Сообщение на тему аминокислоты и их роль в биохимических процессах

Обновлено: 16.05.2024

По современным данным, биомасса единовременно живущих на Земле организмов составляет 1,8·10 12 -2,4·10 12 т в пересчете на сухое вещество. В организмах, составляющих биомассу Земли, обнаружено свыше 60 химических элементов. Среди них условно выделяют группу элементов, встречающихся в составе любого организма. К их числу относят C, N, H, O, S, P, Na, K, Са, Mg, Zn, Fe, Mn и др. Первым шести элементам приписывают исключительную роль в биосистемах, так как из них построены важнейшие соединения, составляющие основу живой материи – белки, нуклеиновые кислоты, углеводы, липиды и др.

Примерно 75% биомассы составляет вода. Вторым же по количественному содержанию в биологических объектах, но, несомненно, первым и главным по значению классом соединений являются белки. Белки состоят из мономерных единиц, т.е. аминокислот.

Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот , в которых один или несколько атомов водорода заменены на аминные группы.

В данной работе мы рассмотрим общие химические свойства аминокислот, их изомерию, классификации ?-аминокислот, а также некоторые химические свойства.

Общие химические свойства

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3 + , а карбоксигруппа — в виде -COO - . Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

2) Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков и нейлона-6.

3) Изоэлектрической точкой аминокислоты называют pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Изомерия

Рис.1. Конфигурация ?-аминокислот

Все природные аминокислоты, входящие в состав белков, относятся именно к L-ряду.

Оптические изомеры аминокислот претерпевают медленную самопроизвольную неферментативную рацемизацию. Например, в белке дентине (входит в состав зубов) L-аспартат переходит в D-форму со скоростью 0,1% в год, что может быть использовано для определения возраста биологических объектов.

3.  -Аминокислоты

По физиологическому признаку аминокислоты делятся на незаменимые – те аминокислоты, которые не синтезируются в организме человека и высших млекопитающих (Val, Leu, Ile, Thr, Met, Lys, Phe, Trp), полузаменимые – те аминокислоты, которые синтезируются в организме человека, но в недостаточном количестве (Arg, Tyr, His) и обычные – те аминокислоты., которые синтезируются во всех организмах (все остальные).

3.1. Классификация стандартных аминокислот по R-группам


  • Неполярные: аланин, валин, изолейцин, лейцин, метионин, пролин, триптофан, фенилаланин

  • Полярные незаряженные: аспарагин, глицин, глутамин, серин, тирозин, треонин, цистеин

  • Заряженные отрицательно при pH=7: аспарагиновая кислота, глутаминовая кислота

  • Заряженные положительно при pH=7: аргинин, гистидин, лизин

НЕПОЛЯРНЫЕ АМИНОКИСЛОТЫ

ПОЛЯРНЫЕ НЕЗАРЯЖЕННЫЕ АМИНОКИСЛОТЫ

ЗАРЯЖЕННЫЕ АМИНОКИСЛОТЫ

Рис.2. Наиболее распространенные ?-аминокислоты

Из 20 -аминокислот, приведенных на Рис. 2 , 17 обладают одним хиральным центром (то есть, могут существовать в виде двух энантиомеров), одна ахиральна (глицин) и две имеют два хиральных центра (изолейцин и треонин). Каждая из этих двух аминокислот может существовать в виде четырех стереоизомеров. Рассмотрим стереохимию и номенклатуру этих соединений на примере треонина (Рис. 2).

Рис. 2. Стереоизомеры треонина

3.2. Классификация стандартных аминокислот по функциональным группам


  • Алифатические

    • Моноаминомонокарбоновые: аланин , валин , глицин , изолейцин , лейцин

    • Оксимоноаминокарбоновые: серин , треонин

    • Моноаминодикарбоновые: аспарагиновая кислота , глутаминовая кислота , за счёт второй карбоксильной группы имеют несут в растворе отрицательный заряд

    • Амидымоноаминодикарбоновых: аспарагин , глутамин

    • Диаминомонокарбоновые: аргинин , гистидин , лизин , несут в растворе положительный заряд

    • Серусодержащие: цистеин ( цистин ), метионин

    4. Кислотно-основное равновесие в растворе -аминокислот

    -Аминокислоты обладают как минимум двумя ионогеннными группами — карбоксилом и аминогруппой. Поскольку атом азота и двойная связь C=O разделены двумя ординарными связями, сопряжение карбоксильной группы со свободной электронной парой азота невозможно по пространственным соображениям. Взаимное влияние функциональных групп может осуществляться только по механизму индуктивного эффекта. Поскольку аминогруппа проявляет –I-эффект, который существенно увеличивается при протонировании, она должна повышать кислотность карбоксила.

    Рис. 3 . Кислотно-основное равновесие в растворе ? аминокислот

    В свою очередь, неионизованная карбоксильная группа (–I-эффект) должна понижать основность аминогруппы, а ионизованный карбоксил за счет сильного +I-эффекта будет усиливать основные свойства NH2-группы.

    В сильно кислой среде -аминокислоты существуют в виде двухосновной кислоты (катион на Рис. 3). В сильно щелочной среде будет преобладать анион. В нейтральных средах могут присутствовать две незаряженные формы — нейтральная и биполярная (последнюю часто называют цвиттер-ионом). Соотношение нейтральной и биполярной форм определяется относительной силой двух кислотных группировок катиона (-COOH и NH3 + ). Чем больше кислотность карбоксильной группы по сравнению с аммонийной (или чем основнее аминогруппа по сравнению с карбоксилат-анионом), тем сильнее равновесие сдвинуто в сторону цвиттер-иона.

    -Аминокислоты в нейтральных средах существуют практически полностью в виде цвиттер-иона.

    Характеристическое значение рH, при котором концентрация цвиттер-иона максимальна называют изоэлектрической точкой (pI).. Поскольку в целом молекула цвиттер-иона электронейтральна, электропроводность раствора в такой точке будет минимальной, а молекула аминокислоты не будет смещаться в электрическом поле.

    При отсутствии ионизирующихся групп в боковом радикале изоэлектрическая точка лежит при pH, численно равном среднему арифметическому двух величин pK эфф .

    В Табл. 1 приведены величины pK эфф и pI некоторых аминокислот.

    Табл. 1. Экспериментально измеренные pK и изоэлектрические точки -аминокислот


    Аминокислота

    pKэфф

    pI

    COOH

    -NH2

    Боковая группа

    Aланин

    2,3

    9,9



    6,0

    Аргинин

    1,8

    9,0

    12,5

    11,2

    Аспарагин

    2,0

    8,8



    5,4

    Аспарагиновая кислота

    2,0

    10,0

    3,9

    2,8

    Валин

    2,3

    9,6



    6,0

    Гистидин

    1,8

    9,2

    6,0

    7,5

    Глицин

    2,4

    9,8



    6,0

    Глутамин

    2,2

    9,1



    5,7

    Глутаминовая кислота

    2,2

    9,7

    4,3

    3,2

    Изолейцин

    2,4

    9,7



    6,0

    Лейцин

    2,4

    9,6



    6,0

    Лизин

    2,2

    9,2

    10,8

    9,6

    Метионин

    2,3

    9,2



    5,7

    Пролин

    2,0

    10,6



    6,3

    Серин

    2,1

    9,2



    5,7

    Тирозин

    2,2

    9,1

    10,9

    5,7

    Треонин

    2,6

    10,4



    5,6

    Триптофан

    2,4

    9,4



    5,9

    Фенилаланин

    1,8

    9,1



    5,5

    Цистеин

    1,8

    10,8

    8,3

    5,1

    Практически важно, что в изоэлектрической точке аминокислоты обладают наименьшей растворимостью.

    5. Некоторые химические свойства -аминокислот

    Химические свойства -аминокислот в основном определяются поведением содержащихся в них функциональных групп — карбоксильной группы, аминогруппы и функциональной группы бокового радикала (коль скоро таковая присутствует). Здесь мы остановимся на химических особенностях, интересных с биохимической точки зрения.

    Для обнаружения небольших количеств аминокислот наиболее широко используется нингидриновая реакция (Рис. 4).

    При нагревании аминокислот с избытком нингидрина образуется продукт лилового цвета, если аминокислота содержит свободную -аминогруппу, и желтый продукт, если, как у пролина, ее аминогруппа защищена. Этот метод обладает высокой чувствительностью и используется как для качественного, так и для количественного (колориметрического) определения аминокислот.

    Рис. 4. Нингидриновая реакция, используемая для обнаружения и количественного определения ? аминокислот. Атомы аминокислоты отмечены жирным шрифтом. Пигмент содержит две молекулы нингидрина и атом азота аминокислоты

    Для определения аминокислотной последовательности пептидов важное значение имеет реакция аминокислот с 1 фтор-2,4-динитробензолом (Рис. 5).

    Рис. 5. Образование 2,4-динитрофенильных производных аминокислот

    SH-Группа цистеина чрезвычайно легко в окислительных условиях образует S–S-связь (Рис. 6).

    Рис. 6. Цистеин и цистин. Образование S–S-мостиков. В белках встречается как цистин, так и цистеин
    Эта реакция проходит уже в присутствии газообразного кислорода. Обратная реакция легко протекает под действием даже слабых восстановителей. Образование S–S-связей играет важную роль в организации третичной структуры белка.

    Отметим, что все -аминокислоты, входящие в состав белков, имеют атом водорода у углеродного атома. Это очень важная особенность, на которой основан метаболизм аминокислот в живых организмах.

    Для понимания строения и свойств аминокислот, которые являются соединениями со смешанными функциями и проявляют как свойства карбоновых кислот, так и свойства аминов, необходимо изучение и азотсодержащих органических соединений, и карбоновых кислот.
    Список использованных материалов

    1. Дюга Т., Пенни К.. Биоорганическая химия. М.: Мир, 1983.

    2. Ленинджер А.. Основы биохимии. М.: Мир, 1985. – Т.1-3.

    3. Марри Р., Греннер Д., Мейес П., Родуэл В.. Биохимия человека. М.: Мир, 1993. – Т.1-3.

    • Для учеников 1-11 классов и дошкольников
    • Бесплатные сертификаты учителям и участникам

    Доклад по химии
    на тему:

    Биологическая роль аминокислот

    Выполнила: Вдовкина Дарья, ученица 9 класса

    Проверила: Морева Татьяна Ивановна,

    Существенные:

    Это третья разветвленная аминокислота, Один из главных компонентов в росте и синтезе тканей тела .Используется для лечения депрессии, так как действует в качестве несильного стимулирующего соединения. Помогает предотвратить неврологические заболевания и лечить множественный склероз, так как защищает миелиновую оболочку, окружающую нервные волокна в головном и спинном мозге.Вместе с лейцином и изолейцином служит источником энергии в мышечных клетках, а также препятствует снижению уровня серотонина. Понижает чувствительность организма к боли, холоду и жаре .Недостаток может вызываться дефицитом витаминов группы В, или полноценных (богатых всеми незаменимыми аминокислотаим) белков.

    Основной источник - животные продукты:

    – Молоко
    – Яйца
    – Мясо
    – Овес
    – Рис
    – Лесные орехи.

    Гистидин, в противоположность прочим аминокислотам, почти на 60 процентов всасывается через кишечник.

    Он играет важную роль в метаболизме белков, в синтезе гемоглобина, красных и белых кровяных телец, является одним из важнейших регуляторов свертывания крови. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии; способствует росту и восстановлению тканей. Недостаток гистидина может вызвать ослабление слуха. Гистидин легче других аминокислот выделяется с мочой. Поскольку он связывает цинк, большие дозы его могут привести к дефициту этого металла .

    Природные источники гистидина:
    – Бананы
    – Рыба
    – Говядина

    Одна из трех так называемых разветвленных аминокислот (англ. Branched Chain Amino Acids, BCAA's). Эти аминокислоты играют важную роль в формирования мышечной ткани. Дефицит изолейцина выражается в потере мышечной массы.

    . Поскольку он играет значительную роль в получении энергии за счет расщепления гликогена мышц, недостаток изолейцина также приводит к проявлению гипогликемии (понижения уровня сахара в крови), выражающейся в вялости и сонливости. Низкие уровни изолейцина наблюдаются у пациентов с отсутствием аппетита на нервной почве (анорексией).

    Поставляется всеми продуктами, содержащими полноценый белок :

    – Молоко
    – Мясо
    – Яйца
    – Лесной орех

    Лейцин также является разветвленной аминокислотой, необходимой для построения и развития мышечной ткани, синтеза протеина организмом, для укрепления иммунной системы . Понижает содержание сахара в крови и способствует быстрейшему заживлению ран и костей. Установлено, что его нет у алкоголиков и наркоманов. Лейцин, как и изолейцин, может служить источником энергии на клеточном уровне. Он также предотвращает перепроизводство серотонина и наступление усталости, связанное с этим процессом. Недостаток этой аминокислоты может быть обусловлен либо неудовлетворительным питанием, либо нехваткой витамина В6 .

    Природные источники лейцина:
    – Овес
    – Кукуруза
    – Просо
    – Яйца
    – Молоко
    – Лесной орех .

    Обеспечивает должное усвоение кальция; участвует в образовании коллагена ( из которого затем формируются хрящи и соединительные ткани); активно участвует в выработке антител, гормонов и ферментов. Лизин служит в организме исходным веществом для синтеза карнитина. Американские ученые сообщают, что однократный прием 5000 мг лизина увеличивает уровень карнитина в 6 раз. Дополнительным благоприятным эффектом при его приеме является накопление кальция . Недавние исследования показали, что лизин, улучшая общий баланс питательных веществ, может быть полезен при борьбе с герпесом . Дефицит лизина неблагоприятно сказывается на синтезе протеина ,что приводит к уставаемости, неспособности к концентрации, раздражительности, повреждению сосудов глаз, потере волос, анемии и проблем в репродуктивной сфере.

    Природные источники лизина:
    – Картофель
    – Молоко
    – Мясо
    – Яйца
    – Соя
    – Пшеница
    – Чечевица .

    Является основным поставщиком сульфура, который предотвращает расстройства в формировании волос, кожи и ногтей; способствует понижению уровня холестерина, усиливая выработку лецитина печенью; понижает уровень жиров в печени, защищает почки; участвует в выводе тяжелых металлов из организма; регулирует образование аммиака и очищает от него мочу, что понижает нагрузку на мочевой пузырь; воздействует на луковицы волос и поддерживает рост волос . Так же важное пищевое соединение, действующее против старения, так как оно участвует в образовании нуклеиновой кислоты - регенерирующей составной части белков коллагена. Цистин и таурин (аминокислота, в больших количествах встречающаяся в мускулатуре сердца и скелетных мышцах, а также в центральной нервной системе) синтезируются из метионина. Черезмерное потребление метионина приводит к ускоренной потере кальция.

    Природные источники метионина:
    – Яйца
    – Рыба – Бразильский орех
    – Печень – Кукуруза
    – Овес

    Треонин, как и метионин, обладает липотрофными свойствами. Он необходим для синтеза иммуноглобулинов и антител. Важная составляющая коллагена, эластина и протеина эмали; участвует в борьбе с отложением жира в печени; поддерживает более ровную работу пищеварительного и кишечного трактов; принимает общее участие в процессах метаболизма и усвоения. Важная составляющая в синтезе пуринов, которые, в свою очередь, разлагают мочевину, побочный продукт синтеза белка.
    Регулирует передачу нервных импульсов нейромедиаторами в мозгу и помогаег бороться с депрессией. Исследования показали, что он может снизить непереносимость глютена пшеницы.

    Известно, что глицин и серин синтезируются в организме из треонина В плазме крови младенцев находится в больших количествах, чтобы защищать иммунную систему.

    Природные источники треонина:
    – Молоко
    – Яйца
    – Горох
    – Пшеница
    – Говядина .

    Является первичным по отношению к ниацину (витамину В) и серотонину, который, участвуя в мозговых процессах управляет аппетитом, сном, настроением и болевым порогом. Естественный релаксант, помогает бороться с бессонницей, вызывая нормальный сон; помогает бороться с состоянием беспокойства и депрессии; помогает при лечении головных болей при мигренях; укрепляет иммунную систему; уменьшает риск спазмов артерий и сердечной мышцы; вместе с Лизином борется за понижение уровня холестерина .Триптофан распадается до серотонина - нейромедиатора, который погружает нас в сон.

    О лекарствах с триптофаном нужно забыть из-за дискредитации препарата, вследствие ошибки в технологии его производства японской корпорацией

    Природные источники триптофана:
    – Орехи кешью
    – Молоко
    – Яйца .

    Фенилаланин


    Используется организмом для производства тирозина и трех важных гормонов - эпинэрфина, норэпинэрфина и тироксина. Используется головным мозгом для производства Норэпинэрфина, вещества, которое передает сигналы от нервных клеток к головному мозгу; поддерживает нас в в состоянии бодрствования и восприимчивости; уменьшает чувство голода; работает как антидепрессант и помогает улучшить работу памяти. Подавляет аппетит и снимает боль.

    Регулирует работу щитовидной железы и способствует регуляции природного цвета кожи путем образования пигмента меланина.

    Эта аминокислота играет важную роль в синтезе таких белков, как инсулин, папаин и меланин, а также способствует выведению почками и печенью продуктов метаболизма. Повышенное потребление фенилаланина способствует усиленному синтезу нейротрансмиттера серотонина. Кроме того, фенилаланин играет важную роль в синтезе тироксина – этот гормон щитовидной железы регулирует скорость обмена веществ. У некоторых людей отмечается сильнейшая аллергия к фенилаланину, так что эта аминокислота должна быть названа на этикетке. Беременным и кормящим матерям не надо принимать фенилаланин.

    Природные источники фенилаланина:
    – Молоко
    – Лесной орех
    – Рис
    – Арахис
    – Яйца .

    Полусущественные:

    Тирозин необходим для нормальной работы надпочечников, щитовидной железы и гипофиза, создания красных и белых кровяных телец. Синтез меланина, пигмента кожи и волос, также требует присутствия тирозина. Тирозин обладает мощными стимулирующими свойствами. При хронической депрессии, для которой не существует общепринятых методов лечения, потребление 100 мг этой аминокислоты в день приводит к существенному улучшению. В организме тирозин превращается в ДОФА, а затем в дофамин, регулирующий давление крови и мочеиспускание, а также участвует в первом этапе синтеза норэпинефрина и эпинефрина (адреналина). Тирозин мешает превращению фенилаланина в эпинефрин, и потому является незаменимой аминокислотой для взрослых мужчин. Он необходим мужчинам, страдающим фенилкетонурией (генетическое заболевание, при котором превращение фенилаланина в тирозин затруднено). Тирозин также вызывает усиленное выделение гипофизоом гормона роста. При определении пищевой ценности белков следует учитывать сумму содержаний тирозина и фенилаланина, поскольку первый получается из второго. При заболеваниях почек синтез тирозина в организме может резко ослабиться, поэтому в этом случае его необходимо принимать в виде добавки.

    Природные источники тирозина:
    – Молоко
    – Горох
    – Яйца
    – Арахис
    – Фасоль

    Молекула цистина состоит из двух молекул цистеина, соединенных дисульфидной связью . Цистеин может замещать метионин в пищевых белках. Он необходим для роста волос и ногтей. Цистеин также играет важную роль в формировании вторичной структуры белков за счет образования дисульфидных мостиков, например, при образовании инсулина и ферментов пищеварительной системы. Он содержит серу, а потому может связвать тяжелые металлы, например медь, кадмий и ртуть. При отравлении тяжелыми металлами полезно принимать это вещество. Недостаток цистина в течение длительного времени приводит к выведению из организма важных микроэлементов. Кроме того, цистин является важным антиоксидантом. Сочетание цистина с витамином Е приводит к усилению антиоксидантного действия обоих веществ (эффект синергизма). Повышенное потребление цистина ускоряет восстановление после операций, ожогов, укрепляет соединительные ткани, вследствие чего повышенное потребление цистеина может быть рекомендовано при артрите.

    Цистин может синтезироваться организмом из метионина; совместный прием обеих аминокислот усиливает липотропные свойства последнего. Он также важен для получения трипептида, называемого глутатионом (содержит цистин, глутаминовую кислоту и глицин). Цистин в сочетании с витамином С (примерно 1:3) способствует разрушению почечных камней. Цистеин очень плохо растворим в воде и потому вряд ли применим для приготовления жидких форм.

    Природные источники цистеина и цистина:
    – Яйца
    – Овес
    – Кукуруза

    Несущественные:

    Является важным источником энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител; активно участвует в метаболизме сахаров и органических кислот. Синтезируется из разветвленных аминокислот. Падение уровня сахара и недостаток углеводов в пище приводит к тому, что мышечный протеин разрушается, и печень превращает полученный аланин в глюкозу (процесс глюконеогенеза), чтобы выровнять уровень глюкозы в крови. При интенсивной работе в течение более одного часа потребность в аланине возрастает, поскольку истощение запасов гликогена в организме приводит к расходу этой аминокислоты для их пополнения. При катаболизме аланин служит переносчиком азота из мышц в печень (для синтеза мочевины). Прием аланина имеет смысл при тренировках, длящихся более часа. Недостаток его приводит к повышению потребности в разветвленных аминокислотах.

    Природные источники аланина :
    – Желатин
    – Кукуруза
    – Говядина
    – Яйца
    – Свинина
    – Рис
    – Молоко
    – Соя
    – Овес .


    Л-Аргинин вызывает замедление развития опухолей и раковых образований. Очищает печень. Помогает выделению гормона роста, укрепляет иммунную систему, способствует выработке спермы и полезна при лечении расстройств и травм почек. Необходим для синтеза протеина и оптимального роста. Наличие Л-Аргинина в организме способствует приросту мышечной массы и снижению жировых запасов организма. Также полезен при расстройствах печени, таких, как цирроз печени, например. Известно, что аргинин участвует в связывании аммиака, ускоряя восстанавливаемость после больших нагрузок. Наличием аргинина обусловлена высокая биологическая ценность молочного белка. В организме из аргинина быстро получается орнитин, и наоборот. Он ускоряет метаболизм жиров и снижает концентрацию холестерина в крови. Большие дозы аргинина могут вызывать потерю воды, поэтому лучше его принимать небольшими дозами в течение дня. . Не рекомендуется к приему беременными и кормящими женщинами.

    Природные источники аргинина:
    – Орехи
    – Мясо
    – Рыба
    – Соя
    – Пшеница
    – Рис
    – Овес .

    Аспарагин/аспарагиновая кислота

    Аспарагин играет в организме чрезвычайно важную роль, он служит сырьем для производства аспарагиновой кислоты, которая участвует в работе иммунной системы и синтезе ДНК и РНК (основные носители генетической информации). Кроме того, аспарагиновая кислота способствует превращению углеводов в глюкозу и последующему запасанию гликогена. Аспарагиновая кислота служит донором аммиака в цикле мочевины, протекающем в печени. Повышенное потребление этого вещества в фазе восстановления нормализует содержание аммиака в организме. Аспарагиновая кислота и аспарагин могут встречаться во фруктовых соках и овощах: так, в яблочном соке ее около 1 г/л, в соках тропических фруктов – до 1,6 г/л. В справочной литературе приводятся суммарные значения для обеих аминокислот.

    Хорошие источники аспарагина и аспарагиновой кислоты:
    – Картофель
    – Кокос
    – Люцерна
    – Арахис
    – Яйца
    – Мясо .

    Глутамин и глутаминовая кислота

    Глутамина в организме содержится больше, чем других аминокислот. Он образуется из глутаминовой кислоты путем присоединения аммиака. Глутамин весьма важен как переносчик энергии для работы мукозных клеток тонкой кишки и клеток иммунной системы, а также для синтеза гликогена и энергообмена в клетках мышц. При катаболизме глутамин становится незаменимой аминокислотой, поскольку поддерживает синтез белка и стабилизирует уровень жидкости внутри клеток. Глутамин улучшает краткосрочную и долгосрочную память и способность к сосредоточению.

    Важен для нормализации уровня сахара, повышении работоспособности мозга, при лечении импотенции, при лечении алкоголизма, помогает бороться с усталостью, мозговыми расстройствами - эпилепсией, шизофренией и просто заторможенностью, нужен при лечении язвы желудка, и формирование здорового пищеварительного тракта.

    Природные источники глутамина и глутаминовой кислоты:
    – Пшеница
    – Рожь
    – Молоко
    – Картофель
    – Грецкий орех
    – Свинина
    – Говядина
    – Соя .

    Активно участвует в обеспечении кислородом процесса образования новых клеток. Является важным участником выработки гормонов, ответственных за усиление иммунной системы.

    Эта аминокислота является исходным веществом для синтеза других аминокислот, а также донором аминогруппы при синтезе гемоглобина и других веществ.

    Глицин очень важен для создания соединительных тканей; в анаболической фазе потребность в этой аминокислоте повышается. Недостаток ее вызывает нарушение структуры соединительной ткани. Повышенное потребление глицина снижает содержание фермента катепсина D и в катаболической ситуации препятствует распаду белков. Он способствует мобилизации гликогена из печени и является исходным сырьем в синтезе креатина, важнейшего энергоносителя, без которого невозможна эффективная работа мышц.

    Глицин необходим для синтеза иммуноглобулинов и антител, а следовательно, имеет особое значение для работы иммунной системы. Недостаток этой аминокислоты ведет к снижению уровня энергии в организме. Глицин также способствует ускоренному синтезу гипофизом гормона роста.

    Природные источники глицина:
    – Желатин
    – Говядина
    – Печень
    – Арахис
    – Овес .

    Карнитин
    Карнитин помогает связывать и выводить из организма длинные цепочки жирных кислот. Печень и почки вырабатывают карнитин из двух других аминокислот - глютамина и метионина. В большом количестве поставляется в организм мясом и молочными продуктами. Различают несколько видов карнитина. Д-карнитин опасен тем, что снижает самостоятельную выработку организмом карнитина. Препараты Л-карнитина в этом отношении считаются менее опасными. Предотвращая прирост жировых запасов эта аминокислота важна для уменьшения веса и снижения риска сердечных заболеваний. Организм вырабатывает Карнитин только в присутствии достаточного количества лизина, железа и энзимов В19 и В69.. Карнитин также повышает эффективность антиоксидантов - витаминов С и Е. Считается, что для наилучшей утилизации жира дневная норма карнитина должна составлять 1500 миллиграммов.

    Стабилизирует возбудимость мембран, что очень важно для контроля эпилептических припадков. Таурин и сульфур считаются факторами, необходимыми при контроле множества биохимических изменений, имеющих место в процессе старения; участвует в освобождении организма от засорения свободными радикалами.

    Треонин, как и метионин, обладает липотрофными свойствами. Он необходим для синтеза иммуноглобулинов и антител. Известно, что глицин и серин синтезируются в организме из треонина.

    Природные источники треонина:
    – Молоко – Пшеница
    – Яйца – Говядина
    – Горох


    Участвует в запасании печенью и мышцами гликогена; активно участвует в усилении иммунной системы, обеспечивая ее антителами; формирует жировые "чехлы" вокруг нервных волокон.

    Серин может быть синтезирован в организме из треонина. Он также образуется из глицина в почках. Серин играет важную роль в энергоснабжении организма. Кроме того, он является компонентом ацетилхолина. Дополнительный прием серина между приемами пищи повышает уровень сахара в крови (см. также аланин).

    Природные источники серина:
    – Молоко
    – Яйца
    – Овес
    – Кукуруза

    Пролин крайне важен для суставов и для сердца. Это важный компонент коллагенов –белков, которые в высоких концентрациях содержатся в костях и соединительных тканях. Пролин может при длительном недостатке или перенапряжении во время занятий спортом использоваться как источник энергии для мышц. Дефицит этой аминокислоты может заметно повысить утомляемость. Свободный пролин в значительном количестве содержится во фруктовых соках, например до 2,5 грамм на каждый литр апельсинового сока.

    Природные источники пролина:
    – Молоко
    – Пшеница

    Орнитин способствует выработке гормона роста, который в комбинации с Л-Аргинином и Л-Карнитином способствует вторичному использованию в обмене веществ излишков жира. Необходим для работы печени и иммунной системы.

    Аминокислоты – это класс органических соединений, содержащих одновременно карбоксильные и аминогруппы. Свойства аминокисллот. Роль в структуре и свойствах белков. Роль в метаболизме (заменимая незаменимая).

    Рубрика Биология и естествознание
    Вид реферат
    Язык русский
    Дата добавления 17.10.2004
    Размер файла 7,4 K

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Министерство охраны здоровья Украины

    Национальный фармацевтический университет

    Реферат

    Харьков - 2004 Аминокислоты - это класс органических соединений, содержащих одновременно карбоксильные и аминогруппы. Обычно аминокислоты растворимы в воде и нерастворимы в органических растворителя. В нейтральных водных растворах аминокислоты существуют в виде биполярных ионов (цвиттерионов) и ведут себя как амфотерные соединения, т.е. проявляются свойства и кислот, и оснований.

    В природе существует свыше 150 аминокислот, но только около 20 важнейших аминокислот служат мономерами для построения белковых молекул. Порядок включения аминокислот в белки определеятся генетическим кодом.

    Именно об этих 20 аминокислотах и будет идти речь дальше. Их общие свойства известны хорошо и описаны практически в каждом учебнике по биохимии. Однако частные свойства, характерные только для той или иной аминокислоты затрагиваются мало, и именно они будут рассмотрены. Для удобства все данные представлены в виде таблицы.

    Роль в структуре и свойствах белков

    Роль в метаболизме (заменимая незаменимая)

    Аланин (б- аминопропионовая кислота)

    Участвует в стабилизации 3-й и 4-й структуры за счёт гидрофобных взаимодействий; участвует в формировании б-спирали

    Играет большую роль в обмене азотистых соединений. Исходное соединение в синтезе каучуков, каратиноидов, углеводов, липидов и др.

    Обладает ярко выраженными основными свойствами, что обеспечивает основный характер белков. В белках её содержится довольно много, особенно в гистонах и протаминах клеточный ядер.

    Способна к образованию ионных и водородный связей, стабилизирую вторичную и третичную структуры белка.

    Данная аминокислота может синтезироваться в организме человека, однако скорость её синтеза, особенно при активном росте может быть недостаточна, что приводит к необходимости введения её из вне. Т.е. аргинин находится на границе между заменимыми и незаменимыми аминокислотами.

    Участвует в синтезе мочевины ( орнитиновый цикл ) и других процессах азотистого обмена.

    Амид дикарбоновой кислоты, обладает основными свойствами, что делает белок некислым. Способен к образованию ионных и водородных связей.

    Путём образования аспаргина из аспаргиновой кислоты в организме связывается токсический аммиак. Принимает участие в реакция переаминирования.

    Аспарагиновая (аминоянтарная) кислота

    Из всех природных аминокислот у неё наиболее выражены кислотные свойства, явл. важной составной частью белков. Обеспечивает гидрофильные свойства белков. Способна образовывать ионные и водородные связи.

    Участвует в реакциях переаминирования. Играет важную роль в обмене азотсодержащих веществ. Участвует в образование мочевины , пиримидиновых оснований.

    Валин (б-аминовалериановая кислота, б-амино-в-метилмасляная кислота)

    Служит одним из исходных веществ при биосинтезе пантотеновой кислоты (витамин В3 ) и пеницилина.

    Гистидин (б-амино-в-имидазолилпропио-новая кислота)

    Преобладают основные свойства, содержится почти во всех белках.

    Для многих животных-незаменимая аминокислота. Исходное вещество при биосинтезе гистамина и биологически активных пептидов мышц - карнозина и анзерина.

    Глицин (аминоуксусная кислота)

    Участвует в организации 3-й и 4-й структуры; препятствует б-спирали; формирует изгиб в-цепи

    Заменимая нейроактивная аминокислота; участвует в синтезе глутатиона, порфирина, креатина гликолевой и гиппуровой кислот, пуриновых оснований.

    Является постоянной составной частью тканей животных, особенно много в протаминах и гистонах, т.е. обеспечивает основный характер белков. Способен к образованию ионных и водородных связей.

    Играет важную роль в азотистом обмене. Путём образования глутамина из глутаминовой кислоты в организме растений и многих животных обезвреживается токсический аммиак. Участвует в биосинтезе пуриновых оснований.

    Глутаминовая (б-аминоглутаровая) кислота

    Обладает слабокислыми свойствами, придает белкам гидрофильные свойства. Способна к образованию ионных и водородных связей.

    Играет важную роль в азотистом обмене ( перенос аминогрупп, связывание токсического для организма аммиака ).

    Изолейцин (б-амино-в-метилвалериановая кислота)

    Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала.

    Установлено, что N-концевой изолейцин в молекуле б-химотрепсина участвует в осуществлении каталитического акта.

    При брожении может служить источником сивушных масел..

    Лейцин (б-аминоизокапроновая кислота)

    В организмах - в состав всех белков. Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала.

    При брожении может служить источником сивушных масел.

    Выраженные основные свойства, что обуславливает основный характер белка. Способен к образованию ионных и водородных связей.

    Метионин (б-амино-г-метилтиомасляная кислота)

    Остаток метионина в молекулах белков, по-видимому, не играет существенной функциональной роли, содержание его в белках, как правило не велико. Однако метионин занимает ключевое положение на начальных этапах биосинтеза белка, образуя специфические комплексы с т-РНК и являясь инициатором синтеза полипептидной цепи.

    Служит в организме донором метильных групп при биосинтезе холина, адреналина и многих других биологически важных веществ, а также источником серы при биосинтезе цистеина.

    Пролин влияет на характер укладки полипептидной цепи белка при формировании его третичной структуры.

    Является предшественником оксипролина.

    Серин (б-амино-в-оксипропионовая кислота)

    Группа -ОН серина способна участвовать в образовании водородных связей, стабилизируя вторичную и третичную структуры белка. Кроме того остаток серина в полипептидной цепи белка способен вступать в реакции нуклеофильного замещения, приводящие к образованию ковалентного промежуточного соединения. Благодаря этому серин входит в состав активного центра некоторых ферментов.

    Участвует в образовании водородных связей.

    В молекуле гемоглобина остаток тирозина в 140 и 145 положении обеспечивает связывание О2.

    Ковалентная модификация тирозина в структуре белков ведёт к изменению их физиологической активности.

    В организме человека и животных - исходное вещество для синтеза гормонов щитовидной железы, адреналина и др.

    Треонин (б-амино-в-оксимасляная кислота)

    Может участвовать в образовании водородных связей.

    Оксигруппа треонина служит местом присоединения сахарных колец в гликопротеидах.

    Незаменимая аминокислота, потребность в которой особенно высока у растущего организма.

    Способствует образованию б-спирали белка, т.е. формирует его вторичную структуру.

    Водородный атом у азота пиррольного кольца обладает свойствами образовывать связи с плоскими молекулами, а также с группами, локализованными внутри глобул белков.

    Используется клетками млекопитающих для синтеза никотиновой кислоты

    ( витамин PP ) и серотонина, насекомыми - пигмента глаз. При гнилостных процессах в кишечнике из триптофана образуются скатол и индол.

    Фенилаланин (б-амино-в-фенилпропионовая кислота)

    Принимает участие в формировании вторичной структуры белков.

    В молекуле гемоглобина фенольное кольцо фенилаланина обеспечивает контакты с плоской структурой гема.

    Фенольная боковая цепь остатка фенилаланина в ферментах и белковых субстратах участвует в гидрофобных взаимодействиях, обеспечивая образование фермент-субстратного комплекса.

    Является предшественником тирозина.

    Цистеин (б-амино-в-тиопропионовая кислота)

    Благодаря наличию -SH группы способен образовывать дисульфидные мостики, тем самым стабилизирую вторичную и третичную структуры белков.

    Цистеин важен для проявления биологической активности многих ферментов, белковых гормонов. В организме легко превращается в цистин.

    Список литературы

    1. Березин И.В., Савин Ю.В. Основы биохимии: учебное пособие - М: Издательство МГУ, 1990 - 254с.

    2.Березов Т.Т., Коровкин Б.Ф. Биологическая химия - М: Медицина, 1998 - 704 с.

    3. Біологічна хімія: практикум /.під ред. Гонського Я.І. - Тернопіль:Укрмед книга,2001 - 288с.

    4. Біохімія: підручник / Кучеренко М.Є., Бабенюк Ю.Д.,

    Васильєв О.М., Виноградова Р.П. та інші - К: Видавничо-поліграфічний центр “Київський університет”, 2002 - 480с

    5. Вороніна Л.М. та інші Біологічна хімія - Х: Основа; Видавництво УарФА, 1999 - 640с.

    Подобные документы

    Строение и свойства аминокислот - органических амфотерных соединений, в состав которых входят карбоксильные группы – СООН и аминогруппы - NH2. Последовательность чередования аминокислотных остатков в полипептидной цепи. Характеристика простых белков.

    реферат [340,5 K], добавлен 28.11.2014

    Определение, функции основных аминокислот, их физико-химические свойства и критерии классификации. Оптическая активность, конфигурация и конформация аминокислот. Растворимость и кислотно-основные свойства аминокислот. Заменимые и незаменимые аминокислоты.

    реферат [2,3 M], добавлен 05.12.2013

    Процесс синтеза белков и их роль в жизнедеятельности живых организмов. Функции и химические свойства аминокислот. Причины их нехватки в организме человека. Виды продуктов, в которых содержатся незаменимые кислоты. Аминокислоты, синтезируемые в печени.

    презентация [911,0 K], добавлен 23.10.2014

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа [765,3 K], добавлен 08.11.2009

    Анализ белковых веществ. Определение количества белков в тканях по содержанию в них общего азота. Молекулярный вес белков. Цифры, характеризующие молекулярные вес. Форма белковых молекул, их растворимость. Первые исследования о составе белковых веществ.

    реферат [86,3 K], добавлен 24.03.2009

    Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация [5,0 M], добавлен 14.04.2014

    Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.

    Какова биологическая роль аминокислот? Попробуем вместе найти ответ на этот вопрос. Выявим особенности строения данного класса органических веществ, их химические свойства, основные области применения.

    биологическая роль аминокислот

    Исторические сведения

    Первой открытой аминокислотой был глицин. Его синтезировали в 1820 году путем кислотного гидролиза желатина. Расшифровать аминокислотный состав белковых молекул удалось только к середине прошлого века, именно тогда была выявлена аминокислота – треонин.

    Основные функции

    На данный момент имеется информация о 300 аминокислотах, выполняющих в организме различные функции.

    Какова основная биологическая роль аминокислот? Двадцать из них считают стандартными (протеиногенными), поскольку именно они входят в состав основных белковых молекул.

    Эти соединения входят в состав определенных белков. Оксиприлин является основой коллагена, эластин образуется десмозином.

    Они могут быть промежуточными веществами в обменных процессах. Такую функцию выполняет цитруллин, орнитин.

    Биологическая функция аминокислот также состоит в синтезе нуклеотидов, полиамидов. Углеродная цепочка этих соединений используется для образования иных органических веществ:

    • глюкоза синтезируется из глюкогенных аминокислот;
    • липиды образуются кетогенными соединениями.

    Биологическая роль аминокислот заключается в возможности их использования для определения функциональных групп. Цистеин применяют при выявлении сульфатной группы. Аспарат используется при выявлении аминогруппы.

    биологическая роль аминокислот и их применение

    Особенности номенклатуры

    Как правильно назвать аминокислоты? Строение, классификация, биологическая роль этих соединений рассматриваются даже в курсе школьной программы.

    Аминокислоты являются производными карбоновых кислот, в составе которых один атом водорода замещается аминогруппой.

    В зависимости от расположения этой функциональной группы, у одного соединения может существовать несколько изомеров. Химики используют сразу три разных номенклатуры: рациональную, тривиальную, систематическую.

    Тривиальные названия данных соединений связаны с тем источником, из которого они были выделены. Серин включен в состав фиброина шелка, глутамин обнаружен в клейковине злаковых растений. Цистин присутствует в камнях мочевого пузыря.

    Рациональное название связано с производной карбоновой кислоты, а сокращенное обозначение применяют при указании последовательности расположения аминокислот в белковой молекуле. В биохимии пользуются сокращенными и тривиальными названиями этих соединений.

    аминокислоты строение химические свойства биологическая роль

    Классификация аминокислот

    Для того чтобы понять, какова биологическая роль аминокислот и их применение, остановимся подробнее на видах классификации этих органических соединений.

    В настоящее время используется несколько видов классификации:

    • по радикалу;
    • по степени его полярности;
    • по варианту синтеза в организме.

    По строению радикала в органической химии выделяют разные виды аминокислот.

    Алифатические соединения могут содержать по одной карбоксильной и аминогруппе, в таком случае они являются моноаминокарбоновыми соединениями.

    При наличии двух СООН и одной аминогруппы вещества называют моноаминодикарбоновыми веществами.

    Также выделяют диаминомонокарбоновые и диаминодикарбоновые формы аминокислот.

    Циклические виды отличаются не только количеством циклов, но и их качественным составом.

    По Ленинджеру, аминокислоты подразделяют на четыре группы по особенностям взаимодействия углеводородного радикала с водой:

    • гидрофобные;
    • гидрофильные;
    • отрицательно - заряженные;
    • положительно-заряженные.

    В зависимости от способности аминокислот синтезироваться в человеческом организме выделяют незаменимые (поступают с пищей), а также заменимые виды.

    Многочисленными научными экспериментами была доказана биологическая роль альфа-аминокислот.

    биологическая роль альфа аминокислот

    Физические свойства

    Чем характеризуются аминокислоты? Номенклатура, свойства, биологическая роль этих соединений предлагается выпускникам школ на едином государственном экзамене по химии. Эти органические кислоты хорошо растворяются в воде, обладают высокой точкой плавления.

    Их оптическая активность объясняется присутствием в молекулах асимметричного углеродного атома (исключением является только глицин). Именно поэтому были обнаружены L- и D-стереоизомеры аминокислот.

    Изомеры L-ряда обнаружены в составе белков животных. Величина водородного показателя для этих соединений находится в диапазоне 5,5-7.

    аминокислоты строение классификация биологическая роль

    Химические свойства

    Рассмотрим подробнее аминокислоты. Строение, химические свойства, биологическая роль этих органических веществ необходимо знать.

    Специфика химических свойств аминокислот заключается в их двойственности. Причиной амфотерности является наличие двух функциональных групп в составе этих органических кислот.

    Присутствие карбоксильной группы СООН придает этим соединениям кислотный характер. Они легко вступают во взаимодействие с активными металлами, основными оксидами, щелочами. Также кислотность свойств этих органических соединений проявляется в реакции этерификации (со спиртами образуют эфиры).

    Аминокислоты могут также вступать в химическое взаимодействие с солями, образованными слабыми минеральными кислотами. В качестве примера такой реакции можно рассматривать взаимодействие аминокислот с гидрокарбонатами и карбонатами.

    Основные свойства данного класса заключаются в способности аминокислот реагировать с другими кислотами по аминогруппе. При этом образуются соли.

    Биологическая роль декарбоксилирования аминокислот в том, что образуется нейтральная среда, которая абсолютно безопасна для живого организма.

    Нингидриновая реакция позволяет выявлять в растворе аминокислот. Суть реакции заключается в том, что бесцветный раствор нингидрина при взаимодействии с аминокислотой, будет конденсироваться в форме димера через атом азота, который отщепляется от аминогруппы соответствующей кислоты.

    Получаемый пигмент имеет красно-филолетовый оттенок, кроме того, происходит декарбоксилирование аминокислоты, в результате которого образуется определенный альдегид и оксид углерода (4).

    Именно нингидриновая реакция используется биологами при анализе первичной структуры белковых молекул. По интенсивности окраски можно выявить количественное содержание аминокислот в исходном растворе, поэтому подобный анализ уместен при выявлении концентрации аминокислот.

    биологическая роль декарбоксилирования аминокислот

    Специфические реакции

    В аминокислотах, кроме карбоксильной и аминогруппы, могут содержаться дополнительные функциональные группы. Для их определения в научно-исследовательских лабораториях проводят качественные реакции.

    Аргинин можно выявить в смеси путем осуществления качественной реакции Сакагучи (на гуанидиновую группу). Цистеин можно определить методом Фоля, специфичным для SH-группы.

    Реакция нитрования (ксантопротеиновая реакция) дает возможность подтверждать присутствие в смеси ароматической аминокислоты. Реакция Миллона предназначена для выявления гидроксильной группы в ароматическом кольце тирозина.

    Особенности пептидной связи

    Чем характеризуются серосодержащие аминокислоты? Их биологическая роль связана с образованием молекул пептидов. При взаимодействии между собой нескольких молекул аминокислот, происходит отщепление молекул воды, а остатки аминокислот с помощью пептидной (амидной) связи образуют пептиды.

    Число аминокислотных остатков, образующих полипептид, существенно варьируется. Те пептиды, которые содержат не более десяти аминокислотных остатков, именуют олигопептидами. В названии образующегося соединения часто указывают количество аминокислотных остатков.

    Если в составе вещества содержится больше десяти аминокислотных остатков, соединения называют полипептидами. Для тех соединений, в составе которых больше пятидесяти остатков аминокислот, продукт их синтеза называют белком.

    Так, гормон глюкаген, в составе которого есть 29 аминокислот, биологи называют гормоном. Аминокислотными остатками считают мономеры исходных органических кислот, из которых образуются белковые соединения.

    Тот остаток аминокислоты, который записывается слева, имеет аминогруппу, называют N-концевым, фрагмент, обладающий карбоксильной группой, считают С-концевым, его принято записывать справа.

    При наименовании полученного полипептида используют сокращенные названия аминокислот, из которых он образуется. Например, если во взаимодействии принимали участие глицин, серин, аланин, получаемый трипептид будет читаться как глицилсерилаланин.

    аминокислоты номенклатура свойства биологическая роль

    Значимость некоторых аминокислот

    Глицин (аминоуксусная кислота) является донором углеродных фрагментов, которые нужны для образования гемоглобина, пиррола, холина, нуклеотидов, а также для синтеза креатина.

    Серин присутствует в составе активных центров ферментов. Эта аминокислота нужна для процесса синтеза фосфопротеина (казеина натурального молока).

    Глюкогенная кислота нужна для формирования вторичной, третичной структуры белковой молекулы. В этом соединении есть самая реакционно-активная функциональная группа, поэтому вещество легко вступает в окислительно-восстановительные процессы, связывает тяжелые металлы в виде нерастворимых соединений. Именно она выполняет функцию донора сульфатной группы, востребованной для синтеза серосодержащих веществ.

    Заключение

    Аминокислоты являются амфотерными органическими соединениями, имеющими важное биологическое значение. Именно аминокислотные остатки в процессе синтеза образуют последовательность, которая является первичной структурой белковой молекул. В зависимости от того, как именно выстроятся аминокислотные фрагменты, синтезируется белок, специфичный для каждого живого организма.

    Читайте также: