Сообщение на тему что такое gps география 6 класс

Обновлено: 05.07.2024

GPS - аббревиатура от английского GlobalPositioningSystem, проект был реализован и принадлежит военному ведомству США и первоначально задумывался только для военных целей. Основной задачей проекта является высокоточное позиционирование различных подвижных и статических объектов на местности. Основой системы являются 24 NAVSTAR База слежения за спутниками.(Navigation Satellite Time and Ranging) спутника работающих в единой сети, находящихся на шести разных круговых орбитах расположенных под углом 60° друг к другу, таким образом, чтобы из любой точки земной поверхности были видны от четырех до двенадцати таких спутников. На каждой орбите находится по 4 спутника, высота орбит примерно равна 20200 км, а период обращения каждого спутника вокруг земли 12 часов. Система не полностью автономна, ее работоспособность контролируется станциями наблюдения с Земли. Территориально станции наблюдения находятся на Гавайях, атолле Кваджелейн, островах Вознесения, Диего-Гарсия и в Колорадо-Спрингс, вся информация записывается и передается на главную командную станцию, расположенную на военной базе Falcon в Колорадо, откуда производится корректировка орбит и навигационной информации.

Принципы работы GPS

Функции GPS приемников

Таблица 1. Основные функции GPS приемников

Основные
Свойство Варианты Пояснение
Приёмник Мультиплексный Мультиплексный приёмник имеет только один канал. В один момент времени он принимает сигналы только одного спутника, переключаясь между несколькими доступными. Такие приёмники лучше работают на открытом пространстве, т.к. сигнал легко может быть потерян из-за строений или других препятствий. Мультиплексные приёмники уже практически не используются.
Параллельный Параллельный приёмник имеет несколько каналов (обычно - 12), с помощью которых может одновременно принимать сигналы от нескольких спутников. Такой приёмник гораздо лучше "держит" сигналы спутников и более точно определяет координаты. Если Вы планируете использовать GPS в большом городе или горах, Ваш выбор - параллельный приёмник.
Антенна Внешняя Внешняя антенна типа "четырёхзаходная спираль" представляет собой спиральную катушку в пластиковом корпусе, вынесенную из корпуса приёмника. Такая антенна наиболее приспособлена к приёму сигналов спутников, расположенных около горизонта, и хуже принимает сигналы спутников сверху. Обычно эта антенна является съёмной, вместо неё можно подключить выносную антенну, расположив её, например, на крыше автомобиля, для более качественного приёма.
Патч-антенна Патч-антенна - плоская антенна, встроенная в корпус приёмника. В противовес внешней она более приспособлена для приёма сигналов спутников вверху и хуже принимает сигналы спутников, расположенных около горизонта.
Источник питания Батареи Большинство портативных GPS приёмников работают от батарей. Это и обеспечивает их портативность. При выборе навигатора обратите внимание на тип и количество используемых батарей, продолжительность их работы.
Внешний источник Многие портативные GPS приёмники имеют возможность подключения внешнего источника питания. Это удобно, например, если Вы собираетесь весь день ехать в машине по GPS приёмнику и не хотите тратить батарейки. Автомобильные, морские и авиационные GPS, встраиваемые в приборную панель, питаются от внешнего источника.
Дисплей ЖКИ панель Все GPS приёмники отображают информацию на ЖКИ дисплее. Варианты: 2 цвета или 4 градации серого.
Цветная ЖКИ панель На цветном дисплее гораздо легче читаются карты, чем на обычном экране с градациями серого. Однако, цветные ЖКИ дисплеи потребляют гораздо больше электроэнергии, соответственно батарейки садятся быстрее.

Таблица 2. Стандартные функции GPS приемников

Свойство Пояснение
Встроенная карта Большинство GPS приёмников отображают Вашу долготу, широту и высоту, но они не смогут показать Ваше положение на детальной карте. Перед покупкой приёмника Вы должны определиться, какой вид карт подходит Вам больше всего и убедится, что выбранный приёмник поддерживает эти карты. Многие GPS приёмники уже содержат общую карту мира (базовая карта), но на ней отображены только крупные города, дороги и участки воды. Некоторые навигаторы могут хранить в памяти более качественные карты или позволяют загружать требуемые карты.
Карты памяти Некоторые навигаторы позволяют использовать специальные картриджи (флэш-карты), с более детальными картами районов.
Загрузка карт Некоторые GPS приёмники позволяют загружать себе в память векторные карты с компьютера.
Путевые точки Вы можете сохранять в памяти навигатора некоторое количество (500 и более) путевых точек - на ходу или, задавая их координаты по карте - и составлять из них маршруты. Ваш GPS сможет провести Вас вдоль этого маршрута от точки к точке. Вы также можете спланировать маршруты по бумажной карте, сохранить всю информацию в навигаторе и ходить на местности по составленному маршруту.
Запись трека (Track Log) GPS приёмники с такой функцией могут записывать трек (путь), по которому Вы движетесь. Эта функция пригодится, если Вы заблудились или хотите сохранить пройденный трек, чтобы пройти его когда-нибудь ещё раз. Также по треку можно определить, насколько далеко Вы прошли по маршруту.
Память Если Вы собираетесь активно использовать планирование маршрутов и запись треков, Вы должны выбирать GPS с достаточным объёмом памяти. Продумайте, сколько может Вам потребоваться точек и выберите соответствующий навигатор. Так же удостоверьтесь, что GPS не сотрёт Ваши данные во время замены батареек. Последние модели навигаторов имеют энергонезависимую память для хранения точек, треков и маршрутов.
Разъём данных Одним из путей, увидеть своё положение на детальной карте местности, является подключение навигатора к компьютеру (настольному, портативному или КПК). Разъём данных позволяет сопрягать GPS с большим количеством программного обеспечения. В связи с ограниченностью памяти приёмника эта функция может быть очень полезна, т.к. позволяет сохранить на ПК практически не ограниченный объём данных (точки, треки, маршруты).
Время восхода/захода Солнца Некоторые GPS приёмники могут отобразить время восхода/захода Солнца в любой заданной точке. Это позволит Вам так спланировать маршрут, чтобы Вы не путешествовали в темноте. Полезно для скалолазов, моряков, пилотов и т.п.
Одометр В большинстве современных навигаторов есть одометр, который позволяет Вам контролировать пройденное расстояние. Как и одометр в автомобиле, этот в некоторых случаях может быть полезен.
Спидометр Большинство GPS приёмников могут показывать скорость Вашего движения. Это полезно знать для расчёта продолжительности пути при текущей скорости. Приёмники, имеющие спидометр, могут выдать Вам такие параметры как ETA (Estimated Time of Arrival - приблизительное время, оставшееся до прибытия в заданную точку) и ETE (Estimated Time Enroute - приблизительное время суток, по прибытии в заданную точку).
Единицы измерения Убедитесь, что приёмник может отображать параметры в единицах, требуемых Вам. Например, если Вам требуется GPS для навигации на море, Вам понадобится навигатор отображающий данные в морских милях. Другим вариантом является выборочная настройка отображения единиц: например, высота в футах, расстояние в километрах.
Индикатор точности Большинство GPS приёмников могут предупреждать Вас об ухудшившейся точности определения координат. Это может происходить вследствие плохого приёма сигналов спутников или неисправности навигатора.

Выбор GPS приемника

спутник система навигация приемник

1. В каких целях вы предполагаете использовать GPS-приёмник? Самое трудное - это подобрать прибор, подходящий именно для Ваших конкретных задач. Если Вам нужен приёмник для установки в приборную панель планера, то ручной навигатор для отдыха на воде вам явно не подойдёт. Для того чтобы сузить диапазон поиска, Вам просто-напросто нужно выяснить, какие именно приборы выпускаются для Ваших специфических задач.

2. Однако даже после этого Вы все еще можете иметь достаточно широкий выбор моделей. Например, если Вы предпочитаете пеший туризм или охоту, то Вам подойдет прибор в герметичном исполнении v впрочем, с тем же успехом, что и любая портативная модель, предназначенная для яхтсменов или летчиков-любителей. В такой ситуации Вам придется более подробно изучить их специфические особенности. Если Вы не собираетесь пилотировать самолет, то нет смысла переплачивать за дополнительную информацию об аэропортах мира, хранящуюся в памяти авиационных GPS-приемников. Морские навигаторы, загруженные точными данными о навигационных знаках и глубинах, также будут для Вас практически бесполезны.

3. Каков ценовой диапазон приборов? Как только Вы определили небольшой перечень подходящих Вам устройств, Вам предстоит определиться с приемлемой для Вас ценой. Внимательно изучите каждую модель и постарайтесь понять, что имеют более дорогие модели и чего нет в более дешевых? Так ли Вам необходимы дополнительные функции, заложенные в более дорогие модели, возможно дешевого приборчика вполне хватит для выполнения Ваших задач?

4. Какая модель Вам больше нравится? Выбор правильного навигатора это на две трети рациональные рассуждения, и на одну треть вопрос вкуса и удобства. Если логика подсказывает вам остановиться на двух или трех моделях от разных производителей, попробуйте, хотя бы немного поработать с каждой из них. Иногда разница в удобстве эксплуатации может показаться достаточно большой. Один из приборов Вам может показаться понятным и удобным, а другой слишком сложным в использовании. Выбирайте тот GPS-приемник, который Вам больше нравится и у Вас будет больше шансов, что Вы по-прежнему будете довольны своим выбором и через месяц, и через год!

Альтернативные системы GPS

ГЛОНАСС или Глобальная Навигационная Спутниковая Система - это сумма уникальных технологий, плод многолетнего труда российских конструкторов и ученых. Работа над этой системой началась еще в СССР, но из-за проблем с финансированием, работы над ней продолжились только сейчас. В создании системы ГЛОНАСС принимали участие:

Министерство обороны Российской Федерации - головной заказчик системы, обеспечивающий контроль разработки и ее дальнейшее совершенствование, а также развертывание, поддержание и управление орбитальной группировкой ГЛОНАСС;

Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева (НПО ПМ) - головной разработчик системы, спутника ГЛОНАСС, автоматизированной системы управления спутниками и ее математического обеспечения;

Российский научно-исследовательский институт космического приборостроения (РНИИ КП)- головной разработчик наземного комплекса управления и бортовой аппаратуры спутника ГЛОНАСС;

Российский институт радионавигации и времени (РИРВ) - головной разработчик спутниковой и наземной аппаратуры, систем синхронизации и времени;

Производственное объединение "Полет" (ПО "Полет") - разработчик и изготовитель спутника ГЛОНАСС, а также ряд других российских научных и производственных организаций.

По основным характеристикам (точности, доступности и целостности) навигационного обеспечения ГЛОНАСС не должен уступать системам GPS и Galileo.

Развитие системы ГЛОНАСС в России в настоящее время осуществляется на основании Федеральной целевой программы (ФЦП) "Глобальная навигационная система", принятой в августе 2001 года постановлением правительства РФ.

Основными целями ФЦП "ГЛОНАСС" являются дальнейшее развитие и эффективное использование Глобальной навигационной спутниковой системы ГЛОНАСС в интересах социально-экономического развития страны, обеспечения ее национальной безопасности, сохранение Россией лидирующих позиций в области спутниковой навигации за счет гарантированного предоставления навигационных сигналов отечественным и зарубежным потребителям.

В соответствии с ФЦП "Глобальная навигационная система" запуск космических аппаратов "Глонасс-М" планируется на 5 декабря 2010 года.

Запуск новых навигационных спутников для завершения развертывания космической группировки "ГЛОНАСС-К", по заявлениям Роскосмоса, будет осуществлен в срок, несмотря на то, что 11 ноября 2010 года, на спутнике "Глонасс-М" номер 39 после доставки на космодром "Байконур" была обнаружена неисправность одной из его подсистем. Космический аппарат был возвращен на завод-изготовитель для устранения неисправности.

ГЛОНАСС состоит из 24 спутников. Они находятся в заданных точках на высоких орбитах. Спутники непрерывно излучают в сторону Земли специальные навигационные сигналы. Любой человек или транспортное средство, оснащенные специальным прибором для приема и обработки этих сигналов, могут с высокой точностью в любой точке Земли и околоземного пространства определить собственные координаты и скорость движения, а также осуществить привязку к точному времени.

Первый запуск спутника по программе ГЛОНАСС (Космос 1413) состоялся 12 октября 1982 года. Система ГЛОНАСС была официально принята в эксплуатацию 24 сентября 1993 года распоряжением Президента Российской Федерации 658рпс с неполной комплектацией орбитальной структуры при условии развертывания штатной орбитальной структуры (24 спутника) в 1995 году. Постановлением Правительства РФ от 7 марта 1995 г. №237 были организованы работы по полному развертыванию орбитальной структуры (24 спутника), обеспечению серийного производства навигационной аппаратуры и представлению ГЛОНАСС в качестве элемента международной глобальной навигационной системы для гражданских потребителей.

В июле 2006 года постановлением правительства была утверждена скорректированная ФЦП "Глобальная навигационная система". Полностью развернутая система будет состоять из 24 спутников, действующих в трех орбитальных плоскостях.

В 2007 году были сняты все ограничения для гражданских пользователей ГЛОНАСС.

2 сентября 2010 года ракета-носитель "Протон-М" вывела на орбиту три аппарата "Глонасс-М"

В соответствии с распоряжением президента РФ от 18 февраля 1999 года система ГЛОНАСС отнесена к космической технике двойного назначения, применяемой в научных, социально-экономических целях, в интересах обороны и безопасности РФ.

25 декабря 2007 г. сразу три навигационных спутника ГЛОНАСС были выведены на орбиту с помощью усовершенствованной версии российской ракеты-носителя "Протон-М". Итого к концу 2007 г. на орбите функционировали 18 космических аппаратов.

27 декабря 2007 года впервые поступили в продажу бытовые спутниковые навигаторы для ГЛОНАСС и GPS.

С каждым годом технология GPS завоёвывает все большую популярность среди людей разных профессий, начиная от "профессиональных" путешественников и, заканчивая, людьми, ведущими активный образ жизни, да и просто GPS подходит для любителей рыбалки и автомобилистов. Этому есть свое объяснение:

во-первых, стоимость. Сегодня, GPS система, например GPS кпп, доступна для людей, с различным достатком;

во-вторых, эксплуатация GPS-навигации абсолютно бесплатна;

в-третьих, массовый выход на рынок программ и устройств для различных категорий пользователей. Это и кпк с GPS, и телефоны с GPS, автомобильные GPS навигаторы, которые кроме GPS карты выводят все данных об эксплуатации автомобиля. Можно сказать, что любой человек, которому необходимо знать свое местоположение, или добраться до нужного места, узнать свою скорость движения и понять, когда же он доберется до пункта – это можно легко узнать, воспользовавшись преимуществами GPS. Думаю, что в данном реферате я достиг намеченной цели, рассмотрев все поставленные вопросы.

Список литературы

5. В.С. Сетевые спутниковые радионавигационные системы. — 2-е изд.,

6. Козловский Е. Искусство позиционирования // Вокруг света. — М.: 2006. — № 12 (2795). — С. 204-280.

7. Шебшаевич В.С., Дмитриев П.П., Иванцев Н.В. и др.; под ред. Шебшаевича

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Глобальные навигационные спутниковые системы (ГНСС).

Объяснить, что такое ГНСС.

Объяснить общие принципы работы спутниковой навигации(СН).

Описать действующие СНС- GPS и GLONASS , их составляющих (космический и наземный сегменты) и областей применения.

Рассказать, какие СНС готовятся к запуску или находятся в стадии разработки( GALLILEO , COMPASS ).

Объяснить сбои СНС:

Во время солнечных вспышек.

Во время геомагнитных возмущений.

Рассказать о факторах, влияющих на ухудшение точности позиционирования.

Спутниковая навигация: понятие, система, действие.

hello_html_m6a23568c.jpg

hello_html_m19644972.jpg

Сколько существует человечество, столько и решается вопрос о том, как определить свое местоположение на суше и на море, в лесу или в городе. На сегодняшний день отпала необходимость ориентироваться, как древние путешественники и мореплаватели по звездам или компасу. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Искусственные спутники Земли стали опорными станциями для радионавигации и на сегодняшний день системы спутниковой навигации стали доступны не только военным или морякам, но и простым людям, частным лицам и компаниям, для которых навигация необходима.

Понятие: Спутниковая система навигации

— комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Действие: Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах.

Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве. Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространения радиосигнала, каждый спутник навигационной системы излучает сигналы точного времени, в составе своего сигнала используя точно синхронизированные с системным временем атомные часы.

При работе спутникового приёмника его часы синхронизируются с системным временем и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Для получения информации о скорости большинство навигационных приёмников используют эффект Доплера. Дополнительно накапливая и обрабатывая эти данные за определённый промежуток времени, становится возможным вычислить такие параметры движения, как скорость (текущую, максимальную, среднюю), пройденный путь и т. д. В реальности работа системы происходит значительно сложнее.
Ниже перечислены некоторые проблемы, требующие специальных технических приёмов по их решению: Отсутствие атомных часов в большинстве навигационных приёмников. Этот недостаток обычно устраняется требованием получения информации не менее чем с трёх (2-мерная навигация при известной высоте) или четырёх (3-мерная навигация) спутников; (При наличии сигнала хотя бы с одного спутника можно определить текущее время с хорошей точностью). Неоднородность гравитационного поля Земли, влияющая на орбиты спутников; Неоднородность атмосферы, из-за которой скорость и направление распространения радиоволн может меняться в определённых пределах; Отражения сигналов от наземных объектов, что особенно заметно в городе; Невозможность разместить на спутниках передатчики большой мощности, из-за чего приём их сигналов возможен только в прямой видимости на открытом воздухе.

История и перспективы развития.

Долговременная программа развития космической навигационной системы реализовывается по следующим укрупненным этапам:

Эксперты считают, что главные задачи в нынешний период восстановления и развития ГЛОНАСС это:

- развивать орбитальную группировку до 6 плоскостей с 48 спутниками с целью обеспечения высокоточного позиционирования в условиях закрытой местности (такая программа уже принята США);

- обеспечить радиоэлектронную безопасность и независимость системы;

- А главное - привлечь к работе настоящих специалистов, которые способны доложить всю правду о ГЛОНАСС. ГЛОНАСС является приоритетной из всех космических программ, потому что без нее через несколько лет Россия останется беззащитной. Без ГЛОНАСС асимметричный ответ на американскую ПРО и прочие потенциальные угрозы в принципе невозможен. Поэтому президент так настойчиво требует в максимально короткие сроки возродить ГЛОНАСС.

Принцип работы.
Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приёмников ГЛОНАСС, возможность определения:
* горизонтальных координат с точностью 50-70 м (вероятность 99,7%);
* вертикальных координат с точностью 70 м (вероятность 99,7%);
* составляющих вектора скорости с точностью 15 см/с (вероятность 99,7%)
* точного времени с точностью 0,7 мкс (вероятность 99,7%).
Эти точности можно значительно улучшить, если использовать дифференциальный метод навигации и/или дополнительные специальные методы измерений.

Сигнал ВТ предназначен, в основном, для потребителей Министерства обороны России, и его несанкционированное использование не рекомендуется. Вопрос о предоставлении сигнала ВТ гражданским потребителям находится в стадии рассмотрения.

Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приёме навигационных радиосигналов ГЛОНАСС приёмник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения.
Одновременно с проведением измерений в приёмнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения. Навигационная задача решается автоматически в вычислительном устройстве приёмника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Универсального координированного времени (UTC).

ГЛОНАСС сегодня.

Сравнение ГЛОНАСС и GPS.

hello_html_m3fc13c86.jpg

НЕДОСТАКИ GPS-СИСТЕМЫ.
Несмотря на все преимущества, у GPS-систем есть и недостатки. Например, GPS- приемник может быть отключен в любой момент, скажем, из соображений безопасности США. Кроме того, внедрение GPS- технологии подразумевает наличие подробных электронных карт c масштабом до 100 м, которые есть в свободной продаже не в каждой стране. Нельзя не упомянуть то обстоятельство, что при вычислении координат спутниковая система допускает погрешности. Природа этих ошибок различна. Основными источниками ошибок, влияющими на точность навигационных вычислений в GPS-системе, в частности, являются:

-погрешности, обусловленные режимом селективного доступа (Selective availability, S/A). Используя данный режим, Министерство Обороны США намеренно снижает точность определения местонахождения для гражданских лиц. В режиме S/A формируются ошибки искусственного происхождения, вносимые в сигнал на борту GPS-спутников с целью огрубления навигационных измерений. Такими ошибками являются неверные данные об орбите спутника и искажения показаний его часов за счет внесения добавочного псевдослучайного сигнала. Величина среднеквадратического отклонения из-за влияния этого фактора составляет, примерно, 30 м.

-погрешности, связанные с распространением радиоволн в тропосфере. Возникают при прохождении радиоволн через нижние слои атмосферы. Значения погрешностей этого вида при использовании сигналов с С/А- кодом не превышают 30 м.

-эфемеридная погрешность. Ошибки обусловлены расхождением между фактическим положением GPS-спутника и его расчетным положением, которое устанавливается по данным навигационного сигнала, передаваемого с борта спутника. Значение погрешности обычно не боее 3м.

- погрешность ухода шкалы времени спутника вызвана расхождением шкал времени различных спутников. Устраняется с помощью наземных станций слежения или за счет компенсации ухода шкалы времени в дифференциальном режиме определения местоположения.

- погрешность определения расстояния до спутника является статистическим показателем. Он вычисляется для конкретного спутника и заданного интервала времени. Ошибка не коррелированна с другими видами погрешностей. Ее величина обычно не превышает 10 м.

НЕДОСТАТКИ СИСТЕМЫ ГЛОНАСС:

-необходимость сдвига диапазона частот вправо, так как в настоящее время ГЛОНАСС мешает работе как подвижной спутниковой связи, так и радиоастрономии

-при смене эфемерид спутников, погрешности координат в обычном режиме увеличиваются на 25-30м, а в дифференциальном режиме - превышают 10 м;

-при коррекции набежавшей секунды нарушается непрерывность сигнала ГЛОНАСС. Это приводит к большим погрешностям определения координат места потребителя, что недопустимо для гражданской авиации;

-сложность пересчета данных систем ГЛОНАСС и GPS из-за отсутствия официально опубликованной матрицы перехода между используемыми системами координат.

Однако он был сорван из-за разногласий между правительствами стран ЕС и нежелания частных компаний инвестировать в Galileo. Консорциум частных компаний состоял из EADS, Thales, Inmarsat, Alcatel-Lucent, Finmeccanica, AENA, Hispasat и немецкой группы, включающей Deutsche Telekom и German Aerospace Centre.

В мае 2007 года консорциум вышел из проекта, и руководство Galileo взяла на себя Еврокомиссия. Сейчас из 30 планируемых спутников на орбите находится только один, второй планируется вывести на орбиту 27 апреля 2008 года.

На данный момент ЕС потратил на реализацию проекта около 1 млрд евро

Влияние ионосферы на характеристики трансионосферных радиосигналов

Электромагнитные волны, распространяющиеся через ионосферу, испытывают самые разнообразные возмущения. Основной характеристикой ионосферы, определяющей изменение параметров радиоволны, является интегральное (полное) электронное содержание I ( t ) или его производные (по времени и пространству) I ´ t ( t ), I′ x ( t ) и I′ y ( t ) вдоль пути распространения.

Изменения ПЭС можно условно разделить на регулярные и нерегулярные. Регулярные изменения (сезонные, суточные), по крайней мере, для магнитоспокойной среднеширотной ионосферы, описываются моделями, дающими относительные точности прогноза ПЭС до 50 - 80 %. Нерегулярные изменения (вариации) связаны с ионосферными неоднородностями различной природы, спектр которых носит степенной характер.

В результате проведенных в последнее время исследований стало ясно, что возмущения ионосферы во время магнитных бурь сказываются на деградации сигналов и сбоях системы GPS не только на экваторе и в полярной зоне, но даже на средних широтах. Однако вопрос о причинах и конкретных механизмах этого влияния остается в значительной степени открытым.

Основной задачей будущих исследований является изучение физических механизмов многомасштабных вариаций полного электронного содержания в ионосфере во время геомагнитных возмущений околоземного космического пространства, сопровождающихся деградацией сигналов и сбоями спутниковых радиотехнических систем. Эти исследования должны носить комплексный характер с максимальным привлечением ряда независимых экспериментальных средств мониторинга ионосферы (цифровые ионозонды, радары некогерентного рассеяния, ЛЧМ-ионозонды и т.д.).

Каждый полный набор данных включает ионосферную модель, которая используется в приемнике для аппроксимации задержки фазы сигнала при его прохождении через ионосферу при любом расположении спутников и в любой момент времени. Методы измерение дальности до спутника С помощью псевдослучайного кода. Псевдодальность – расстояние между антенной приемника и спутником измеренное с помощью псевдослучайного кода. Как говорилось раньше, эти расстояния необходимы для расчета координат. Процедура определения псевдодальности, может быть описана следующим образом.
Представим, что часы на спутнике и приемнике полностью синхронизированы друг с другом. Когда код PRN передается от спутника, приемник воспроизводит точную копию того же кода. После некоторое время, код переданный спутником будет принят приемником. Сравнивая переданный код и его точную копию, приемник может вычислить время нужное для того чтоб код достиг приемника. Умножение времени путешествия на скоростью света дает нам дальность между спутником и приемником . Измерения расстояния по коду К сожалению, предположение, что приемник и спутниковые часы полностью синхронизированы, не совсем верен. Этот метод вычисления дальности требовал бы очень точной синхронизации часов спутника и приемника. На спутники GPS стоят очень точные атомные часы, очень дорого обеспечить такими часами приемник, так как их цена может достигать 20 000 $.
Проблему синхронизации часов решают, рассматривая ошибку часов приемника как дополнительное неизвестное в навигационных уравнениях.
Расстояния между спутником и приемником - сумма общего количества полных циклов плюс дробный цикл между приемником и спутник, умноженный на длину волны несущей. Дальность, определенная с помощью фазы несущей, имеет намного большую точность чем дальность, полученная с помощью кода.
Есть, однако, одна проблема. Несущая это синусоидальная волна, что означает, что все циклы выглядят одинаково. Поэтому, приемник GPS не может отличить один цикл от другого. Другими словами, приемник, сразу при включении, не может определить общее количество полных циклов между спутником и приемником. Он может определить только дробную часть цикла (с точность не менее 2 мм), в то время как полное число циклов остается неизвестным, или неоднозначным.

К счастью, приемник может отслеживать изменение фазы, будучи включенным. Это означает, что начальная неопределенность решается с течением временем. Определение полного числа циклов несущей (длин волн) между антенной и спутником называется разрешением неоднозначности - поиском целого значения числа длин волн. Для измерений в режиме с постобработкой, который используется для определения местоположения с точностью на уровне сантиметра, это целое значение определяется во время обработки на компьютере. Для измерений в реальном времени, которые используются для определения местоположения с точностью на уровне сантиметра, это целое значение определяется в течение процесса называемого инициализацией.
Пропуск цикла сигнал - это скачок в целое число циклов в фазе несущей при измерении дальности. Пропадание сигнала может быть вызвано преградой между сигналом и спутником. Радиопомехи, ионосферное возмущение, и высокая динамика приемника - все это также может быть причинной пропадания сигнала. Так же проскальзывания цикла может произойти из-за сбоя приемника. Пропуск цикла может длиться в течение любого времени.
Вам необходимо знать координаты вашей базовой станции как можно точнее, так как точность получаемая в результате дифференциальной коррекции напрямую зависит от точности координат базовой станции. Существует два метода выполнения дифференциальной коррекции, в реальном времени и в постобработке

Шебшаевич В. С., Дмитриев П. П., Иванцев Н. В. и др. Сетевые спутниковые радионавигационные системы / Под ред. В. С. Шебшаевича. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1993. — 408 с. — ISBN 5-256-00174-4

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ (редакция 5.0). КООРДИНАЦИОННЫЙ НАУЧНО-ИНФОРМАЦИОННЫЙ ЦЕНТР (2002). — официальное техническое описание параметров и сигнала ГЛОНАСС. Проверено 14 декабря 2009.

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ (редакция 5.1). РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ (2008). — официальное техническое описание параметров и сигнала ГЛОНАСС. Проверено 14 декабря 2009.

GPS - аббревиатура от английского термина Global Positioning System, проект первоначально задумывался только для военных целей и принадлежит военному ведомству США. Основной задачей системы является высокоточное определение координат различных подвижных и стационарных объектов на местности. Датой рождения этой технологии, считается февраль 1978 года - дата, когда был выведен на орбиту первый спутник, а в полную мощность система заработала только в декабре 1993 года.

Коротко о GPS

Основой системы GPS являются 24 спутника NAVSTAR (Navigation Satellite Time and Ranging) работающих в единой сети и находящихся на шести круговых орбитах расположенных под углом 60° друг к другу, таким образом, чтобы из любой точки земной поверхности были видны от четырех до двенадцати таких спутников. На каждой орбите находится по 4 спутника, высота орбит примерно равна 20000 км, а период обращения каждого спутника вокруг земли 12 часов.

Коротко о GPS

Спутник весит более 900 кг и с раскрытыми солнечными батареями имеет размер около 5 метров, мощность радиопередатчика составляет 50 ватт. Средний срок службы каждого спутника системы приблизительно 10 лет, и по мере того как спутник вырабатывает свой ресурс, на замену ему на орбиту выводится новый спутник.

Система GPS не является полностью автономной, ее работоспособность контролируется станциями наблюдения с Земли, расположенными на Гавайях, атолле Кваджелейн, островах Вознесения и Диего-Гарсия. Вся информация записывается и передается на главную командную станцию, расположенную на военной базе Falcon в Колорадо-Спрингс откуда производится корректировка орбит и навигационной информации.

Коротко о GPS

Главной идеей системы GPS является определения координат на основании расчета расстояний от объекта расположенного на земле до группы спутников в космосе измеряемых системой, при этом спутники выступают как точно координированные точки отсчета. В настоящее время GPS-системы широко используются для спутникового мониторинга транспорта и различных передвижных объектов. Расстояние рассчитывается по обычной формуле известной из курса математики начальной школы, расстояние равно скорости умноженной на время. Скорость в данном случае равна скорости распространения радиоволн 300000 км/с и если точно знать время, когда этот сигнал был отправлен со спутника, то можно рассчитать расстояние до него.

Каким же образом происходит вычисление времени прохождения сигнала от спутника до объекта? На самом деле все очень просто. Для этого на спутнике и в GPS приёмнике на земле одновременно генерируется одинаковый псевдослучайный код (PRN или PseudoRandom Number code). Использование этого кода позволяет приёмнику определить временную задержку в любой момент времени. Кроме того, спутники могут излучать сигнал на одной и той же частоте, так как каждый спутник идентифицируется по своему псевдослучайному коду. GPS приёмник проверяет входящий сигнал со спутника и определяет, когда он генерировал такой же код. Полученная разница, умноженная на скорость света (~ 300000 км/с) даёт искомое расстояние.

Как видно из сказанного выше, вычисления напрямую зависят от точности хода часов. Код должен генерироваться на спутнике и GPS приёмнике в одно и то же время, поэтому на спутниках установлены атомные часы, имеющие точность около одной наносекунды. Однако это слишком дорого, чтобы устанавливать такие часы в каждый GPS приёмник, вместо этого используют измерения от четвёртого спутника. Эти измерения можно использовать для устранения ошибок, которые возникают, если часы на спутнике и в GPS приёмнике не синхронизированы. Для наглядности, рассмотрим ситуацию на плоскости, так как в этом случае необходимы только три спутника для вычисления местоположения объекта.

Если получены измерения с трёх спутников и все часы точные, то круги, описанные радиус-векторами, будет пересекаться в одной точке. Однако если часы в GPS приёмнике спешат на 1 секунду, то картина будет выглядеть примерно так, как показано на рисунке.

Коротко о GPS

В таком случае, когда GPS приёмник получает серию измерений, которые не пересекаются в одной точке, компьютер в GPS приёмнике начинает вычитать (или добавлять) время методом последовательных итерации до тех пор, пока не сведёт все измерения к одной точке. После этого вычисляется поправка и делается соответствующее уравнивание.

Если вам требуется третье измерение, то необходим четвёртый спутник для устранения ошибок хода часов в GPS приёмнике. Таким образом, при работе в поле вам необходимо иметь минимум четыре спутника, чтобы определить трёхмерные координаты объекта.

Коротко о GPS

Для того чтобы понять, как это происходит, нужно немного пространственного мышления. Допустим, что расстояние от одного спутника известно, и мы можем описать сферу заданного радиуса вокруг него. Когда становится известным расстояние и до второго спутника, то определяемое местоположение будет расположено где-то в круге, задаваемом пересечением двух сфер, а третий спутник определяет две точки на окружности. Остаётся рассчитать какая из них, и есть искомое местоположение. Одна из точек всегда может быть отброшена, так как она имеет высокую скорость перемещения или находится под поверхностью Земли.

Коротко о GPS

Таким образом, зная расстояние до трёх спутников, можно вычислить координаты определяемой точки.

Коротко о GPS

Просто нажмите на кнопку нужного Вам сервиса и данная статья будет сохранена.

Презентация: Масштаб, компас, gps навигация

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.

Аннотация к презентации

Посмотреть и скачать бесплатно презентацию по теме "Масштаб, компас, gps навигация", состоящую из 24 слайдов. Размер файла 0.81 Мб. Каталог презентаций, школьных уроков, студентов, а также для детей и их родителей.

Содержание

Презентация: Масштаб, компас, gps навигация

Масштаб, компас, GPS навигация


Слайд 2

Я выбрал эту тему, потому что меня заинтересовала связь между математикой и географией. Решение задач на пропорцию используя масштаб основаны на практическом применении отношений. В процессе работы я хочу понять, что такое масштаб, научиться находить расстояние по карте, узнать принцип действия компаса, какие бывают компасы, а также для чего нужны GPS-навигаторы.


Слайд 3

МАСШТАБ.

Масштабом называют отношение размера изображения к размеру изображаемого объекта. Понятие наиболее распространено в геодезии, картографии и проектировании – отношение натуральной величины объекта к величине его изображения.


Слайд 4


Слайд 5

ВИДЫ МАСШТАБОВ.


Слайд 6


Слайд 7

ТОЧНОСТЬ МАСШТАБА.

Точность масштаба – это отрезок горизонтального проложения линии, соответствующий 0,1 мм на плане. Значение 0,1 мм для определения точности масштаба принято из-за того, что это минимальный отрезок, который человек может различить невооруженным глазом.


Слайд 8


Слайд 9

КОМПАС.

Компас – это устройство, облегчающее ориентирование на местности. Существуют три принципиально различных вида компаса: магнитный компас, гирокомпас и электронный компас.


Слайд 10

ПРИНЦИП ДЕЙСТВИЯ КОМПАСА.

Принцип действия магнитного компаса основан на взаимодействии магнитного поля постоянных магнитов компаса с горизонтальной составляющей магнитного поля Земли. Свободно вращающаяся магнитная стрелка поворачивается вокруг оси, располагаясь вдоль силовых линий магнитного поля, Таким образом, стрелка всегда указывает одним из концов в направлении линии магнитного поля, которая идет к Северному магнитному полюсу. Проще говоря, стрелка компаса одним концом указывает всегда на север, а другим, соответственно, на юг.


Слайд 11


Слайд 12

ИЗ ЧЕГО СОСТОИТ КОМПАС.

Обычный компас состоит из круглой латунной или пластмассовой коробки, в центре которой на острие стального шпиля свободно вращается стальная намагниченная стрелка, а в ее центр вставлен кусочек хорошо отшлифованного твердого камня – агата. Этот камень служит для уменьшения трения между острием шпиля и магнитной стрелкой. Коробка компаса сверху закрыта стеклом, под стрелкой на шпиль надет небольшой рычажок – тормоз, которым стрелка может быть плотно прижата к стеклу.


Слайд 13


Слайд 14

ГИРОКОМПАС.

Гирокомпас – устройство куда более сложное. Используется он почти повсеместно в системах навигации и управления крупных морских судов; в отличие от магнитного компаса его показания связаны с направлением на истинный географический (а не магнитный) северный полюс. Обычно гирокомпас применяется как опорное навигационное устройство в судовых рулевых системах с ручным или автоматическим управлением.


Слайд 15


Слайд 16

ЭЛЕКТРОННЫЙ КОМПАС.

Электронный компас, в свою очередь построен на принципе определения координат через спутниковые системы навигации.


Слайд 17


Слайд 18

ЗАЧЕМ НУЖЕН GPS НАВИГАТОР.

GPS-навигатор – устройство, которое получает сигналы глобальной системы позиционирования с целью определения текущего местоположения устройства на Земле. Устройства GPS обеспечивают информацию о широте и долготе, а некоторые могут также вычислить высоту.


Слайд 19


Слайд 20

АВТОМОБИЛЬНЫЕ НАВИГАТОРЫ.

Современные автомобильные навигаторы способны прокладывать маршрут с учетом организации дорожного движения и осуществлять адресный поиск. Они могут обладать обширной базой объектов инфраструктуры, которая служит для быстрого поиска пунктов общественного питания, автозаправочных станций, мест для стоянок и отдыха. Некоторые модели способны принимать и учитывать при прокладке маршрута информацию о ситуации на дорогах, по возможности избегая серьезных транспортных заторов. Данные о пробках могут быть получены навигатором посредством мобильной связи или из радиоэфира.


Слайд 21


Слайд 22

ПРАКТИЧЕСКОЕ ЗАДАНИЕ.

Задание: если масштаб карты 1:500 000, то на этой карте длина каждого отрезка уменьшена в 500 000 раз. На такой карте расстояние, равное 5 километрам, будет изображаться отрезком в 1 сантиметр. Какие из написанный масштабов можно применять для увеличения, а какие для уменьшения? Почему? М 1:500 000, М 1:1 000, М 1: 3 000, М 1: 5, М 5: 1


Слайд 23

ВЫВОДЫ.

В процессе проделанной работы я лучше изучил принцип действия компаса, узнал про разные виды компасов, изучил назначение и принцип действия GPS навигатора а также поработал с различными видами масштабов.


Слайд 24

Читайте также: