Сообщение на тему кристаллы

Обновлено: 05.07.2024

А кто не любовался снежинками, разнообразие которых поистине бесконечно! Еще в 17 в. знаменитый астроном Иоганн Кеплер написал трактат О шестиугольных снежинках, а спустя три столетия были изданы альбомы, в которых представлены коллекции увеличенных фотографий тысяч снежинок, причем ни одна из них не повторяет другую.

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить.

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,

Кристаллом покрывал недвижные струи.

А.С.Пушкин. К Овидию

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека. Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – кристаллы кубического оксида циркония ZrO2, которые внешне очень похожи на бриллианты.

Строение кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na + (их радиус 0,1 нм) и Cl – (радиус 0,18 нм) возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра. При этом все катионы и анионы образуют простейшую кубическую кристаллическую решетку, в которой вершины куба попеременно заняты ионами Na + и Cl – . Аналогично устроены кристаллы KCl, BaO, CaO, ряда других веществ.

Ионы Cs + (радиус 0,165 нм) по размерам близки ионам Cl – , и возникает кубическая координация: каждый ион окружен восемью ионами противоположного знака, расположенными в вершинах куба. При этом образуется объемноцентрированная кристаллическая решетка: в центре каждого куба, образованного восемью катионами, расположен один анион, и наоборот. (Интересно, что при 445° С CsCl переходит в простую кубическую решетку типа NaCl.) Более сложно устроены кристаллические решетки CaF2 (флюорита), многих других ионных соединений. В некоторых ионных кристаллах сложные многоатомные анионы могут соединяться в цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы. Так, например, устроены силикаты. Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO2, ReO3, TiO2, CuNCS. Поскольку между полярной ковалентной и ионной связью нет резкой границы, то же справедливо и для ионных и ковалентных кристаллов. Так, заряд на атоме алюминия в Al2O3 равен не +3, а лишь +0,4, что свидетельствует о большом вкладе ковалентной структуры. В то же время в алюминате кобальта CoAl2O4 заряд на атомах алюминия увеличивается до +2,8, что означает преобладание ионных сил. Ковалентные кристаллы, как правило, твердые и тугоплавкие.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H2O, HCl, NH3, CO2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН4 – при –182,5° С, а триаконтана С30Н62 – при +65,8° С.

Все кристаллические соединения можно разделить на моно- и поликристаллические. Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко. Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Рост кристаллов.

Многие видные ученые, внесшие большой вклад в развитие химии, минералогии, других наук, начинали свои первые опыты именно с выращивания кристаллов. Помимо чисто внешних эффектов, эти опыты заставляют задумываться на тем, как устроены кристаллы и как они образуются, почему разные вещества дают кристаллы разной формы, а некоторые вовсе не образуют кристаллов, что надо сделать, чтобы кристаллы получились большими и красивыми.

Вот простая модель, поясняющая суть кристаллизации. Представим, что в большом зале укладывают паркет. Легче всего работать с плитками квадратной формы – как ни поверни такую плитку, она все равно подойдет к своему месту, и работа пойдет быстро. Именно поэтому легко кристаллизуются соединения, состоящие из атомов (металлы, благородные газы) или небольших симметричных молекул. Такие соединения, как правило, не образуют некристаллических (аморфных) веществ.

Труднее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы – тогда каждую дощечку можно уложить на свое место одним единственным способом. Особенно трудно выложить паркетный узор из дощечек сложной формы.

Способы выращивания кристаллов.

Кристаллизацию можно вести разными способами. Один из них – охлаждение насыщенного горячего раствора. При каждой температуре в данном количестве растворителя (например, в воде) может раствориться не более определенного количества вещества. Например, в 100 г воды при 90° С может раствориться 200 г алюмокалиевых квасцов. Такой раствор называется насыщенным. Будем теперь охлаждать раствор. С понижением температуры растворимость большинства веществ уменьшается. Так, при 80° С в 100 г воды можно растворить уже не более 130 г квасцов. Куда же денутся остальные 70 г? Если охлаждение вести быстро, избыток вещество просто выпадет в осадок. Если этот осадок высушить и рассмотреть в сильную лупу, то можно увидеть множество мелких кристалликов.

Охладив насыщенный при 90° С раствор квасцов до комнатной температуры, мы получим в осадке уже 190 г, потому что при 20° С в 100 г воды растворяется только 10 г квасцов. Получится ли при этом один большой кристалл правильной формы массой 190 г? К сожалению, нет: даже в очень чистом растворе вряд ли начнет расти один-единственный кристалл: масса кристалликов может образоваться на поверхности остывающего раствора, где температура немного ниже, чем в объеме, а также на стенках и дне сосуда.

Метод выращивания кристаллов путем постепенного охлаждения насыщенного раствора неприменим к веществам, растворимость которых мало зависит от температуры. К таким веществам относятся, например, хлориды натрия и алюминия, ацетат кальция.

Третий способ – выращивание кристаллов из расплавленных веществ при медленном охлаждении жидкости. При использовании всех способов наилучшие результаты получаются, если используется затравка – небольшой кристалл правильной формы, который помещают в раствор или расплав. Таким способом получают, например, кристаллы рубина. Выращивание кристаллов драгоценных камней проводят очень медленно, иногда годами. Если же ускорить кристаллизацию, то вместо одного кристалла получится масса мелких.

Кристаллы могут также расти при конденсации паров – так получаются снежинки и узоры на холодном стекле. При вытеснении металлов из растворов их солей с помощью более активных металлов также образуются кристаллы. Например, если в раствор медного купороса опустить железный гвоздь, он покроется красным слоем меди. Но образовавшиеся кристаллы меди настолько мелкие, что их можно разглядеть только под микроскопом. На поверхности гвоздя медь выделяется очень быстро, поэтому и кристаллы ее слишком мелкие. Но если процесс замедлить, кристаллы получатся большими. Для этого медный купорос надо засыпать толстым слоем поваренной соли, положить на него кружок фильтровальной бумаги, а сверху – железную пластинку диаметром чуть поменьше. Осталось налить в сосуд насыщенный раствор поваренной соли. Медный купорос начнет медленно растворяться в рассоле (растворимость в нем меньше, чем в чистой воде). Ионы меди (в виде комплексных анионов CuCl4 2– зеленого цвета) будут очень медленно, в течение многих дней, диффундировать вверх; за процессом можно наблюдать по движению окрашенной границы.

Достигнув железной пластинки, ионы меди восстанавливаются до нейтральных атомов. Но так как процесс этот происходит очень медленно, атомы меди выстраиваются в красивые блестящие кристаллы металлической меди. Иногда эти кристаллы образуют разветвления – дендриты. Меняя условия опыта (температура, размер кристаллов купороса, толщина слоя соли и т.п.), можно менять условия кристаллизации меди.

Переохлажденные растворы.

Если пробирку с переохлажденным раствором тиосульфата поставить в ледяную воду, кристаллы будут расти медленнее, а сами будут крупнее. Кристаллизация пересыщенного раствора сопровождается его нагреванием – это выделяется тепловая энергия, полученная кристаллогидратом при его плавлении.

Кристаллы широко применяются в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты.

Рентгеноструктурные исследования кристаллов позволили установить строение многих молекул, в том числе и биологически активных – белков, нуклеиновых кислот.

Ограненные кристаллы драгоценных камней, в том числе выращенных искусственно, используются как украшения.

Илья Леенсон


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




МИР КРИСТАЛЛОВ


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Аннотация проекта

Введение

Окружающий нас мир состоит из кристаллов, и мы живем в мире кристаллов. Кристаллы - творение природы, завораживают и притягивают взгляд. Кристаллы повсеместно встречаются в жизни человека, и нашли широкое применение в науке, технике и промышленности. Что же такое кристаллы, какими свойствами они обладают, как растут и можно ли вырастить кристалл в домашних условиях?

Поэтому мы решили изучить эту проблему, ответить на интересующие нас вопросы и самостоятельно вырастить кристалл. Так как выращенные кристаллы сохраняют природные ископаемые и ускоряют технический прогресс, а именно современных средств связи, транспорта, компьютерной техники, медицины.

В ходе работы были поставлены следующие цели и задачи.

Цель проекта: Изучить теоретический материал о кристаллах, вырастить самостоятельно кристаллы в домашних условиях.

Задачи проекта:

- изучить литературу и другие источники информации о кристаллах;

- выяснить какие бывают кристаллы;

- вырастить кристаллы в домашних условиях;

- создать презентацию по теме проекта.

Методы проекта:

- изучение литературы, поиск в Интернете, использование инструкции;

- анализ и обобщение результатов;

Теоретическая часть

Кристаллы и их свойства

Твердые тела сохраняют не только свой объем, но и форму и находятся в кристаллическом состоянии.

Кристаллы (от греч. krýstallos, первоначально — лёд, в дальнейшем — горный хрусталь, кристалл). В древности люди думали, что кристаллы горного хрусталя и кристаллы льда это одно и то же, только лёд замерзает мгновенно, а горный хрусталь при сильном морозе. И лёд становится хрусталём через тысячу лет, а хрусталь становится алмазом через тысячу веков. Поэтому кристаллы наделялись множеством таинственных свойств: исцелять болезни, влиять на судьбу человека. Представления о кристаллах, их строении и свойствах развивались на протяжении нескольких веков. Точкой отсчета истории кристаллов может быть известие о существовании изумрудов в Индии за 2 тыс. лет до н. э., алмазов за 1000-500 лет до н. э., рубинов Цейлона за 600 лет до н. э.

Кристаллы - это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Они образуют кристаллическую решетку. Поэтому кристаллы имеют плоские грани.

Изучением кристаллов занимается специальная наука - кристаллография; ее изучают в институтах и университетах, когда уже знают и химию, и физику и некоторые другие науки.

Монокристаллы и поликристаллы

Кристаллические тела могут быть монокристаллами и поликристаллами. Монокристаллом называют одиночный кристалл. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза.

Большинство встречающихся в природе и получаемых в технике твердых тел представляют собой совокупность сросшихся друг с другом маленьких кристаллов, такие тела называют поликристаллами. Примерами поликристаллов являются: каменная соль, кварц, сахар, лед.

Природные и искусственные кристаллы

В природе кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава является образование льда из воды. Примером образования кристаллов из растворов, могут служить сотни миллионов тонн соли, выпавшей из морской воды.

Примером образования кристаллов из пара и газа являются снежинки, иней.

Кристаллы, которые залегают глубоко в земле, являются бесконечно разнообразными. Размеры таких природных многогранников достигают иногда человеческого роста. Встречаются также очень тонкие кристаллы, толщина которых меньше чем у листка бумаги. Но бывают и огромные пласты, толщина которых достигает нескольких метров.

Интересные факты о кристаллах

В древности кристаллам приписывали всякие магические свойства. Считали, например, что изумруд спасает мореплавателей от бурь. Кристалл аметиста навевает счастливые сны. Алмаз бережёт от болезней. Сапфир помогает при укусах скорпионов. Топаз приносит счастье в ноябре. Гранат - в январе и т.д.

- кристаллы воспроизводят сами себя и таким образом растут;

- самые большие кристаллы, длиной 15м были обнаружены в 2000 году в Пещере кристаллов в шахтовом комплексе Найка, в мексиканском штате Чиуауа.

- есть и представители самых больших и крошечных кристаллов. Хранятся они в Австрии в музее "Хрустальные миры". Самый крупный весит более 62 кг. Все они принадлежат к самой знаменитой компании "Сваровски" и занесены в книгу рекордов Гиннеса;

- вода является основным "ингредиентом" для образования кристалла;

- кристаллы могут образовывать самые различные формы.

Применение кристаллов

Многие из самых обычных веществ вокруг нас, представляют из себя кристаллы. Мы встречаемся с ними повсюду и даже не подозреваем об этом.

Лед-это кристалл. На кухне - едим кристаллы, например, соль или сахар.

Наши дома из кристаллов – панели многих многоэтажек сделаны из бетона (искусственного камня) в состав которого входит щебень из кристаллического сланца.

В медицине используют кристаллы – лучи от кварцевой лампы используются в медицине для дезинфекции.

Кристаллы являются продуктами жизнедеятельности организмов. Некоторые виды моллюсков обладают способностью наращивать на инородных телах, попавших в раковину, перламутр. За 5-10 лет появляется драгоценный камень жемчуг, имеющий кристаллическое строение.

В морях и океанах рифы и целые острова сложены из кристалликов углекислого кальция, входящих в состав скелета беспозвоночных животных – коралловых полипов.

Кристаллы играют важную роль в жизни человека:

Земная кора на 95% состоит из кристаллов. Кристаллы используют в промышленности, технике, производстве, медицине. Кристаллы используют для изготовления украшений и ювелирных изделий.

Применение кристаллов в науке и технике очень разнообразно.

Самый твердый и редкий минерал – алмаз. Используется как украшение. Так же из-за его исключительной твердости многие режущие инструменты покрывают смесью алмазного порошка и клейкого вещества. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы.

Рубин и сапфир относятся к самым красивым и дорогим из драгоценных камней. Но у них есть и другие применения. Все часы работают на искусственных рубинах. Рубины используют в лазерах, так как его кристалл усиливает свет. Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Кристаллы используются в устройствах для записи и воспроизведения звука. Кристаллы кремния и германия входят в состав полупроводниковых диодов, которые есть в каждом компьютере и мобильном телефоне.

Материал поляроид – тонкая прозрачная пленка, заполненная крохотными игольчатыми кристаллами. Поляроидные пленки используют в поляроидных очках, так как они гасят блики отраженного света. Это важно для полярников, которым приходится смотреть на ослепительный снег, а так же для водителей автотранспорта.

Практическая часть

Искусственные кристаллы люди научились выращивать не только в лабораториях, но даже в домашних условиях. Самые популярные вещества, из которых выращивают кристаллы дома – это поваренная соль, железный купорос и медный купорос.

Выращивание кристаллов медного купороса

Нальём в сосуд 200 мл горячей воды. Насыпаем медный купорос и тщательно размешаем. Сделаем раствор пересыщенным, а затем профильтруем его. Разделили раствор на две части, в один опускаем нитку, чтобы она не касалась стенок и дна банки. Далее поставим сосуд с ниткой остывать, и уже через несколько часов появятся наросшие на нитку кристаллики. Во второй сосуд добавили несколько кристаллов медного купороса и на следующий день из раствора выбрали два наиболее крупных сформированных кристалла. Кристаллы привязали на леску и опустили во второй сосуд. Пару дней они подрастали. Потом мы достали из раствора нитку и леску и подогрели раствор. Уже через пару дней заметили значительный для кристаллика рост. С каждым днём он увеличивался.

Условия для выращивания кристаллов:

1. Воду нужно взять дистиллированную, т. е. не содержащую других растворённых в ней солей.

2. Кристаллик нельзя при росте без особой причины вынимать из раствора.

3. Не допускать попадание мусора в насыщенный раствор.

4. Отсутствие сквозняков.

6. Периодически (раз в неделю) менять или обновлять насыщенный раствор.

При выращивании кристаллов замечены следующие особенности:

1. Верхняя грань кристалла вырастает меньше нижней. Это можно объяснить тем, что насыщенный раствор (более тяжелый) опускается в низ, а менее насыщенный после выпадения из него вещества на кристалл поднимается вверх.

Вывод: для получения правильного по форме кристалла необходимо постоянное перемешивание раствора.

2. Колебания температуры раствора сильно сказываются на процессе роста кристалла. При увеличении температуры раствора кристалл начинает растворяться.

Вывод: у медного купороса прямая зависимость растворимости от температуры (при более высокой температуре растворимость больше).

Работая над проектом, я:

Изучила литератору о кристаллах.

Выяснила, что кристалл – это твердое состояние вещества, имеет определенную форму, цвет и определенное количество граней.

Познакомилась с разнообразием и применением кристаллов.

Освоила способы выращивания кристаллов, наблюдала за ростом кристаллов.

Для выращивания кристаллов использовала: медный купорос. И пришла к выводу, что для роста кристалла необходимо, чтобы с поверхности кристалла шло испарение жидкости, а скорость роста зависит от температуры.

Для положительного результата необходимо соблюдать точные инструкции и правила безопасности.

В ходе работы над проектом я нашла ответы на поставленные вопросы, сумела вырастить кристаллы, рассказала о своей работе одноклассникам. Некоторые заинтересовались данной темой. Я считаю, что цель и задачи, поставленные в начале работы, достигнуты. Гипотеза исследования полностью подтвердилась: кристаллы можно вырастить в домашних условиях.

Приобретенные знания, умения и навыки обязательно пригодятся мне в дальнейшей учёбе, но в ходе работы возникли новые вопросы. Поэтому я планирую продолжить работу над этим проектом.

Кристаллы

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Этимология

Горный хрусталь

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната - ромб и додекаэдр

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Сравнение структур монокристаллов и поликристаллов

Сравнение структур монокристаллов и поликристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Сульфат алюминия-калия монокристалл

Сульфат алюминия-калия монокристалл

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Поликристалл висмута

Возможные способы роста и образования

  1. Кристаллизация путем возгонки. Подобный метод кристаллизации подразумевает переход вещества из газообразного состояния к твердому, минуя жидкую фазу. Подобный процесс в природе имеет место в вулканических трещинах или кратерах, когда вещество быстро остывает. Однако простейший пример – образование зимой снежинок из воды.

Кристалл воды - снежинка

Кристалл воды — снежинка

  1. Первый – переход вещества из аморфного твердого тела в кристаллическое. Так, например, происходит кристаллизация стекла, в том числе кристаллизация вулканических пород, содержащих стекло.
  2. Второй – перекристаллизация вещества с разрушением старой структуры и образованием новой. Большинство горных пород образуются именно таким способом. Известные примеры перекристаллизации: переход известняка в мрамор, кварцевых песчаников в кварциты или глинистых пород в филлиты.

Монокристалл рубина (корунд)

Монокристалл рубина (корунд)

Другие факты

  • Имеет место такое явление как прорастание кристаллов. Это означает процесс, когда индивиды взаимно пересекаются и прорастают друг друга.
  • Существуют так называемые ионные кристаллы, которые состоят в основном из ионов, связь которых образуется за счет электростатического притяжения. К таким телам относят фторид калия и натрия, хлорид и бромид калия и др.
  • Существует 47 простых форм, из которых может состоять кристалл. Среди них: призма, пирамида, тетраедр, трапецоедр, ромбоедр и т.п.

Формы кристаллов


У этого термина существуют и другие значения, см. греч. κρύσταλλος , первоначально — лёд, в дальнейшем — горный хрусталь, кристалл) — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.

Кристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

Содержание

Кристаллическая структура

Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ — кварц, Виды кристаллов

Следует разделить, идеальный и реальный кристалл

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс эффектов памяти формы и Физические науки, изучающие кристаллы

Читайте также: