Сообщение гравитационное поле земли

Обновлено: 15.05.2024

Гравитационное поле Земли —это по­ле силы тяжести. Сила тяжести действует по­всюду на Земле и направлена по отвесу к по­верхности геоида, уменьшаясь по величине от полюсов к экватору.

У Земли было бы нормальное гравита­ционное поле при условии наличия у нее фи­гуры эллипсоида вращения и равномерного распределения в нем масс. Однако Земля та­ким телом не является. Разницу между напря­женностью реального гравитационного поля и теоретического (нормального) поля называют аномалией силы тяжести. Эти аномалии бы­вают вызваны как различным вещественным составом и плотностью горных пород, так и видимыми неровностями земной поверхности (рельефом). Однако далеко не всегда горы вы­зывают увеличение силы тяжести (положи­тельную аномалию), а океанические впади­ны — их недостаток (отрицательную анома­лию). Такое положение объясняется изо-стазией (от греч. isostasios — равный по

весу) — уравновешиванием твердых и отно­сительно легких верхних горизонтов Земли на более тяжелой верхней мантии, находящейся в пластичном состоянии в слое астеносферы. По современным геофизическим представле­ниям, в недрах Земли на определенной глу­бине (глубине компенсации) происходит гори­зонтальное растекание подкоровых масс ве­щества из мест их избытка на поверхности (в виде гор и т. д.) к периферии и выравни­вание давления вышележащих слоев. Сущест­вование астеносферных течений — необходи­мое условие изостатического равновесия зем­ной коры.

При появлении или исчезновении леднико­вой нагрузки в областях древних и современ­ных ледников тоже нарушается изостатичес-кое равновесие. При нарастании массы льда покровных ледников земная кора прогибает­ся, при стаивании льда происходит ее подня­тие. Такие вертикальные движения земной ко­ры называются гляциоизостазией (от лат.

glacies — лед). Гляциоизостатические опуска­ния наиболее резко выражены под централь­ными частями современных ледниковых щи­тов — Антарктиды и Гренландии, где ложе ледников местами прогнуто ниже уровня мо­ря. Поднятия особенно интенсивны в облас­тях, недавно освободившихся от материковых льдов (например, в Скандинавии, Канаде), где их суммарные значения за послеледниковое время достигают нескольких десятков метров. Современные скорости поднятия по инстру­ментальным измерениям местами доходят до 1 м в столетие, например на шведском побе­режье Ботнического залива.

Значение силы тяжести исключительно ве­лико. Она определяет истинную фигуру Зем­ли – геоид. Подкоровые течения в астено­сфере вызывают тектонические деформации и движения литосферных плит, создавая круп­ные формы рельефа Земли. Сила тяжести обус­ловливает гравитационные рельефообразующие процессы: эрозию, оползни, осыпи, обвалы, селевые потоки, движение ледников в горах и т. д. Сила тяжести определяет макси­мальную высоту гор на Земле. Она удержи­вает атмосферу и гидросферу, ей подчиняется перемещение воздуха и водных масс. Сила тя­жести помогает людям и многим животным удерживать вертикальное положение. Геотро­пизм — ростовые движения органов расте­ний под влиянием силы земного тяготения — обусловливает вертикальное направление стеблей и первичного корня. Недаром грави­тационная биология, возникшая в эпоху, ког­да человек начал обживать мир без тяжес­ти — Космос, включает растения в число сво­их экспериментальных объектов. Силу тяжести необходимо учитывать при рассмотрении бук­вально всех процессов в географической обо­лочке. Без учета силы тяжести нельзя рассчи­тать исходные данные для запусков ракет и космических кораблей, невозможна гравимет­рическая разведка рудных полезных ископае­мых и нефтегазоносных структур.

Гравитационное поле Земли —это по­ле силы тяжести. Сила тяжести действует по­всюду на Земле и направлена по отвесу к по­верхности геоида, уменьшаясь по величине от полюсов к экватору.

У Земли было бы нормальное гравита­ционное поле при условии наличия у нее фи­гуры эллипсоида вращения и равномерного распределения в нем масс. Однако Земля та­ким телом не является. Разницу между напря­женностью реального гравитационного поля и теоретического (нормального) поля называют аномалией силы тяжести. Эти аномалии бы­вают вызваны как различным вещественным составом и плотностью горных пород, так и видимыми неровностями земной поверхности (рельефом). Однако далеко не всегда горы вы­зывают увеличение силы тяжести (положи­тельную аномалию), а океанические впади­ны — их недостаток (отрицательную анома­лию). Такое положение объясняется изо-стазией (от греч. isostasios — равный по



весу) — уравновешиванием твердых и отно­сительно легких верхних горизонтов Земли на более тяжелой верхней мантии, находящейся в пластичном состоянии в слое астеносферы. По современным геофизическим представле­ниям, в недрах Земли на определенной глу­бине (глубине компенсации) происходит гори­зонтальное растекание подкоровых масс ве­щества из мест их избытка на поверхности (в виде гор и т. д.) к периферии и выравни­вание давления вышележащих слоев. Сущест­вование астеносферных течений — необходи­мое условие изостатического равновесия зем­ной коры.

При появлении или исчезновении леднико­вой нагрузки в областях древних и современ­ных ледников тоже нарушается изостатичес-кое равновесие. При нарастании массы льда покровных ледников земная кора прогибает­ся, при стаивании льда происходит ее подня­тие. Такие вертикальные движения земной ко­ры называются гляциоизостазией (от лат.

glacies — лед). Гляциоизостатические опуска­ния наиболее резко выражены под централь­ными частями современных ледниковых щи­тов — Антарктиды и Гренландии, где ложе ледников местами прогнуто ниже уровня мо­ря. Поднятия особенно интенсивны в облас­тях, недавно освободившихся от материковых льдов (например, в Скандинавии, Канаде), где их суммарные значения за послеледниковое время достигают нескольких десятков метров. Современные скорости поднятия по инстру­ментальным измерениям местами доходят до 1 м в столетие, например на шведском побе­режье Ботнического залива.

Значение силы тяжести исключительно ве­лико. Она определяет истинную фигуру Зем­ли – геоид. Подкоровые течения в астено­сфере вызывают тектонические деформации и движения литосферных плит, создавая круп­ные формы рельефа Земли. Сила тяжести обус­ловливает гравитационные рельефообразующие процессы: эрозию, оползни, осыпи, обвалы, селевые потоки, движение ледников в горах и т. д. Сила тяжести определяет макси­мальную высоту гор на Земле. Она удержи­вает атмосферу и гидросферу, ей подчиняется перемещение воздуха и водных масс. Сила тя­жести помогает людям и многим животным удерживать вертикальное положение. Геотро­пизм — ростовые движения органов расте­ний под влиянием силы земного тяготения — обусловливает вертикальное направление стеблей и первичного корня. Недаром грави­тационная биология, возникшая в эпоху, ког­да человек начал обживать мир без тяжес­ти — Космос, включает растения в число сво­их экспериментальных объектов. Силу тяжести необходимо учитывать при рассмотрении бук­вально всех процессов в географической обо­лочке. Без учета силы тяжести нельзя рассчи­тать исходные данные для запусков ракет и космических кораблей, невозможна гравимет­рическая разведка рудных полезных ископае­мых и нефтегазоносных структур.

Среди фундаментальных сил выделяют гравитацию. Если бы не сила в 9.8 м/с 2 , то бы мы давно все отправились в пространство. К тому же, наши кости быстро постарели, мышцы атрофировались, а органы лишились нормальной функциональности. Насколько же сильная гравитация Земли?

Определение земной гравитации

Гравитация – естественная сила, которая заставляет массивные вещи притягиваться, вроде астероидов, планет, скоплений и т.д. Чем больше масса, тем выше гравитационный показатель. Также он зависит от удаленности (уменьшается с отдалением). Можете посмотреть как выглядит сила гравитации Земли на рисунке.

Художественная интерпретация воздействия земной гравитации на пространство-время

Художественная интерпретация воздействия земной гравитации на пространство-время

Среди четырех фундаментальных сил гравитация выступает самой слабой. Поэтому ей отведена роль воздействия на наименьшие частички – субатомные. А вот в более крупных масштабах она влияет на взаимодействие материи и эволюционный процесс раннего пространства.

Именно гравитация несет ответственность за скопление материи и формирование газового облака, из которого появились первые звезды. Далее она притягивала осколки, создавая планеты и спутники.

Универсальная гравитация Земли и относительность

Энергия и масса соотносятся, поэтому все формы энергии также располагают гравитационной силой. Это отметилось и в общей теории относительности, которая лучше всего характеризует гравитацию. Это не сила, а следствие искривленности пространства и времени, созданное неравномерным распределением массы/энергии.

Художественная интерпретация эффекта перетаскивания, где пространство и время тянутся вокруг массивного объекта

Художественная интерпретация эффекта перетаскивания, где пространство и время тянутся вокруг массивного объекта

Наиболее экстремальный пример искривленности представлен черной дырой. Это последствие падения сверхмассивной звезды, с которой ничего не может выбраться.

Многие гравитационные моменты также объясняются законом универсальной гравитации Ньютона: существует как притяжение между телами. Силу можно определить математически.

Земная гравитация

В нашем случае она формируется из массы и плотности – 5.9237 х 10 24 кг и 5.514 г/см 3 . Получается, что гравитация Земли равна 9.8 м/с 2 . Однако эта отметка способна меняться в зависимости от вашего расположения на поверхности. На экваториальной линии – 9.789 м/с 2 , а на полюсах – 9.832 м/с 2 .

Международная космическая станция на земной орбите

Международная космическая станция на земной орбите

Также гравитация меняется, основываясь составе небесного тела. Более высокие концентрации материала способны изменить силу. Но эта сумма слишком крошечная, чтобы ее отметить. Вы могли знать, что гравитация иная на большой высоте. Если вы окажитесь на вершине Эвереста, то там сила на 0.28% меньше. На МКС – 90% поверхностной. Но станция пребывает в эффекте свободного падения, поэтому все внутри падает, и вы не ощущаете силы.

Именно гравитация ответственна за то, что скорость побега составляет 11.186 км/ч. Из-за разности в гравитационных показателях с другими объектами приходится готовить астронавтов к сложным условиям и создавать специальные тренажеры и защиту.

Мы должны быть благодарны за гравитацию Земли, но это и наша ноша, усложняющая процесс освоения чужих миров. Мы прикованы к дому и чувствуем себя здесь прекрасно, но вынуждены ограничивать себя лишь этим шаром.

ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ (а. gravitational field of the Earth, Earth gravitational field; н. Schwerefeld der Erde; ф. champ de gravite de la Terre; и. campo de gravedad de la tierra) — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными. Потенциал имеет размерность м 2 •с -2 , за единицу измерения первых производных потенциала (в т.ч. силы тяжести) в гравиметрии принят миллигал (мГал), равный 10 -5 м•с -2 , а для вторых производных — этвеш (Э, Е), равный 10 -9 •с -2 .

Значения основных характеристик гравитационного поля Земли: потенциал силы тяжести на уровне моря 62636830 м 2 •с -2 ; средняя сила тяжести на Земле 979,8 Гал; уменьшение средней силы тяжести от полюса к экватору 5200 мГал (в т.ч. за счёт суточного вращения Земли 3400 мГал); максимальная аномалия силы тяжести на Земле 660 мГал; нормальный вертикальный градиент силы тяжести 0,3086 мГал/м; максимальное уклонение отвеса на Земле 120"; диапазон периодических лунно-солнечных вариаций силы тяжести 0,4 мГал; возможная величина векового изменения силы тяжести 2 р — 0,0000059 sin 2 2р), мГал.

В CCCP и других социалистических странах в основном применяется формула Ф. Р. Гельмерта:

g(р) = 978030(1 + 0,005302 sin 2 р — 0,000007 sin 2 2р), мГал.

Из правых частей обеих формул вычитают 14 мГал для учёта ошибки в абсолютной силе тяжести, которая была установлена в результате многократных измерений абсолютной силы тяжести в разных местах. Выведены другие аналогичные формулы, в которых учитываются изменения нормальной силы тяжести вследствие трёхосности Земли, асимметричности её северного и южного полушарий и пр. Разность измеренной силы тяжести и нормальной называют аномалией силы тяжести (см. геофизическая аномалия). Аномальная часть гравитационного поля Земли по величине меньше, чем нормальная, и изменяется сложным образом. Поскольку положения Луны и Солнца относительно Земли изменяются, то происходит периодическая вариация гравитационного поля Земли. Это вызывает приливные деформации Земли, в т.ч. морские приливы. Существуют также неприливные изменения гравитационного поля Земли во времени, которые возникают из-за перераспределения масс в земных недрах, тектонических движений, землетрясений, извержения вулканов, перемещения водных и атмосферных масс, изменения угловой скорости и мгновенной оси суточного вращения Земли. Многие величины неприливных изменений гравитационного поля Земли не наблюдаются и оценены только теоретически.

На основании гравитационного поля Земли определяется геоид, характеризующий гравиметрическую фигуру Земли, относительно которой задаются высоты физической поверхности Земли. Гравитационное поле Земли в совокупности с другими геофизическими данными используется для изучения модели радиального распределения плотности Земли. По нему делаются выводы о гидростатическом равновесном состоянии Земли и о связанных с этим напряжениях в её недрах. По наблюдениям приливных вариаций силы тяжести изучают упругие свойства Земли.

Гравитационное поле Земли используется при расчёте орбит искусственных спутников Земли и траекторий движения ракет. По аномалиям гравитационного поля Земли изучают распределение плотностных неоднородностей в земной коре и верхней мантии, проводят тектоническое районирование, поиски месторождений полезных ископаемых (см. гравиметрическая разведка). Гравитационное поле Земли используется для вывода ряда фундаментальных постоянных геодезии, астрономии и геофизики.

Название работы: Гравитация. Гравитационное поле

Предметная область: Физика

Описание: Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты как структура галактик черные дыры и расширение Вселенной и за элементарные астрономические явления орбиты планет и за простое притяжение к поверхности Земли и падения тел.

Дата добавления: 2015-03-06

Размер файла: 162.95 KB

Работу скачали: 144 чел.

1– А) Гравитация___________________________________________ 3

1 – В) Гравитационное поле__________________________________ 3

2 - Классические теории гравитации

2-А) Гравитационное поле в общей теории относительности______6

2-Б) Теория Эйнштейна — Картана___________________________7

2-В) Теория Бранса -Дикке__________________________________8

3 - Гравитационное поле

3-А) Гравитационное поле, поле тяготения_____________________9

3-Б) Гравитационное поле земли _____________________________10

Список используемой литературы_____________________________ 14

Гравитацио́нное по́ле, или по́ле тяготе́ния — физическое поле , через которое осуществляется гравитационное взаимодействие .

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:




Здесь — гравитационная постоянная , равная примерно 6,6725×10 −11 м³/(кг·с²).

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества ρ, то потенциал поля φ удовлетворяет уравнению Пуассона :


Закон всемирного тяготения — одно из приложений закона обратных квадратов , встречающегося также и при изучении излучений , и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально . Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности , более точно описывающую гравитацию в терминах геометрии пространства-времени.

2 - Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

2 - А) Гравитационное поле в общей теории относительности.

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Другие существенные отличия гравитационного поля ОТО от ньютоновского: возможность нетривиальной топологии пространства, особых точек, гравитационные волны.

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

2 - Б) Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

2 - В) Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского [7] . Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

3 - Гравитационное поле

3 - А)Гравитационное поле, поле тяготения

Каждое тело (например, Земля) создает вокруг себя силовое поле — поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.


Если:
g — напряженность гравитационного поля,
F — гравитационная сила действующая на тело массой m,
m — масса тела в гравитационном поле,
то

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения.

Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.


Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.

3 - Б) Гравитационное поле земли

Гравитационное поле земли — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными. Потенциал имеет размерность м 2 •с -2 , за единицу измерения первых производных потенциала (в т.ч. силы тяжести) в гравиметрии принят миллигал (мГал), равный 10 -5 м•с -2 , а для вторых производных — этвеш (Э, Е), равный 10 -9 •с -2 .


Значения основных характеристик гравитационного поля Земли: потенциал силы тяжести на уровне моря 62636830 м 2 •с -2 ; средняя сила тяжести на Земле 979,8 Гал; уменьшение средней силы тяжести от полюса к экватору 5200 мГал (в т.ч. за счёт суточного вращения Земли 3400 мГал); максимальная аномалия силы тяжести на Земле 660 мГал; нормальный вертикальный градиент силы тяжести 0,3086 мГал/м; максимальное уклонение отвеса на Земле 120"; диапазон периодических лунно-солнечных вариаций силы тяжести 0,4 мГал; возможная величина векового изменения силы тяжести
Обычно гравитационное поле Земли представляют состоящим из 2 частей: нормальной и аномальной. Основная — нормальная часть поля соответствует схематизированной модели Земли в виде эллипсоида вращения (нормальная Земля). Она согласуется с реальной Землёй (совпадают центры масс, величины масс, угловые скорости и оси суточного вращения). Поверхность нормальной Земли считают уровенной, т.е. потенциал силы тяжести во всех её точках имеет одинаковое значение (см. геоид); сила тяжести направлена к ней по нормали и изменяется по простому закону. В гравиметрии широко используется международная формула нормальной силы тяжести:

g(р) = 978049(1 + 0,0052884 sin 2 р — 0,0000059 sin 2 2р), мГал.

В CCCP и других социалистических странах в основном применяется формула Ф. Р. Гельмерта:

g(р) = 978030(1 + 0,005302 sin 2 р — 0,000007 sin 2 2р), мГал.


Из правых частей обеих формул вычитают 14 мГал для учёта ошибки в абсолютной силе тяжести, которая была установлена в результате многократных измерений абсолютной силы тяжести в разных местах. Выведены другие аналогичные формулы, в которых учитываются изменения нормальной силы тяжести вследствие трёхосности Земли, асимметричности её северного и южного полушарий и пр. Разность измеренной силы тяжести и нормальной называют аномалией силы тяжести (см. геофизическая аномалия). Аномальная часть гравитационного поля Земли по величине меньше, чем нормальная, и изменяется сложным образом. Поскольку положения Луны и Солнца относительно Земли изменяются, то происходит периодическая вариация гравитационного поля Земли. Это вызывает приливные деформации Земли, в т.ч. морские приливы. Существуют также неприливные изменения гравитационного поля Земли во времени, которые возникают из-за перераспределения масс в земных недрах, тектонических движений, землетрясений, извержения вулканов, перемещения водных и атмосферных масс, изменения угловой скорости и мгновенной оси суточного вращения Земли. Многие величины неприливных изменений гравитационного поля Земли не наблюдаются и оценены только теоретически.

На основании гравитационного поля Земли определяется геоид, характеризующий гравиметрическую фигуру Земли, относительно которой задаются высоты физической поверхности Земли. Гравитационное поле Земли в совокупности с другими геофизическими данными используется для изучения модели радиального распределения плотности Земли. По нему делаются выводы о гидростатическом равновесном состоянии Земли и о связанных с этим напряжениях в её недрах. По наблюдениям приливных вариаций силы тяжести изучают упругие свойства Земли.

Гравитационное поле Земли используется при расчёте орбит искусственных спутников Земли и траекторий движения ракет. По аномалиям гравитационного поля Земли изучают распределение плотностных неоднородностей в земной коре и верхней мантии, проводят тектоническое районирование, поиски месторождений полезных ископаемых (см. гравиметрическая разведка). Гравитационное поле Земли используется для вывода ряда фундаментальных постоянных геодезии, астрономии и геофизики .

Читайте также: