Сообщение на тему использование ядерной энергии

Обновлено: 05.07.2024

ядерная энергия может использоваться по-разному: производить тепло, электроэнергию, сохранять пищу, находить новые ресурсы или использоваться в качестве медицинского лечения.

Эта энергия получается из реакции, которая происходит в ядре атомов, минимальные единицы вещества химических элементов вселенной.


Эти атомы могут иметь разные формы, называемые изотопами. Они стабильны и нестабильны, в зависимости от изменений, которые они испытывают в ядре.

Именно нестабильность содержания нейтронов или атомной массы делает их радиоактивными. Именно радиоизотопы или нестабильные атомы производят ядерную энергию.

Радиоактивность, которую они испускают, может быть использована, например, в области медицины с радиотерапией. Один из методов, используемых в лечении рака, среди других применений.

Далее я принесу вам 10 видов использования ядерной энергии. Также можно увидеть 14 преимуществ и недостатков использования атомной энергии..

Список 10 примеров ядерной энергии

1- Производство электроэнергии


Ядерная энергия используется для производства электроэнергии более экономично и устойчиво, при условии, что она используется с пользой.

Электричество является фундаментальным ресурсом для современного общества, поэтому снижение затрат, которое происходит с ядерной энергией, может способствовать доступу большего количества людей к электрическим носителям..

Согласно данным Международного агентства по атомной энергии (МАГАТЭ) за 2015 год, в Северной Америке и Южной Азии лидирует мировое производство электроэнергии с помощью ядерной энергии. Оба превышают 2000 тераватт в час (ТВтч).

2- Улучшение урожая и увеличение мировых ресурсов

Хорошее использование ядерной энергии может способствовать решению этой проблемы, генерируя больше ресурсов. Фактически, ФАО разрабатывает совместные программы с МАГАТЭ для этой цели..

По данным Всемирной ядерной ассоциации, атомная энергия способствует увеличению продовольственных ресурсов за счет удобрений и генетических изменений в пищевых продуктах..

Использование ядерной энергии позволяет более эффективно использовать удобрения, довольно дорогое вещество. С некоторыми изотопами, такими как азот-15 или фосфор-32, растения могут использовать максимально возможное количество удобрений, не теряя их в окружающей среде..

С другой стороны, трансгенные продукты позволяют увеличить производство продуктов питания за счет изменения или обмена генетической информацией. Один из способов получить эти мутации через ионное излучение.

Однако есть много организаций, которые выступают против этого вида практики за их вред для здоровья и окружающей среды. Это случай Гринпис, который выступает за органическое сельское хозяйство.

3- Борьба с вредителями

Ядерная энергия позволяет разработать технику стерилизации насекомых, которая служит для предотвращения вредителей в посевах..

Это техника стерильных насекомых (SIT). Согласно отчету ФАО за 1998 год, это был первый метод борьбы с вредителями, в котором использовалась генетика..

Этот метод заключается в разведении насекомых определенного вида, которые обычно вредны для сельскохозяйственных культур, в контролируемом пространстве.

Самцов стерилизуют небольшим молекулярным излучением и оставляют в пораженной области для спаривания с самками. Чем больше бесплодных самцов насекомых разводят в неволе, тем меньше будет диких и плодовитых насекомых..

Таким образом, избежать экономических потерь в области сельского хозяйства. Эти программы стерилизации использовались в разных странах. Например, Мексика, где, по данным Всемирной ядерной ассоциации, имела успех.

4- Сохранение продуктов питания


Борьба с вредителями от радиации с помощью ядерной энергии, позволяет лучше сохранить пищу.

Методы облучения позволяют избежать массовых потерь пищи, особенно в тех странах, где жаркий и влажный климат.

Кроме того, атомная энергия используется для стерилизации бактерий, присутствующих в таких продуктах, как молоко, мясо или овощи. Это также способ продлить жизнь скоропортящихся продуктов, таких как клубника или рыба.

По мнению защитников ядерной энергии, эта практика не влияет на питательные вещества продуктов и не оказывает вредного воздействия на здоровье.

Они не думают так же, как большинство экологических организаций, которые продолжают защищать традиционный метод сбора урожая..

5- Увеличение ресурсов питьевой воды

Ядерные реакторы производят тепло, которое можно использовать для опреснения воды. Этот аспект особенно полезен для тех засушливых стран, где не хватает ресурсов питьевой воды..

Этот метод облучения позволяет превратить соленую морскую воду в чистую воду, пригодную для питья..

Кроме того, по данным Всемирной ядерной ассоциации, гидрологические методы с использованием изотопов позволяют более точно отслеживать природные водные ресурсы..

МАГАТЭ разработало совместные программы с такими странами, как Афганистан, для поиска новых водных ресурсов в этой стране..

6- Использование ядерной энергии в медицине


Одним из выгодных видов использования радиоактивности ядерной энергией является создание новых методов лечения и технологий в области медицины. Это то, что известно как ядерная медицина.

Эта отрасль медицины позволяет профессионалам быстрее и точнее ставить диагнозы своим пациентам, а также лечить их..

По данным Всемирной ядерной ассоциации, десять миллионов пациентов в мире ежегодно получают ядерную медицину, и более 10 000 больниц используют радиоактивные изотопы при лечении..

Атомная энергия в медицине может быть найдена в рентгеновских лучах или в лечении, столь же важном как радиотерапия, широко используемая в раке.

Это лечение имеет недостаток; Это может вызвать побочные эффекты в здоровых клетках организма, повредить их или вызвать изменения, которые обычно восстанавливаются после излечения..

7- Промышленное применение

Радиоизотопы, присутствующие в ядерной энергии, позволяют лучше контролировать выбросы в окружающую среду..

С другой стороны, атомная энергия довольно эффективна, не оставляет отходов и намного дешевле, чем другие виды промышленного производства..

Инструменты, используемые на атомных станциях, приносят гораздо большую выгоду, чем они стоят. Через несколько месяцев они экономят деньги, которые стоят в начальный момент, до того, как они амортизируются..

С другой стороны, меры, используемые для калибровки количества радиации, также обычно содержат радиоактивные вещества, обычно гамма-лучи. Эти приборы избегают прямого контакта с измеряемым источником.

Этот метод особенно полезен при работе с веществами, которые могут быть чрезвычайно едкими для человека.

Атомные электростанции производят чистую энергию. По данным Национального географического общества, их можно строить в сельских или городских районах, не оказывая серьезного воздействия на окружающую среду..

Хотя, как мы видели, в недавних событиях, таких как Фукусима, отсутствие контроля или авария могут иметь катастрофические последствия для больших гектаров территории и для населения поколений лет и лет.

Если сравнивать его с энергией, производимой углем, то верно, что он выбрасывает меньше газов в атмосферу, избегая парникового эффекта.

9- Космические миссии

Ядерная энергия также использовалась для экспедиций в космосе.

Системы ядерного деления или радиоактивного распада используются для выработки тепла или электричества с помощью радиоизотопных термоэлектрических генераторов, которые обычно используются для космических зондов.

Последним пространственным экспериментом, который был проведен с помощью этого метода, был запуск корабля Curiosity в рамках исследований, проводимых вокруг планеты Марс..

По данным Всемирной ядерной ассоциации, последняя намного больше предыдущих и способна производить больше электроэнергии, чем солнечные панели..

10- Ядерное оружие


Военная индустрия всегда была одной из первых, которая обновлялась в области новых технологий и технологий. В случае ядерной энергии, это не будет меньше.

Существует два типа ядерного оружия: те, которые используют этот источник в качестве движителя для производства тепла, электричества в различных устройствах или те, которые непосредственно ищут взрыв.

В этом смысле можно различать транспортные средства, такие как военный самолет или хорошо известная атомная бомба, которая генерирует устойчивую цепь ядерных реакций..

Последние могут быть изготовлены из разных материалов, таких как уран, плутоний, водород или нейтроны.

По данным МАГАТЭ, Соединенные Штаты были первой страной, которая создала ядерную бомбу, поэтому она была одной из первых, кто осознал преимущества и опасности этой энергии..

С тех пор эта страна как великая мировая держава установила мирную политику в использовании ядерной энергии.

Программа сотрудничества с другими государствами, которая началась с выступления президента Эйзенхауэра в 1950-х годах перед Организацией Объединенных Наций и Международным агентством по атомной энергии.

Негативные эффекты ядерной энергии

Некоторые из опасностей использования атомной энергии следующие:

1- Разрушительные последствия ядерных аварий

Один из самых больших рисков для ядерной или атомной энергии - аварии, которые могут произойти в реакторах в любое время..

Как уже было продемонстрировано в Чернобыле или на Фукусиме, эти катастрофы оказывают разрушительное воздействие на жизнь с высоким уровнем загрязнения радиоактивными веществами в растениях, животных и в воздухе..

Чрезмерное воздействие радиации может привести к таким заболеваниям, как рак, а также к порокам развития и непоправимому ущербу в будущих поколениях.

2- Вредные эффекты трансгенных продуктов

Среди других классификаторов они утверждают, что этот метод является очень разрушительным из-за большого количества воды и масла, которые потребляют.

Это также имеет экономические последствия, такие как тот факт, что эти методы могут заплатить только за них и получить доступ к нескольким, разрушая мелких фермеров.

3- Ограничение производства урана

Как нефть и другие источники энергии, используемые людьми, уран, один из наиболее распространенных ядерных элементов, конечно. То есть он может быть исчерпан в любое время.

Вот почему многие защищают использование возобновляемых источников энергии вместо ядерной энергии.

4- Требуются большие установки

Производство с использованием ядерной энергии может быть дешевле, чем другие виды энергии, но стоимость строительства заводов и реакторов высока.

Кроме того, мы должны быть очень осторожны с этим типом конструкции и с персоналом, который будет работать на них, потому что он должен быть высококвалифицированным, чтобы избежать любой возможной аварии.

Крупнейшие ядерные аварии в истории

Атомная бомба

На протяжении всей истории было множество атомных бомб. Первый состоялся в 1945 году в Нью-Мексико, но два самых важных, без сомнения, были те, которые взорвались в Хиросиме и Нагасаки во время Второй мировой войны. Их звали Маленький Человек и Толстяк соответственно.

Чернобыльская авария

Он произошел на АЭС в городе Припять, Украина, 26 апреля 1986 года. Он считается одной из самых серьезных экологических катастроф рядом с аварией на Фукусиме..

Помимо произошедших смертей, почти все работники завода, были тысячи людей, которые должны были быть эвакуированы и которые никогда не могли вернуться в свои дома.

Сегодня город Припять по-прежнему является городом-призраком, который подвергался разграблению и который стал туристической достопримечательностью для самых любопытных.

Авария на Фукусиме

Это произошло 11 марта 2011 года. Это вторая самая серьезная ядерная авария после Чернобыля..

Это произошло в результате цунами в восточной Японии, которое взорвало здания, где находились ядерные реакторы, выпустив большое количество радиации наружу.

Тысячи людей пришлось эвакуировать, а город понес серьезные экономические потери.


Ядерную энергию использует отрасль, называемая ядерной энергетикой.Эта область науки и техники разрабатывает методы и средства преобразования ядерной энергии в электрическую и тепловую.Основой ядерной энергетики являются атомные электростанции.Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях,была пущена в СССР в 1954 в Обнинске.Пуск первой АЭС ознаменовал открытие нового направления в энергетике,получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии.К началу 90-х гг. в 27 странах мира работало св. 430 ядерных энергетических реакторов общей мощностью 340 ГВт.

На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления.

Огромным преимуществом АЭС является её относительная экологическая чистота.На ТЭС суммарные годовые выбросы вредных веществ,в которые входят сернистый газ,оксиды азота,оксиды углерода,углеводороды,альдегиды и золовая пыль,на 1000 Мвт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС.Подобные выбросы на АЭС полностью отсутствуют.ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода для окисления топлива, АЭС же не потребляют кислорода вообще.Главный недостаток АЭС - тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием,обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура реактора).

Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса,по оценкам она может составить до 20% от стоимости их строительства.

Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки,атомные авианосцы).

К сожалению,ядерная энергия используется не только в мирных целях.Она используется в ядерном оружии. Ядерное оружие-совокупность ядерных боеприпасов,средств их доставки к цели и средств управления.Оно относится к оружию массового поражения;обладает громадной разрушительной силой.По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое.Применение ядерного оружия в войне гибельно для всего человечества.

Ядерные боеприпасы могут быть разделены на две категории:

В основу ядерного оружия положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза.Для осуществления цепной реакции деления используются либо уран-235, либо плутоний-239, либо,в отдельных случаях,уран-233.

Люди,непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений.Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Многие ядерные технологии непосредственно помогают избегать экологического ущерба и более эффективно использовать природные ресурсы.Мы должны предпринимать больше усилий для демистификации атомной энергии в общественном мнении и объяснить, что мы можем использовать и на самом деле используем на благо людей.


Развитие человеческой цивилизации требует все большей и большей энергии, и поиск ее источников становится все актуальнее. Перспективным направлением исследований по этой теме является атомная энергетика, краткая характеристика которой представлена в данной статье.

Применение атомной энергии

Суть работы всех современных электростанций (исключение – солнечные) – это преобразование механической энергии вращения вала генератора в электрическую. Энергия же вращения производится по-разному. В гидроэлектростанциях это вращение лопаток гидротурбины, а в ветроэнергетике – вращение лопастей ветрового колеса. Но чаще всего, генераторы вращаются паровыми турбинами, пар для которых производится в паровых котлах.

Тепло для котлов с начала XXв производилось сжиганием угля или мазута. Добыча этих ископаемых становилась все дороже, а требовалось их все больше. В середине XXв появилась новая возможность получения тепла в гораздо больших объемах с меньшими затратами – использование энергии распада тяжелых элементов. В атомном реакторе происходит управляемая ядерная реакция распада ядер урана с выделением большого количества тепла, которое и служит для выработки электроэнергии.

Схема атомной электростанции

Рис. 1. Схема атомной электростанции.

АЭС в Обнинске

Рис. 2. АЭС в Обнинске.

Но разработка реакторов на быстрых нейтронах имеет ряд трудно разрешимых проблем конструктивного и экономического плана, поэтому в настоящее время в мире работает лишь два таких реактора на Белоярской АЭС, остальные страны остановили или заморозили разработки.

Плюсы и минусы атомной энергетики

Рассмотрим плюсы и минусы атомной энергетики.

Работа АЭС имеет огромные возможности для обеспечения человечества энергетическими ресурсами. При работе нет потребления сырья, не требуется работа добывающей промышленности. Не используется кислород воздуха, не выделяются в окружающее пространство вредные и опасные вещества.

Однако после исчерпания (которое обычно происходит в течении 20-30 лет) отработанное атомное топливо нуждается в утилизации и захоронении. Также утилизации подлежат и все конструкции отработавшего реактора, которые много лет подвергались действию радиации. Уменьшение радиоактивного фона происходит медленно, и места захоронений долгое время будут непригодны для жизни.

Еще большую опасность представляют аварии с выбросом радиоактивного вещества в окружающее пространство. События, произошедшие в Чернобыле в 1986 г, на Фукусиме в 2011 г привели к радиоактивному загрязнению обширных областей.

Опасности ядерной энергетики

Рис. 3. Опасности ядерной энергетики.

Поэтому, хотя развитию ядерной энергетики альтернативы нет, необходимо помнить, что, как и любое изобретение человечества, она несет в себе не только выгоды, но и угрозы, и принимать меры для их исключения.

Что мы узнали?

Первая атомная АЭС была построена в 1954г в Обнинске. Атомная энергия позволяет иметь доступ к большим энергетическим ресурсам, являясь экологически более чистой, чем обычные тепловые электростанции. Однако, ядерное топливо представляет собой большую угрозу в случае аварий, а кроме того, после отработки требует утилизации и захоронения.

1. Развитие технологии водо-водяных реакторов

Реактор ВВЭР на АЭС Куданкулам в Индии, построенной Росатомом.

Спектральное регулирование — это управление свойствами реактора за счет изменения соотношения воды и урана в активной зоне. В начале топливного цикла, когда в активную зону загружают свежее топливо, в реактор помещают специальные устройства (вытеснители), уменьшающие долю воды в активной зоне. В присутствии вытеснителя скорость нейтронов становится выше, а быстрые нейтроны позволяют нарабатывать новый делящийся материал — новое топливо. Ближе к концу топливного цикла, по мере выгорания ядерного топлива, вытеснители выводятся из активной зоны, и реактор работает как обычный ВВЭР.

2. Толерантное топливо

Современная концепция безопасности ядерных реакторов включает много уровней защиты на случай возможных отклонений в режимах работы и серьезных аварийных ситуаций — гермооболочку, аварийные системы подачи охладителя, пассивные системы отвода тепла, ловушку расплава на случай расплавления активной зоны и корпуса реактора и многое другое. Но безопасности много не бывает, особенно когда дело касается атомного реактора. Новое слово в обеспечении безопасности — устойчивое к авариям, или толерантное, топливо.

Толерантное — значит, такое, которое не разрушится и не вступит в реакцию с теплоносителем даже при аварии, если отвод тепла из активной зоны реактора будет нарушен. Сам по себе уран с водой не взаимодействует даже при температуре 2500 °C, до которой топливо может разогреться в случае аварийной потери охлаждения. Зато циркониевая оболочка топливных стержней может вступить в реакцию с водой уже при 800 °C. Это очень опасно, ведь в пароциркониевой реакции выделяется много водорода и тепла. Все вместе это может привести к взрыву или разрушить оболочки тепловыделяющих элементов.

Линия производства тепловыделяющих элементов. ПАО

3. Замкнутый ядерный топливный цикл

Одна из главных проблем мирного атома — это проблема радиоактивных отходов. Вынимая из земли слаборадиоактивную урановую руду, мы выделяем из нее уран, обогащаем его и используем в ядерных реакторах, на выходе получая опасную субстанцию. Некоторые из составляющих ее изотопов будут радиоактивны еще много тысяч лет. Ни одно сооружение не может гарантировать безопасность хранения отработавшего топлива на такой долгий срок. Но отработавшее ядерное топливо можно перерабатывать: дожигать самые долгоживущие нуклиды и выделять те, что можно использовать в топливном цикле снова.

Для того чтобы делать это, нужны реакторы двух типов: на тепловых нейтронах и на быстрых. На тепловых, или медленных, нейтронах работает большинство современных ядерных реакторов; теплоносителем в них является вода, она же и замедляет нейтроны (в реакторах некоторых типов замедлителями работают и другие вещества — например, графит в РБМК). Вода омывает топливные стержни; нейтроны, замедленные водой, взаимодействуют преимущественно с одним изотопом урана — редким в природе ураном-235 — и заставляют его делиться, выделяя тепло: оно-то и нужно для выработки электроэнергии. После того как тепловыделяющие сборки полностью отработают положенный срок в активной зоне реактора, отработавшее ядерное топливо (ОЯТ), накопившее в себе осколки деления, выгружается из реактора и заменяется свежим.

В реакторах на быстрых нейтронах в качестве теплоносителя используются вещества, которые гораздо меньше замедляют нейтроны — жидкий натрий, свинец, сплавы свинец-висмут и некоторые другие. Быстрые нейтроны взаимодействуют не только с ураном-235, но и с ураном-238, которого в природном уране гораздо больше, чем урана-235. Захватывая нейтрон, ядро урана-238 превращается в делящийся изотоп плутония, который подходит в качестве топлива и для тепловых, и для быстрых реакторов. Поэтому быстрые реакторы дают и тепло, и новое топливо. Кроме того, в них можно дожигать особо долгоживущие изотопы, которые вносят наибольший вклад в радиоактивность ОЯТ. После дожигания они превращаются в менее опасные, более короткоживущие изотопы.

Белоярская АЭС

Чтобы полностью избавиться от долгоживущих радиоактивных отходов, нужно иметь и быстрые, и тепловые реакторы в одном энергетическом комплексе. Кроме того, нужно уметь перерабатывать топливо, извлекая из него ценные компоненты и используя их для производства нового топлива. Сегодня Россия — единственная страна, в которой работают сразу два промышленных реактора на быстрых нейтронах — это реакторы БН-600 и БН-800 на Белоярской АЭС.

4. Новые материалы

Некоторые материалы в России делать еще недавно почти не умели: сверхпроводящие материалы, например, выпускались только небольшими партиями на заводах экспериментальной техники. Ситуацию изменило участие России в строительстве термоядерного реактора ITER: сейчас в нашей стране ежегодно производится несколько сотен тонн сверхпроводников. Часть отправляется на строительство ITER и других больших научных машин. Возможно, именно российские сверхпроводники будут использованы при строительстве в CERN нового коллайдера FCC. Другая часть останется в России — пойдет на сверхпроводящие трансформаторы, накопители и другие высокотехнологичные приборы.

5. Переработка ОЯТ

Атомная энергетика может стать по‑настоящему зеленой только тогда, когда перестанет генерировать опасные отходы — особенно те, снижение радиоактивности которых занимает тысячи лет. Для этого нужно научиться повторно использовать отработавшее ядерное топливо и избавляться от самых долгоживущих изотопов, которые неизбежно накапливаются в топливе в процессе работы ядерного реактора. Технологии, позволяющие это делать, уже существуют, но еще не внедрены повсеместно.

Операция по вывозу с Камчатки реакторных блоков атомных подводных лодовк в рамках ликвидации ядерного наследия.

6. Водородная энергетика

Переход на водородную энергетику сегодня считается одним из самых разумных способов очистить воздух Земли. Ведь при сжигании водорода в чистом кислороде образуются только высокотемпературное тепло и вода — и никаких вредных выхлопов. Но на пути к водородному транспорту и полномасштабному использованию водорода в других отраслях существует несколько препятствий, одно из которых — маленькие объемы производства водорода. В мире производится всего около 80 миллионов тонн этого газа; эти объемы покрывают только современную промышленную потребность в водороде. Для создания водородной энергетики этого газа понадобится намного больше.

7. Ядерная медицина

Ядерная физика подарила нам химические элементы, которых в природе не бывает, и в том числе тяжелые элементы, массой превосходящие уран. Некоторые изотопы этих элементов нашли применение в ядерной медицине: их используют как источники нейтронов для облучения опухолей и для диагностики заболеваний. Такие элементы невероятно сложны в получении, а потому дороги и редки. Один из самых редких изотопов, калифорний-252, например, нарабатывают всего в двух местах — Национальной лаборатории в Окридже (США) и НИИ атомных реакторов в Димитровграде.

Фабрика сверхтяжелых элементов. ОИЯИ, Дубна, Московская область.

8. Будущее энергетики — термояд

Энергия, заключенная в атомном ядре, выделяется не только в процессе деления тяжелых ядер вроде урана и плутония. Ее дает и слияние легких ядер водорода, которых на Земле гораздо больше, чем урана. Эта реакция называется термоядерной. Современная атомная энергетика использует только делящиеся ядра, получая их из урановой руды. Второй путь — использование энергии термоядерного синтеза — пока еще не освоен.

Крупнейший экспериментальный термоядерный реактор ITER строится рядом с исследовательским центром Кадараш на юге Франции. Его цель — продемонстрировать возможность использования термоядерной реакции для выработки электроэнергии. Россия — один из главных участников проекта ITER. Но в России строятся и собственные термоядерные установки.

Термоядерный реактор ITER.

9. Лазеры для космоса, промышленности и медицины

10. Компактные реакторы малой мощности

Сегодня атомная станция — это целый городок: энергоблоки, турбины, генераторы, конденсаторы, градирни, технические сооружения. Но все чаще звучат разговоры о том, что будущее атомной энергии будет связано совсем с другими — компактными — атомными станциями малой мощности, которые будут снабжать электроэнергией и теплом не целые регионы, а отдельные города, поселки, предприятия.

ПАТЭС “Академик Ломоносов” – первая в мире плавучая атомная теплоэлектростанция.

Планов по использованию компактных ядерных реакторов у атомщиков много: например, в качестве источников энергии для удаленных районов и для океанских добывающих платформ. Кроме того, ими можно замещать выходящие из эксплуатации электростанции, прежде всего, мазутные и угольные. Проекты атомных станций малой мощности, как правило, предусматривают полную автономность реакторов и длительный топливный цикл; обслуживать компактные реакторы не нужно, достаточно установить и запустить, а в конце срока службы извлечь топливо и переработать его.

Российский мирный атом сегодня — одна из самых наукоемких и высокотехнологичных отраслей промышленности, большая и важная часть несырьевого экспорта страны. По многим магистральным ядерным направлениям российская атомная отрасль по‑прежнему опережает весь мир — например, в технологиях промышленных реакторов на быстрых нейтронах, замыкания ядерного топливного цикла, производстве атомных станций малой мощности. Сейчас российские атомщики закладывают основу для технологий будущего — в энергетике, медицине, промышленности, материаловедении и, конечно, в фундаментальной науке.

Читайте также: