже при наличии достаточного количества азота. Эти аминокислоты называют незаменимыми (основными) аминокислотами.

Аминокислоты в организме также преобразуются в конечные небелковые продукты. Небелковые производные включают в себя такие соединения, как пуриновые и пиримидиновые основания, медиаторы (например, серотонин), а также непептидные гормоны (например, катехоламины). Количество аминокислот, участвующих в этих небелковых путях превращения, гораздо меньше общего количества аминокислот, участвующих в синтезе белков и их распаде.

Поскольку аминокислот, необратимо используемых для синтеза небелковых соединений, как правило, гораздо меньше, чем тех аминокислот, которые были использованы либо для синтеза белков, либо для окисления аминокислот, при оценке кругооборота белка и баланса азота эти пути часто игнорируют. Тем не менее количество некоторых из этих синтезированных соединений может быть значительным (например, при образовании гема, нуклеиновых кислот), поэтому уменьшение числа этих соединений может стать значимым для некоторых аминокислот в продолжительные периоды недостаточного потребления белков.

Читайте также: