Роль химических элементов в жизни растений и животных сообщение

Обновлено: 02.07.2024

Ценность любого лекарственного растения зависит от элементного состава. Растения состоят из воды (70—90 %), сухой органической массы (5—20 %) и золы (1—5%). В химический состав органических соединений в количестве от десятых до сотых долей процента входят макроэлементы — углерод (45 % сухой массы), кислород (42 %), водород (6,5 %), азот (1,5 %) и зольные химические элементы — фосфор, калий, кальций, кремний, магний, натрий, железо, сера, алюминий (суммарно 5 %).

Азот — биогенный элемент, входящий в состав РНК, ДНК, аминокислот, витаминов группы В, хлорофилла и различных белков растений. Свободный азот атмосферы и почвы недоступен для непосредственного использования высшими растениями. Связывание и перевод молекулярного азота атмосферы в азотистые соединения осуществляют клубеньковые бактерии, живущие в почве в симбиозе с растениями. Азот образуется также в результате разложения органических веществ (навоза, листьев, травы, компоста) специальными бактериями. Под влиянием последних азот переходит в аммиак, азотистую и азотную кислоты и соли этих кислот.

Алюминий содержат многие растения. Участвует в процессах регенерации костной ткани, в фосфорном обмене, повышает кислотность и активацию желудочного сока, участвует в синтезе эпителия и соединительной ткани, повышает активность ряда ферментов, а в больших дозах — угнетает их деятельность.

Бром в виде солей положительно влияет на функции центральной нервной системы, регулирует деятельность желез внутренней секреции, в частности половых, влияя на течение полового цикла. Содержится в основном в белокочанной капусте и зерновых. Бром может угнетать активность ферментов слюны и поджелудочного сока. Вместе с йодом влияет на деятельность щитовидной железы.

Железо в растениях вместе с медью и цинком может содержаться как микроэлемент, а в отдельных органах растений — как макроэлемент. При недостатке солей железа возникает хлороз растений.

Железо необходимо для образования многих ферментов. В организме приблизительно 3/4 всего железа входит в состав гемоглобина крови, а 1/4 часть находится в форме железосодержащего белка — ферритина. Основные депо ферритина — селезенка, печень и костный мозг. При недостатке в организме солей железа и других его соединений нарушается азотистый, минеральный и жировой обмены, развивается малокровие.

Йод — незаменимый микроэлемент. Концентрация йода в растениях зависит от содержания его в почве и воде. Из овощей наиболее богаты йодом свекла столовая, помидоры, огурцы, лук репчатый, сельдерей, спаржа (проростки), капуста белокочанная, морковь, зерновые и бобовые культуры, ягоды, плоды фейхоа, морская капуста (ламинария). Йод участвует в образовании гормонов щитовидной железы тироксина и трийодтиронина, повышает усвоение организмом кальция и фосфора, положительно действует при атеросклерозе и ожирении. Недостаток в пище йода приводит к возникновению эндемического зоба, уровской болезни.

Калий способствует синтезу белков, крахмала, жиров, а также использованию железа для образования в листьях растений хлорофилла. У ряда растений соли калия составляют более 50 % золы. Соли калия входят в состав основных систем крови, участвуют в процессах передачи нервного возбуждения, образовании ацетилхолина и других физиологически активных веществ. В организме участвуют в регуляции сократительной деятельности сердца, удалении из организма воды и хлористого натрия.

Кальций имеет большое значение для растений: способствует нейтрализации органических кислот в растениях; его соли — развитию корневой системы. Соли кальция входят в состав всех клеток и плазмы крови, способствуют образованию костной ткани, необходимы для выработки ферментов, участвующих в свертывании крови. Ионизированный кальций требуется организму для поддержания нормальной нервно-мышечной возбудимости.

Кобальт в сочетании с медью стимулирует рост стебля и корней растений. Кобальт — единственный элемент, который может запасаться в организме на длительный период. Большое содержание его отмечено в черемухе обыкновенной, шиповнике майском и др. Он участвует в синтезе белков, превращении жиров, усвоении азота, фосфора и кальция, стимулирует рост животных. При его недостатке уменьшается синтез витамина В|2, тормозится переход железа в состав гемоглобина крови, что приводит к развитию анемии, развивается зоб, а при избытке — нарушается тканевое дыхание.

Кремний входит в состав всех растений, является строительным материалом для клеточной ткани растений.

Литий в больших концентрациях содержится в алоэ, белене черной, красавке. Его недостаток способствует увеличению акушерско-гинекологических заболеваний у крупного рогатого скота.

Магний имеет большое значение для растений как элемент, входящий в состав хлорофилла. Участвует в реакции переноса фосфорных соединений. Соли магния входят в состав ряда ферментов и участвуют в процессах углеводного и фосфорного обмена в организме, необходимы для нормальной возбудимости нервной системы. Магний способствует выведению холестерина из организма, входит в состав костей.

Марганец активно участвует в фотосинтезе, синтезе ряда витаминов групп С, В, Е, ускоряет рост растений и созревание семян. Содержание марганца в растениях зависит от характера и биохимического состава почвы. Особенно высока концентрация марганца в капусте, других листовых овощах, зернах злаков, клубнях, плодах и листьях диких растений (медунице и др.). Марганец положительно влияет в организме на процессы кроветворения, тканевого дыхания, иммунитет, рост и размножение, предупреждает развитие атеросклероза.

Медь необходима для активации процесса фотосинтеза в растениях, способствует передвижению продуктов фотосинтеза из листьев в другие органы растения, участвует в процессе дыхания, влияет на белковый, углеводный и азотистый обмены, увеличивает засухоустойчивость растений, вместе с кобальтом стимулирует рост стебля и корней. Много соединений меди содержат помидоры, баклажаны, зеленый горошек, шпинат, салат, брюква, репчатый лук, тыква, морковь, свекла и др. Медь входит в состав ферментов. В растениях повышает эффективность цинка, марганца и бора. Медь способствует обмену витаминов А, С, Е, Р. При ее недостатке снижается активность действия окислительных ферментов, что может привести к различным формам анемии, нарушениям кроветворения; ускоряется развитие зоба и замедляется образование костной мозоли при переломах.

Мышьяк входит в состав многих пищевых и лекарственных растений, но его физиологическая роль мало изучена. В небольших количествах он содержится в свекле, картофеле, хрене, луке, капусте, томатах и др. В ветеринарии и медицине препараты мышьяка применяют при неврозах, миастении, некоторых формах анемии, лейкозе, псориазе. В больших дозах мышьяк угнетает синтез лейкоцитов.

Молибден участвует в процессах накопления в клетках растений аскорбиновой кислоты, усвоения азота и синтеза хлорофилла. Сверхконцентраторы молибдена — багульник болотный, горец птичий, плоды жостера слабительного, крапива двудомная, мята перечная. Эти растения могут быть использованы для профилактики болезней, связанных с недостатком в организме молибдена. В организме молибден связан с ферментами и участвует в синтезе витаминов В12 и Е. Малые дозы молибдена в продуктах питания ведут к обезвреживанию токсинов (ядов), а избыток его (при одновременном недостатке йода) способствует появлению анемий, подагры, эндемического зоба, расстройству работы кишечника.

Натрий благоприятно действует на клеточный сок растений, создавая высокое осмотическое давление. Это позволяет растениям поглощать воду даже при засоленности почв, способствует накоплению питательных веществ в корнеплодах (сахарная свекла и др.).

Никель участвует в активации ферментов, связанных с расщеплением и использованием глюкозы, способствует увеличению количества эритроцитов и гемоглобина в крови. Избыток никеля приводит к развитию кератитов и кератоконъюнктивитов. Содержится в красавке, пустырнике, термопсисе.

Селен — ультрамикроэлемент, содержащийся в землянике лесной, лимоннике, мать-и-мачехе, пастернаке, золотом корне, смородине черной, тыкве, укропе, эвкалипте и др. Обладает противораковой активностью, совместно с витамином Е стимулирует образование антител и повышает иммунный статус организма, положительно влияет на состояние сердечно-сосудистой системы и образование красных кровяных телец.

Стронций в растениях участвует в обмене веществ, вместе с бором способствует росту корня. В обмене веществ связан с кальцием. Сверхконцентраторы стронция: алоэ, анис, бадан, брусника, горец змеиный, кора дуба, кровохлебка лекарственная.

Титан стимулирует активность кроветворения, ускоряет восстановление белков сыворотки крови и способствует увеличению количества эритроцитов, необходим для построения эпителиальной ткани, возбуждающе влияет на центральную нервную систему и дыхание. Количество титана в крови резко снижается при заболеваниях крови, раке, язвенной болезни желудка и двенадцатиперстной кишки, токсикозе, ожогах. Титан в небольших количествах обнаружен во многих пищевых растениях.

Фосфор содержится в растениях и их семенах. Большую роль играет в процессах дыхания и фотосинтеза.

Фтор содержится в салате, петрушке, сельдерее, картофеле, белокочанной капусте, моркови, свекле столовой, многих зерновых культурах, ягодах, фруктах, листьях чая. Влияет на ферментативные процессы, обмен углеводов, функцию щитовидной железы. Избыток его угнетающе действует на щитовидную железу.

Хром содержится в моркови, картофеле, томатах, белокочанной капусте, репчатом луке, кукурузе, овсе, ржи, ячмене, фасоли и других растениях. Он активизирует гормон инсулин. При недостатке хрома нарушается углеводный обмен, что приводит к сахарному диабету, возникновению заболеваний глаз, замедлению роста. Трех- и шестивалентные соединения хрома (хроматы и бихроматы) очень ядовиты; могут вызывать рак легких и разные аллергические заболевания.

Хлор — постоянный компонент тканей растений и животных. Необходим для образования кислорода в процессе фотосинтеза. В плазме крови около 1 % солей хлористого натрия, калия и кальция, что дает солоноватый вкус и слабощелочную реакцию крови. Хлористый натрий играет основную роль в поддержании относительного постоянства химического состава в организме и водно-солевого обмена, способствуя удержанию тканями воды. Хлор, являясь основной частью соляной кислоты, активно влияет на пищеварение.

Цинк участвует в синтезе РНК, белков, входит в состав ряда ферментов, является активатором гормона инсулина, участвует в клеточном дыхании, развитии скелета, обеспечении иммунитета и нормальном функционировании половых желез. Повышенное содержание этого микроэлемента оказывает канцерогенное влияние. При дисбалансе цинка возникают тяжелые заболевания — карликовость, бесплодие, половой инфантилизм, различные анемии, дерматиты и т. д. Один из признаков дефицита цинка в организме — появление белых пятен или полос на ногтевых поверхностях. К растениям, содержащим много цинка, относятся фиалка полевая, череда и чистотел большой. Сверхконцентраторы цинка — алоэ древовидное, береза повислая, лапчатка прямостоячая, сушеница топяная.

Домашние и дикие растения, их описание и выращивание; болезни и вредители. Интересные сведения из ботаники и других областей науки. Доклады для школьников. Природа Приморского края (растения и животные). История, культура, достопримечательности Владивостока и России в целом.

Вечерний Владивосток / улица Адмирала Фокина

Вечерний Владивосток / улица Адмирала Фокина

  • Главная страница
  • Всё о бегониях
  • Всё о бегониях - 2
  • Список бегоний - 1
  • Список бегоний - 2
  • Список бегоний - 3
  • Список бегоний - 4
  • Список бегоний - 5
  • Список бегоний - 6
  • Список бегоний - 7
  • Список бегоний - 8
  • Список бегоний - 9
  • Мои растения
  • Доклады
  • В помощь цветоводам, садоводам и огородникам
  • Опознавалка бегоний и других растений
  • Дизайн в саду и дома
  • Комнатные растения
  • Садовые растения
  • Растения по алфавиту
  • Растения по алфавиту (2)
  • Приморский край
  • Приморский край - 2
  • Латынь в ботанике
  • Биология
  • Ботаники
  • История и культура
  • Интересное
  • Вопрос-ответ

среда, 7 ноября 2018 г.

Значение микроэлементов для человека, животных и растений


Элементы, без которых невозможны рост и развитие организмов, называют основными элементами , или макроэлементами . Из неметаллов это углерод , водород , кислород , азот , сера , фосфор , хлор .

Макроэлементы составляют около 99% массы организмов. Оставшийся 1% – это те элементы, которые требуются только в очень малых количествах (порядка нескольких частей на миллион). Такие элементы называются микроэлементами . Вот о них-то и пойдёт речь.

Микроэлементы по своей важности для регуляции обменных процессов сравнимы с витаминами. Их даже часто объединяют в одну группу, поскольку и витамины, и микроэлементы нужны организму лишь в очень малых количествах .

В метаболизме они выступают в качестве кофакторов ферментов, к которым относятся также коферменты ( кофермент – небелковая часть молекулы фермента, непрочно с ней связанная и участвующая в выполнении каталитической функции).

Около трети всех известных ферментов для полного проявления каталитической активности нуждаются в минеральных кофакторах. Вот потому-то каждая уважающая себя фирма, производящая витамины, старается выпускать комплексные препараты, включающие в себя и витамины, и минеральные добавки в расчёте на суточную потребность в них организма .

Учёные установили, что всем организмам в определённых сочетаниях необходимы металлы : марганец , железо , кобальт , медь и цинк (иногда и тяжёлые металлы, такие как молибден , ванадий , хром и другие), – а также неметаллы : бор , кремний , селен , фтор , йод . Невозможно точно сказать, какой из перечисленных микроэлементов является более важным для метаболических процессов, поэтому давайте их рассматривать просто исходя из порядкового номера в периодической системе.

Характер у этого элемента весьма агрессивный. Работа с фтором опасна: малейшая неосторожность – и у человека разрушаются зубы, ногти, повышается хрупкость костей, кровеносные сосуды теряют эластичность и становятся ломкими. Что же натолкнуло учёных на поиск столь ядовитого элемента в организме?

В 1916 году дантист из Колорадо Фредерик Мак-Кэй заметил, что пятнистая эмаль зубов у местных жителей вызывается каким-то веществом, присутствующим в воде. Он заметил также, что зубы с пятнистой эмалью более устойчивы к кариесу. Природа этого таинственного вещества была установлена только в 1931 году – оказалось, что это фториды .

Это открытие побудило учёных провести систематическое изучение химического состава зубов человека и животных. Было установлено, что в состав зубов входит до 0,02% фтора . Фториды кальция и магния входят в состав не только зубов, но и любой костной ткани, образуя вместе с фосфатами основной минеральный компонент кости (опыты над крысами показали, что их скелет задерживал 60% введенного фтора через 2 ч после внутривенного введения). В крови же людей концентрация фтора колеблется в пределах от 0,03 до 0,15 мг/л.

Фтор поступает в организм в основном с питьевой водой. Концентрация фторидов в питьевой воде из естественных источников может сильно колебаться, но чаще всего их мало, обычно около 0,2 мг/л.

Исследования, проведённые в 1933–1942 годах, показали, что при концентрации фторидов в питьевой воде 1 мг/л у детей на 70% снижается заболеваемость кариесом.

Однако избыток фтора (1,5–2 мг/л) приводит к флюорозу – зубы приобретают пятнистость или окраску за счёт сколов эмали.

Интересно, что аскорбиновая кислота влияет на обмен фтора , предотвращая избыточное накопление его в тканях. Так, введение витамина С морским свинкам почти полностью предупреждало появление симптомов интоксикации при действии повышенных доз фтора .

При рекомендуемых уровнях фторирования незначительное изменение цвета эмали наблюдается не более чем у 10% детей.

Наибольший защитный эффект фториды оказывают при потреблении их детьми в период от рождения до 13 лет, то есть в период формирования зубов; однако и в дальнейшем фториды полезны – например, использование фторированной зубной пасты защищает обнажившиеся поверхности корней зубов у взрослых.

В 1945 году в США открылась первая в мире станция фторирования воды, а в 1950 году Американская ассоциация стоматологов , министерство здравоохранения США , Всемирная организация здравоохранения и ряд других организаций одобрили применение фторирования питьевой воды для предотвращения кариеса.

Во многих городах теперь построены специальные установки для фторирования воды. В тех случаях, когда фторирование нежелательно или невозможно, потребление фтора можно увеличить добавками фторидов в продукты питания.

Среди соединений фтора много ядовитых , наиболее опасны плавиковая кислота и фторид натрия . Последний используется как антисептик, яд для мышей и тараканов и при случайном употреблении внутрь может вызвать сильное отравление. Плавиковая кислота – слабая по сравнению с соляной или серной, но гораздо более опасна. Ожоги плавиковой кислотой не похожи на другие – нет волдырей или покраснения кожи, но попадание её на небольшой участок кожи, например на пятку, может привести даже к смерти. Причина ожога – не повышенная кислотность, а понижение концентрации свободных ионов магния и особенно кальция в клетках, приводящее к их гибели.

Поскольку плавиковая кислота слабо диссоциирует, она быстро проникает сквозь кожу и клеточные мембраны и вызывает повреждение и последующее отмирание глубоко лежащих тканей. Поэтому при таком ожоге мало помогает промывание щелочным раствором. Ожог сопровождается нестерпимой болью, очень трудно лечится, а после излечения обычно остаются большие шрамы.

В проекте представлен ход работы и полученные результаты по выяснению роли химических элементов для живых организмов. В альбоме красочно представлена биологическая роль наиболее важных химических элементов.

ВложениеРазмер
biologicheskaya_rol_elementov.doc 122 КБ
albom.doc 2.55 МБ

Предварительный просмотр:

Муниципальное казенное образовательное учреждение

Токарева Виктория, 8 класс

Матвеева Римма, 8 класс

Абубекерова Альфия, 8 класс

Евдокимова А.С., учитель химии и биологии

Николаевск, 2014 год

2. Классификация химических элементов по функциональной роли и содержанию в организме…………………………………………………. 5

3. Поступление химических элементов в организм…………………….6

4. Биологическая роль химических элементов…………………………7

5. Взаимосвязь химических элементов………………………………… 7

В 8 классе мы начали изучать новый предмет – химию. Мы узнали, что на Земле существуют атомы различных химических элементов (их больше 100), у каждого есть свое название, есть свое место в Периодической системе химических элементов Д.И. Менделеева. Оказывается, что с названиями многих из них мы часто встречаемся в повседневной жизни. Например, реклама с экранов телевизоров постоянно призывает нас употреблять витамины, содержащие кальций и препараты, содержащие йод . А еще говорят, что зубная паста с фтором полезна для зубов, а железо необходимо для нормальной работы нашего организма. Почему же эти элементы так необходимы? А важны ли для живых организмов другие химические элементы? Сколько их требуется для нормальной работы организма? Где они содержатся, в каких продуктах? Что произойдет, если в организм попадет очень много или очень мало каких либо элементов? Мы считаем эти вопросы очень важными для сохранения здоровья человека.

Проблема : слабая информированность учащихся о биологической роли химических элементов

Цель - Выяснить биологическую роль наиболее распространенных химических элементов и использовать эту информацию для формирования у учащихся ценностного отношения к своему здоровью.

1. Определить группу наиболее встречающихся на нашей планете химических элементов и выяснить их биологическое значение.

2. Выяснить важно ли сочетание и пропорциональное соотношение химических элементов при попадании в организм.

3. Оформить полученную информацию в виде брошюры, стенда в кабинете химии.

4. Выступить с данной информацией на уроке химии перед одноклассниками.

Тип проекта : информационный (биология, химия)

Направления проектной деятельности:

  1. Аналитическое (сбор информации)
  2. Творческое (создание брошюры и стенда)

3) Представительское (создание презентации, выступление на уроке)

Учащиеся 8 класса

Ресурсное обеспечение проекта:

Координатор – учитель химии Евдокимова Анна Сергеевна.

Материальные ресурсы: ресурсы школьной мини-типографии, бумага формата А4, ватман, двусторонний скотч, компьютер, Интернет.

Сроки реализации, этапы работы над проектом :

Результат : повышение информированности учащихся о биологической роли химических элементов

Отсроченный результат : формирование более ответственного отношения к своему здоровью

Практическая значимость (продукт): собранная в ходе выполнения проекта информация будет оформлена в виде брошюры, которой можно воспользоваться при подготовке к экзаменам, конкурсам, олимпиадам, а также будет оформлен стенд в кабинете химии, где ярко, красно и интересно будет представлена информация о биологической роли химических элементов. Возможно, данная информация позволит не только побудить учащихся ответственнее относится к своему здоровью, но и повысит интерес к предмету химия, поможет определиться с выбором профессии.

2. Классификация химических элементов по функциональной роли и содержанию в организме.

Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Содержание некоторых элементов в организме по сравнению с окружающей средой повышенное – это называют биологическим концентрированием элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых организмах занимает второе место (21%). Однако эта закономерность наблюдается не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало, алюминия – 7,45%, а в живых организмах -1·10 -5 %.

В составе живого вещества найдено более 70 элементов.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами .

Для 30 элементов биогенность установлена. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов.

Б) По концентрации элементов в организме биогенные элементы делят:

1) макроэлементы (содержание их превышает 0,01% от массы тела)

К ним относят 12 элементов: С, Н, О, N, Р, S, Na, К, Ca, Mg, Сl, Fe.

3) ультрамикроэлементы (содержание их меньше чем 10 -5 % от массы тела).

3. Поступление химических элементов в организм.

Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента. Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (таблица № 1).

Таблица 1. Суточное поступление химических элементов в организм человека

Суточное потребление, в мг

Около 0,2 витамин B 12

Столько же химических элементов должно выводиться, поскольку их содержание в организме находится в относительном постоянстве.

Современное состояние знаний о биологической роли элементов можно характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток.
При недостаточном поступлении элемента в организм наносится существенный ущерб росту и развитию организма. Это объясняется снижением активности ферментов, в состав которых входит элемент. При повышении дозы этого элемента ответная реакция организма возрастает, достигает нормы (биотическая концентрация элемента). Дальнейшее увеличение дозы приводит к снижению функционирования вследствие токсического действия избытка элемента вплоть до летального исхода . Дефицит и избыток биогенного элемента наносит вред организму. Все живые организмы реагируют на недостаток и избыток или неблагоприятное соотношение элементов.

4 . Биологическая роль химических элементов.

5. Взаимосвязь химических элементов,

Необходимо помнить об определенных предосторожностях при употреблении минеральных комплексов (как лекарственных препаратов, так и биологически активных добавок к пище).

Передозировка одного минерального вещества может привести к функциональным нарушениям и повышенному выделению другого минерального вещества. Возможно и развитие нежелательных побочных эффектов. Например, избыток цинка ведет к снижению уровня холестеринсодержащих липидов высокой плотности ("хорошего" холестерина).

Главная биологическая функция калия — формирование совместно с другими электролитами (натрий, хлор) разницы потенциалов на мембранах клеток и передача ее изменения по клеточной мембране, за счет обмена с ионами натрия, что особенно важно для нервных и мышечных клеток. Это обуславливает постоянное присутствие в клетках натрия, хлора и калия. В организме эти элементы содержатся в определенном соотношении, обеспечивая гомеостаз (постоянство внутренней среды). Нарушение равновесия между калием и натрием ведет к патологии водного обмена, обезвоживанию, мышечной слабости.

Избыток молибдена уменьшает содержание меди.

Избыток вольфрама уменьшает содержание молибдена.

На фоне дефицита железа, а также кальция, фосфора, магния и цинка способность организма усваивать свинец увеличивается и т.д.

При потреблении минеральных веществ, следует строго придерживаться медицинских рекомендаций!

Мы выяснили, что многие химические элементы (более 30) имеют определенное значение для живых организмов. Такие элементы как С, Н, О, N, Р, S, являясь макроэлементами играют большую роль, из них построены клетки живого организма. Другие, хоть и имеют малое содержание в организме (микроэлементы), так же необходимы. Но для большинства элементов как недостаток, так и избыток оказывает вредное воздействие на организм.

Мы разобрались так же, откуда поступают элементы в наш организм, как избежать избыточного и недостаточного их содержания.

Имеются элементы, малая доза которых является токсичной. Это такие элементы как мышьяк, свинец, ртуть, кадмий и др. Тяжелые металлы имеют способность накапливаться в организме.

Важно также взаимное влияние обмена одного элемента на обмен другого. Так, например фосфор и кальций должны попадать в организм в определенном соотношении. Если фосфора попадает больше, то это способствует вымыванию кальция из костей и др. последствиям.

Все эти знания могут помочь нам сохранить наше здоровье!

7. Результат работы:

1) Нашли и обобщили информацию о биологической роли химических элементов.

3) Создали презентацию о биологической роли химических элементов и выступили с ней на уроке химии в 8 и 9-ых классах (приложение №2).

4) Оформили стенд в кабинете химии (приложение №3).

8. Источники информации:

1) Конспект лекций по общей химии. Челябинская государственная медицинская академия. А. В. Жолнин.

2) Ливанов П.А.,Соболев М.Б., Ревич Б. А. Свинцовая опасность и здоровье населения. // Рос. Сем. Врач. 1999, No 2, с. 18–26.

3) Корбанова А.И., Сорокина Н.С., Молодкина Н.Н. Свинец и его действие на

Химические элементы, обозначенные в таблице Д. И. Менделеева, встречаются как в неживой, так и в живой природе. Все они присутствуют в составе атмосферы, гидросферы и литосферы нашей планеты. Практически все атомы верхних оболочек Зем­ли с помощью биологического круговорота веществ за миллиарды лет неод­нократно побывали в составе молекул живых организмов. Особенно это каса­ется атомов таких элементов, как кислород, углерод, азот и водород. Элемен­ты калий, магний, натрий, кальций, железо, сера, фосфор, хлор в клетке содержатся в меньших количествах, но также необходимы живым существам.

В клетки живых организмов химические элементы поступают вместе с пищей, водой и в процессе дыхания.

Впрочем, далеко не всегда нужные химические элементы могут легко добываться живыми организмами из окружающей среды. Например, есть немало мест на планете, в которых отсутствует свободный кислород O2, необ­ходимый для дыхания, или нет усвояемых организмом соединений азота, хотя газообразный азот всегда имеется в атмосфере.

Поступление большинства химических элементов в тело животных идёт по цепям питания от растений, которые всасывают растворы минеральных солей из почвы. Но натуралисты давно отметили, что многие животные (особенно крупные траво­ядные) в своих миграциях постоянно посещают одни и те же места, где имеются на поверхности земли выходы солей кальция, натрия, калия, серы. Животные лижут эту землю и так восполняют нехватку в своём организме данных элементов.

Читайте также: