Сообщение на тему физическая природа звезд

Обновлено: 07.07.2024

Содержание работы
Файлы: 1 файл

реферат ПО КСЕ.docx

Федеральное агенство по образованию

Государственное образовательное учреждение высшего профессионального образования

РЕФЕРАТ ПО КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Тема: Физическая природа звезд

Выполнила: Рапохина Т. И.

Проверила: Баркова В.В.

Глава 1. Что такое звезда………………………………………………………4

Глава 2. Физическая природа звезд…………………………………………..24

2.3 Спектры и химический состав звезд…………………………….…… ……27

2.4 Средние плотности звезд………………………………………………….28

. Ничего нет более простого, чем звезда.

Испокон веков Человек старался дать название предметам и явлениям, которые его окружали. Это относится и к небесным телам. Сначала названия получили самые яркие, хорошо видимые звёзды, с течением времени – и другие.

Звезды очень интересны для меня, поэтому я решила написать реферат именно на эту тему.

Звезды — это далекие солнца, по этому, изучая природу звезд, мы будем сравнивать их физические характеристики с физическими характеристиками Солнца.

Глава 1. ЧТО ТАКОЕ ЗВЕЗДА

1.1 СУЩНОСТЬ ЗВЕЗД

При внимательном разглядывании звезда представляется светящейся точкой, иногда с расходящимися лучами. Явление лучей связано с особенностью зрения и не имеет отношения к физической природе звезды.

Любая звезда - это удаленное от нас солнце. Ближайшая из звезд - Проксима - находится в 270000 раз дальше от нас, чем Солнце. Самая яркая звезда неба Сириус в созвездии Большой Пёс, расположенная на расстоянии 8x1013км, имеет примерно такую же яркость, как и 100-ваттная электрическая лампочка на расстоянии 8 км (если не учитывать ослабление света в атмосфере). Но для того, чтобы лампочка была видна под таким же углом, под которым виден диск далёкого Сириуса, ее диаметр должен быть равен 1 мм!

При хорошей видимости и нормальном зрении над горизонтом одновременно можно увидеть около 2500 звёзд. Имеют собственные имена 275 звезд, например, Алголь, Альдебаран, Антарес, Альтаир, Арктур, Бетельгейзе, Вега, Гемма, Дубхе, Канопус (вторая по яркости звезда), Капелла, Мицар, Полярная (путеводная звезда), Регул, Ригель, Сириус, Спика, Сердце Карла, Тайгета, Фомальгаут, Шеат, Этамин, Электра и др.

Вопрос, сколько звезд в данном созвездии, лишен смысла, так как ему недостает конкретности. Для ответа необходимо знать остроту зрения наблюдателя, время, когда ведутся наблюдения (от этого зависит яркость неба), высоту созвездия (у горизонта трудно обнаружить слабую звезду из-за атмосферного ослабления света), место наблюдения (в горах атмосфера чище, прозрачнее - поэтому видно больше звезд) и т.д. В среднем на одно созвездие приходится примерно 60 звезд, наблюдаемых невооруженным глазом (у Млечного Пути и в больших созвездиях - больше всего). Например, в созвездии Лебедь можно насчитать до 150 звёзд (область Млечного Пути); а в созвездии Лев - только 70. В небольшом созвездии Треугольник видно всего 15 звезд.

Если же учитывать звезды до 100 раз более слабые, чем самые слабые звезды, ещё различимые зорким наблюдателем, то в среднем на одно созвездие будет приходится около 10000 звезд.

Звезды различаются не только по их яркости, но и по цвету. Например, Альдебаран (созвездие Телец), Антарес (Скорпион), Бетельгейзе (Орион) и Арктур (Волопас) - красные, а Вега (Лира), Регул (Лев), Спика (Дева) и Сириус (Большой Пёс) - белые и голубоватые.

Звезды мерцают. Это явление хорошо заметно у горизонта. Причина мерцания - оптическая неоднородность атмосферы. Прежде, чем попасть в глаз наблюдателя, свет звезды пересекает в атмосфере множество мелких неоднородностей. По своим оптическим свойствам они похожи на линзы, концентрирующие или рассеивающие свет. Непрерывное перемещение таких линз и является причиной мерцания.

Причину изменения цвета при мерцании поясняет рис.6, из которого видно, что синий (с) и красный (к) свет от одной и той же звезды перед тем, как попасть в глаз наблюдателя (О), проходит в атмосфере неравные пути. Это - следствие неодинакового преломления в атмосфере синего и красного света. Несогласованность колебаний яркости (вызванных разными неоднородностями) приводит к разбалансировке цветов.

В отличие от общего мерцания, цветовое можно заметить только у звезд близких к горизонту.

У некоторых звезд, названных переменными звездами, изменения яркости происходят гораздо более медленно и плавно, чем при мерцании, рис. 7. Например, звезда Алголь (Дьявол) в созвездии Персей меняет свою яркость с периодом 2,867 суток. Причины “переменности” звезд многообразны. Если две звезды обращаются вокруг общего центра масс, то одна из них может периодически закрывать другую (случай Алголя). Кроме того, некоторые звезды меняют яркость в процессе пульсации. У других звезд яркость изменяется при взрывах на поверхности. Иногда взрывается вся звезда (тогда наблюдается сверхновая звезда, светимость которой в миллиарды раз превосходит солнечную).

Движения звезд друг относительно друга со скоростями в десятки километров в секунду приводят к постепенному изменению звездных узоров на небе. Однако продолжительность жизни человека слишком мала, чтобы такие изменения удалось заметить при наблюдениях невооружённым глазом.

1.2 РОЖДЕНИЕ ЗВЕЗД

Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).

В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода.

Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, (что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.

При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр —светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

В дальнейшем протозвезда продолжает сжиматься. Ее разморы становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

Великолепные колонны, состоящие главным образом из газообразного водорода и пыли дают начало новорождённым звёздам внутри туманности Орла.


Солнце — это лишь одна звезда из великого множества. На этом уроке мы рассмотрим, как устроены звезды, какими они бывают и на какие группы их можно разбить. Вы узнаете, как много интересного в космосе и сколько еще остается неизведанным.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Физическая природа звезд"

Антуан де Сент-Экзюпери

Простым детским вопросом начинаем ознакомление с физической природой звезд.

Звезда – это массивный газовый шар, излучающий свет и тепло в результате протекания термоядерного синтеза в его недрах. Например, на Солнце происходит серия реакций, которая называется водородным циклом. Важной характеристикой любой звезды является такая величина как светимость (то есть мощность излучаемой энергии). Другие звезды тоже освещают Землю, но из-за огромного расстояния до них, это освещение ничтожно мало, по сравнению с освещением, предоставляемым Солнцем.


Например, согласно измерениям, Полярная звезда создает освещенность на поверхности Земли, равную 4,28×10 –9 Вт/м 2 . Это примерно в 370 миллиардов раз меньше, чем освещенность, создаваемая Солнцем. Однако, следует заметить, что Полярная звезда находится примерно за 132 парсека от нас. Теперь вычислим светимость Полярной звезды уже известным способом:




Подобные измерения показали, что существуют звезды, светимость которых в десятки и сотни тысяч раз больше или меньше чем светимость Солнца. Также, было выяснено, что от температуры поверхности звезды зависит её видимый свет и наличие спектральных линий поглощения тех или иных химических элементов в её спектре. В связи с этим в 1910 году Эйнар Герцшпрунг и независимо от него Генри Рассел предложили классифицировать звезды с помощью специальной диаграммы.



Как видно, эта диаграмма разбивает звезды на несколько спектральных классов с соответствующими светимостями и температурами на поверхности. На этой диаграмме светимость звезд выражена в единицах светимости Солнца. Итак, на диаграмме видны, такие группы звезд, как белые карлики, главная последовательность, красные гиганты и сверхгиганты. Что это за звезды? Начнем с главной последовательности, поскольку именно к этой группе звезд относится Солнце. К звездам главной последовательности относятся те звезды, источником энергии в которых является термоядерная реакция синтеза гелия из водорода. В связи с этим, их температура и светимость определяются массой. Светимость звезды главной последовательности можно вычислить, исходя из простой формулы


Красные гиганты – это звезды красного цвета, размеры которых в десятки раз превышают размеры Солнца, а светимости могут в сотни и даже тысячи раз превышать светимость Солнца.


Что касается сверхгигантов – то светимости этих звезд в сотни тысяч раз превышают светимость Солнца, а размеры сверхгигантов в сотни раз больше размеров Солнца.


Отличительной особенностью красных гигантов и сверхгигантов является то, что ядерные реакции протекают уже не в самом центре, а в тонких слоях вокруг очень плотного центрального ядра. В самых внешних слоях ядра, где температура сравнима с температурой в центре Солнца, протекает та же термоядерная реакция: из водорода синтезируется гелий. А вот в более глубоких слоях образуются все более тяжелые элементы. Сначала это углерод, затем кислород. В конце концов, в очень массивных звездах может образоваться железо.


Сведем в общую таблицу все то, что было сказано. Существуют семь основных спектральных классов – это O, B, A, F, G, K и M. В этой таблице приведены примеры звезд каждого класса.

Спектральный класс

Температура

Бело-голубой

Бетельгейзе

Например, звезда Беллатрикс находится в созвездии Ориона и является одной из 26 самых ярких звезд на небе. В древности Беллатрикс входила в число навигационных звезд. Беллатрикс относится к классу O и имеет голубой цвет. А вот Бетельгейзе имеет красный цвет и относится к классу М. Эта звезда является сверхгигантом (она примерно в 1000 раз больше Солнца), а её светимость примерно в 90 тысяч раз превышает светимость Солнца.

Но помимо всех перечисленных классов и групп звезд есть и другие объекты, быть может, еще более интересные. Например, к таким объектам относятся нейтронные звезды. Нейтронная звезда, по современным представлениям, образуется, когда энергия внутри звезды заканчивается. Из-за гравитационного сжатия ядро нейтронной звезды становится сверхплотным.


При этом, некоторые нейтронные звезды вращаются вокруг своей оси с огромной скоростью. Такие нейтронные звезды называются пульсарами. Пульсары испускают высокочастотные импульсы радиоизлучения, которые так взволновали астрономов в конце 60 годов двадцатого века. Дело в том, что из-за огромной скорости вращения пульсаров (а на экваторе это порядка нескольких десятков километров в секунду) импульсы повторялись с высокой стабильностью, причем периоды этих импульсов измерялись в секундах, а иногда и в миллисекундах. Это заставило ученых думать, что они имеют дело с некими сигналами, которые посылают на Землю какие-то внеземные цивилизации с целью установления контакта. Однако, в конце концов, удалось доказать, что дело во вращении нейтронных звезд. Помимо этого, некоторые нейтронные звезды обладают колоссальным магнитным полем (порядка десяти или даже ста миллиардов тесла, в то время, как магнитное поле Земли составляет ~ 10мкТл). Такие нейтронные звезды получили название магнетаров. Магнетары ещё очень мало изучены, но известно, что именно они являются причиной многих мощных вспышек рентгеновского и g-излучения.



Черные дыры, как и нейтронные звезды, имеют радиус, измеряющийся в десятках километров, но при этом их масса составляет не менее трех солнечных масс.


Однако, черные дыры могут разрастаться за счет многократного поглощения вещества. Такие черные дыры обладают массой в миллионы и даже миллиарды раз превосходящей массу Солнца. Эти объекты, как правило, находятся в центре галактик (а по одной из гипотез являются причиной образования галактик). Например, в центре нашей галактики Млечный путь находится сверхмассивная черная дыра, масса которой составляет порядка четырех миллиардов солнечных масс. По оценкам ученых, Солнце находится на расстоянии порядка 27000 световых лет от этой черной дыры.


Если говорить обобщенно, то те или иные классы или группы звезд, которые были рассмотрены, относятся к определенным этапам эволюции звезды.

Задача 1. Звезда главной последовательности имеет параллакс 0,04 угловой секунды. Известно, что температура на поверхности этой звезды составляет 7500 К, и излучение хорошо подчиняется модели излучения абсолютно черного тела. Найдите массу этой звезды, если известно, что её радиус равен 10 10 м. Также найдите освещенность, создаваемую данной звездой на поверхности Земли.



Основные выводы:

– Основные группы звезд – это сверхгиганты, красные гиганты, главная последовательность (к этой группе относится Солнце) и белые карлики.

– Нейтронные звезды и черные дыры – это сверхплотные небесные тела, обладающие уникальными свойствами. По современным представлениям, нейтронные звезды и черные дыры представляют собой последние этапы эволюции звезд.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Тема: Физическая природа звезд

Описание презентации по отдельным слайдам:

Тема: Физическая природа звезд

Тема: Физическая природа звезд

СодержаниеТитульный лист _______________________________________1 слайд Содер.

Содержание
Титульный лист _______________________________________1 слайд
Содержание__________________________________________2 слайд
Введение____________________________________________3 слайд
Глава 1______________________________________________4 слайд
Глава 2_____________________________________________11 слайд
Список источников___________________________________19 слайд

ВведениеСолнце — это лишь одна звезда из великого множества. На этом уроке мы.

Введение
Солнце — это лишь одна звезда из великого множества. На этом уроке мы рассмотрим, как устроены звезды, какими они бывают и на какие группы их можно разбить. Вы узнаете, как много интересного в космосе и сколько еще остается неизведанным.
Цель работы: рассмотреть физическую природу звезд и узнать дополнительную информацию.

1.1 Цвет и температура звездВо время наблюдений звездного неба вы могли замет.

1.1 Цвет и температура звезд
Во время наблюдений звездного неба вы могли заметить, что цвет звезд различен. Подобно тому как по цвету раскаленного металла можно су­дить о его температуре, так цвет звезды свидетельствует о температуре ее фотосферы. Вы знаете, что между макси­мальной длиной волны излучения и температурой суще­ствует определенная зависимость (29). У различных звезд максимум излучения приходится на разные длины волн. Например, наше Солнце — желтая звезда. Такого же цвета Капелла, температура которой около 6000 К. Звезды, имеющие температуру 3500—4000 К, красноватого цветка (Альдебаран). Температура красных звезд (Бетельгейзе) примерно 3000 К. Самые холодные из известных в настоящее время звезд, имеют температуру менее 2000 К. Такие звезды до­ступны наблюдениям в инфракрасной части спектра.
Известно много звезд более горячих, чем Солнце. К ним относятся, например, белые звезды (Спика, Сириус, Вега). Их температура порядка 104—2•104 К. Реже встречаются го­лубовато-белые, температура фотосферы которых 3•104— 5•104 К. В недрах звезд температура не менее 107 К.

1.3 Спектры и химический состав звездВажнейшие све­дения о природе звезд астр.

1.3 Спектры и химический состав звезд
Важнейшие све­дения о природе звезд астрономы получают, расшифровывая их спектры. Спектры большинства звезд, как и спектр Солнца, представляют собой спектры поглощения: на фоне непрерывного спектра видны темные линии.
Сходные между собой спектры звезд сгруппированы в семь основных спектральных классов. Они обозначаются прописными буквами латинского алфавита:
О — В — A — F — G — К — М
и располагаются в такой последовательности, что при пере­ходе слева направо цвет звезды меняется от близкого к го­лубому (класс О), белому (класс А), желтому (класс G), красному (класс М). Следовательно, в этом же направлении от класса к классу происходит убывание температуры звезд. Таким образом, последовательность спектральных клас­сов отражает различие цвета и температуры звезд. Внутри каждого класса существует разделение еще на десять под­классов. Например, спектральный класс F имеет такие под­классы:
F0 — F1 — F2 — F3 — F4 — F5 — F6 — F7 — F8 — F9.
Солнце относится к спектральному классу G2.
В основном атмосферы звезд имеют сходный химический состав: самыми распространенными элементами в них, как и на Солнце, оказались водород и гелий. Разнообразие звезд­ных спектров объясняется, прежде всего тем, что звезды имеют разную температуру. От температуры зависит физи­ческое состояние, в котором находятся атомы вещества в звездных атмосферах, и вид спектра. При невысоких темпе­ратурах (красные звезды) в атмосферах звезд могут суще­ствовать нейтральные атомы и даже простейшие молеку­лярные соединения (С2, CN, TiO, ZrO и др.). В атмо­сферах очень горячих звезд преобладают ионизованные атомы.
Кроме температуры, вид спектра звезды определяется давлением и плотностью газа ее фотосферы, наличием маг­нитного поля, особенностями химического состава.

1.4 Радиусы звездИспользуя самую современную тех­нику астрономических наблю.

1.4 Радиусы звезд
Используя самую современную тех­нику астрономических наблюдений, удалось в настоящее время непосредственно измерить угловые диаметры (а по ним, зная расстояние, и линейные размеры) лишь несколь­ких звезд. В основном астрономы определяют радиусы звезд другими методами. Один из них дает формула. Если известна светимость L и эффективная температура Т звезды, то, используя формулу, можно вычислить радиус звезды R, ее объем и площадь фотосферы.
Определив радиусы многих звезд, астрономы убедились в том, что существуют звезды, размеры которых резко отличаются от размеров Солнца. Наибольшие размеры у сверхгигантов. Их радиусы в сотни раз превосходят радиус Солнца. Например, радиус звезды w Цефея при­мерно в 1200 раз превосходит солнечный. Звезды, радиусы которых в десятки раз превосходят радиус Солнца, назы­ваются гигантами. Звезды, по размерам близкие к Солнцу или меньшие, чем Солнце, относятся к карликам. Сре­ди карликов есть звезды, которые меньше Земли или да­же Луны. Открыты звезды и еще меньших размеров.

1.5 Массы звездМасса звезды — одна из важнейших ее характеристик. Массы звезд.

1.5 Массы звезд
Масса звезды — одна из важнейших ее характеристик. Массы звезд различны. Однако, в отличие от светимостей и размеров, массы звезд заключены в срав­нительно узких пределах: самые массивные звезды обычно лишь в десятки раз превосходят Солнце, а наименьшие массы звезд порядка . Основной метод определения масс звезд дает исследование двойных звезд (§ 26); обнаружена зависимость между светимостью и массой звезды.

1.6 Средние плотности звезд Так как размеры звезд раз­личаются значительно бо.

2 глава: Красные гиганты и сверхгигантовКрасные гиганты – это звезды красного.

2 глава: Красные гиганты и сверхгигантов
Красные гиганты – это звезды красного цвета, размеры которых в десятки раз превышают размеры Солнца, а светимости могут в сотни и даже тысячи раз превышать светимость Солнца.
Что касается сверхгигантов – то светимости этих звезд в сотни тысяч раз превышают светимость Солнца, а размеры сверхгигантов в сотни раз больше размеров Солнца.

2.1 Отличия красных гигантов и сверхгигантовОтличительной особенностью красны.

2.1 Отличия красных гигантов и сверхгигантов
Отличительной особенностью красных гигантов и сверхгигантов является то, что ядерные реакции протекают уже не в самом центре, а в тонких слоях вокруг очень плотного центрального ядра. В самых внешних слоях ядра, где температура сравнима с температурой в центре Солнца, протекает та же термоядерная реакция: из водорода синтезируется гелий. А вот в более глубоких слоях образуются все более тяжелые элементы. Сначала это углерод, затем кислород. В конце концов, в очень массивных звездах может образоваться железо.

2.2 Белые КарликиРазмеры белых карликов сравнимы с размерами Земли, аих свети.

2.3 Звезда БеллатриксЗвезда Беллатрикс находится в созвездии Ориона и являетс.

2.3 Звезда Беллатрикс
Звезда Беллатрикс находится в созвездии Ориона и является одной из 26 самых ярких звезд на небе. В древности Беллатрикс входила в число навигационных звезд. Беллатрикс относится к классу O и имеет голубой цвет. А вот Бетельгейзе имеет красный цвет и относится к классу М. Эта звезда является сверхгигантом (она примерно в 1000 раз больше Солнца), а её светимость примерно в 90 тысяч раз превышает светимость Солнца.

2.4 Нейтронная звездаНо помимо всех перечисленных классов и групп звезд есть.

2.4 Нейтронная звезда
Но помимо всех перечисленных классов и групп звезд есть и другие объекты, быть может, еще более интересные. Например, к таким объектам относятся нейтронные звезды. Нейтронная звезда, по современным представлениям, образуется, когда энергия внутри звезды заканчивается. Из-за гравитационного сжатия ядро нейтронной звезды становится сверхплотным.

2.5 Нейтронные звездыПри этом, некоторые нейтронные звезды вращаются вокруг с.

2.5 Нейтронные звезды
При этом, некоторые нейтронные звезды вращаются вокруг своей оси с огромной скоростью. Такие нейтронные звезды называются пульсарами. Пульсары испускают высокочастотные импульсы радиоизлучения, которые так взволновали астрономов в конце 60 годов двадцатого века. Дело в том, что из-за огромной скорости вращения пульсаров (а на экваторе это порядка нескольких десятков километров в секунду) импульсы повторялись с высокой стабильностью, причем периоды этих импульсов измерялись в секундах, а иногда и в миллисекундах. Это заставило ученых думать, что они имеют дело с некими сигналами, которые посылают на Землю какие-то внеземные цивилизации с целью установления контакта. Однако, в конце концов, удалось доказать, что дело во вращении нейтронных звезд. Помимо этого, некоторые нейтронные звезды обладают колоссальным магнитным полем (порядка десяти или даже ста миллиардов тесла, в то время, как магнитное поле Земли составляет ~ 10мкТл). Такие нейтронные звезды получили название магнетаров. Магнетары ещё очень мало изучены, но известно, что именно они являются причиной многих мощных вспышек рентгеновского и g-излучения.

2.6 Нейтронные звезды и черная дыраВсе типы нейтронных звезд имеют радиус, ко.

2.7 Черные дырыОднако, черные дыры могут разрастаться за счет многократного п.

2.7 Черные дыры
Однако, черные дыры могут разрастаться за счет многократного поглощения вещества. Такие черные дыры обладают массой в миллионы и даже миллиарды раз превосходящей массу Солнца. Эти объекты, как правило, находятся в центре галактик (а по одной из гипотез являются причиной образования галактик). Например, в центре нашей галактики Млечный путь находится сверхмассивная черная дыра, масса которой составляет порядка четырех миллиардов солнечных масс. По оценкам ученых, Солнце находится на расстоянии порядка 27000 световых лет от этой черной дыры.

Вы можете изучить и скачать доклад-презентацию на тему Физическая природа солцна и звезд. Презентация на заданную тему содержит 16 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Космос - звезды и планеты, галактики и туманности — огромный загадочный мир, понять который с древних времен хотят люди. Сначала астрология, а затем и астрономия стремились познать законы протекающей на его просторах жизни. Сегодня можно смело говорить, что нам известно многое, но внушительная часть процессов и явлений имеет лишь предположительное объяснение. Физическая природа звезд — один из широко обсуждаемых вопросов в астрономии. Сегодня в целом картина ясна, однако остаются и пробелы в наших знаниях о небесных светилах. Космос - звезды и планеты, галактики и туманности — огромный загадочный мир, понять который с древних времен хотят люди. Сначала астрология, а затем и астрономия стремились познать законы протекающей на его просторах жизни. Сегодня можно смело говорить, что нам известно многое, но внушительная часть процессов и явлений имеет лишь предположительное объяснение. Физическая природа звезд — один из широко обсуждаемых вопросов в астрономии. Сегодня в целом картина ясна, однако остаются и пробелы в наших знаниях о небесных светилах.

Звезды Любая звезда представляет собой газовый шар, постоянно испускающий свет. Силы гравитации и внутреннего давления предотвращают его разрушение. Физическая природа звезд такова, что в ее недрах постоянно протекают термоядерные реакции. Они прекращаются лишь на определенных стадиях развития светила, о чем будет сказано далее.

Звезда При хороших погодных условиях и отсутствии искусственного освещения на небе можно разглядеть до 3000 тысяч звезд в каждом полушарии. Однако это лишь малая часть того количества, что наполняет космос. Самая близкая к нам звезда — это Солнце. Изучая его поведение, ученые очень многое узнают о светилах вообще. Наиболее близкая звезда вне Солнечной системы — Проксима Центавра. Ее отделяет от нас примерно 4,2 световых года.

Звезда Процесс формирования светил еще недостаточно изучен. Полному пониманию картины мешают огромные расстояния и невозможность непосредственного наблюдения. Однако сегодня существует общепринятая концепция, описывающая рождение звезды. Кратко остановимся на ней. По-видимому, светила образуются из межзвездного газа, сжимающегося под действием собственной гравитации. При этом энергия тяготения преобразуется в тепло — растет температура сформировавшейся глобулы. Завершается этот процесс, когда ядро разогревается до нескольких миллионов Кельвинов и запускается образование более тяжелых, чем водород, элементов (нуклеосинтез). Такой звезда остается достаточно длительное время, располагаясь на Главной последовательности диаграммы Герцшпрунга-Рассела.

Солнце Со́лнце (астр. ☉) — единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99,86 % от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на Земле (свет необходим для начальных стадий фотосинтеза), определяет климат. Солнце состоит из водорода, гелия и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота,кремния, серы, магния, углерода, неона, кальция и хрома.

Солнце Солнце — магнитоактивная звезда. Она обладает сильным магнитным полем, напряжённость которого меняется со временем и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывают разнообразные эффекты, совокупность которых называется солнечной активностью и включает в себя такие явления, как солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д., а на Земле вызывает полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачиэлектроэнергии, а также негативно воздействует на живые организмы (вызывают головную боль и плохое самочувствие у людей, чувствительных к магнитным бурям). Предполагается, что солнечная активность играла большую роль в формировании и развитии Солнечной системы. Она также оказывает влияние на структуру земной атмосферы.

Солнце Излучение Солнца — основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной — количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1,37 кВт/м².Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м², и до земной поверхности доходит только 1000 Вт/м² (при ясной погоде и когда Солнце находится в зените). Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения, используя её посредствомфотосинтеза, синтезируют органические соединения с выделением кислорода. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива

Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года. Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.

Изображение южного полюса Солнца, полученное в ходе миссииSTEREO. В правой нижней части снимка виден выброс массы Изображение южного полюса Солнца, полученное в ходе миссииSTEREO. В правой нижней части снимка виден выброс массы

Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO. Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.

Читайте также: