Расшифровка генома человека сообщение

Обновлено: 20.05.2024

– Николай Казимирович, генетика для многих людей – что-то из разряда теоретических наук. Они могут почувствовать ее достижения на практике?

– Сегодня чуть ли не на каждом шагу говорят о расшифровке генома. Можно ли узнать судьбу, расшифровав свой геном?

– Я бы сказал так: в большинстве случаев не судьбу, а один из ее вариантов. Расшифровка генома индивида возможна, но пока вместо полной расшифровки генома применяется ДНК-диагностика – выявление изменений некоторых участков ДНК, приводящих к заболеванию. Такая диагностика особенно важна в том случае, когда риск заболеть для данного человека приближается к 100 процентам, – иначе говоря, с возрастом недуг обязательно разовьется. Таких болезней очень много – несколько тысяч, а общее число страдающих от этих болезней во всем мире составляет около 10 миллионов человек. Однако каждая конкретная из этого множества болезней встречается достаточно редко. Например, реже одного случая на 100 тысяч новорожденных. Поэтому детей проверяют на предрасположенность только к наиболее часто встречающимся болезням, например к муковисцидозу, фенилкетонурии и ряду других. Вероятно, тотальная ДНК-диагностика, основанная на полной расшифровке генома человека, станет доступна в практическом здравоохранении если не при нашей жизни, то при жизни наших детей. Но основное количество болезней, причем именно тех, которые встречаются наиболее часто, не может быть предсказано со 100-процентной определенностью даже при полностью известной структуре генома индивида. Скажем, рак молочной железы встречается очень часто. Но случаев, когда можно с очень высокой вероятностью предсказать, что у женщины разовьется этот недуг, – всего 3 процента. Для остальных 97 процентов заболевших женщин даже предварительное знание структуры генома указывало бы лишь на повышенную по сравнению с другими женщинами вероятность развития рака молочной железы. Однако можно уверенно сказать, что большинство женщин никогда не заболеют этим недугом, даже если у них точно такая же структура генома, как у заболевших. Поэтому при массовой диагностике этого заболевания значительное число женщин станут жить в постоянном страхе, и вред, нанесенный проверкой на всякий случай, здоровью общества скорее навредит, чем поможет.

– Как различить, в каком случае проводить расшифровку генома, а в каком – нет?

– Этот вопрос открыт для всех – и для генетиков, и для биоэтиков, и для чиновников от здравоохранения, поскольку ДНК-диагностика, а тем более установление полной структуры геномов индивидов – это бешеные деньги. Полагаю, на сегодня генетическая диагностика должна рекомендоваться лишь для тех уже известных науке случаев, когда связь генетической конституции с развитием болезни близка к 100-процентной, а болезнь является смертельной или приводящей к тяжелой инвалидности. В таком случае на основе данных ДНК-диагностики и, естественно, консультации с врачом-генетиком родители, например, могут принять решение прервать беременность. Конечно, это ужасно, но у них хотя бы появляется выбор – ведь с вероятностью не менее 75 процентов следующая беременность у той же пары приведет к появлению здорового ребенка!

– Когда я, в 40 лет вынашивая третьего ребенка, приходила к врачу, только и слышала, что в моем возрасте синдром Дауна и все прочие ужасы наследнику обеспечены. Но обошлось…

– Частота рождения детей с синдромом Дауна увеличивается с возрастом матери от 1/2000 в 20 лет до 1/12 в 50 лет. Но и для рожениц в возрасте 50 лет одиннадцать детей из 12 окажутся здоровыми. К тому же синдром Дауна обычно связан с генетическим дефектом половой клетки, возникшим еще до оплодотворения. Поэтому ДНК-диагностика этого заболевания возможна на самых ранних этапах беременности, даже до внедрения зародыша в стенку матки. Технологически точность такого анализа предельно высока, но ошибки диагностики могут происходить и по причинам, не имеющим к науке никакого отношения… Остальные болезни, а их абсолютное большинство, не наследуются так просто. Для их проявления необходимо участие сразу нескольких генов в сочетании с действием определенных факторов среды. Эти недуги проявляются, как правило, во взрослом и пожилом возрасте. Например, гипертония и диабет. Даже зная всю структуру генома конкретного организма, мы не сможем сказать, заболеет ими человек наверняка или нет.

– Лично вы расшифровали свой геном?

– Правда ли, что именно по причинам генетического порядка одна и та же пища может быть полезна одним людям и вредна другим?

– Да, это установленный факт. Возьмем для примера молоко и хлеб. Казалось бы, что может быть в них вредного? Однако наше исследование способности к усвоению молочного сахара – лактозы – дало удивительные для многих результаты: из-за генетических особенностей лактозу не усваивает примерно 30 процентов взрослого населения Центральной части России, и в частности Москвы. Употребление цельного молока у таких людей может приводить к тошноте, проблемам с пищеварением, плохому самочувствию. Никто пока не выяснял, как эта особенность влияет на детей переходного возраста. А потребление обычного белого хлеба у некоторых детей может вести к нарушению пищеварения и слабоумию. Эта болезнь, называемая целиакией, встречается у каждого сотого жителя Ирландии. В других странах Европы она выражена не столь очевидно – примерно один случай на тысячу.

– Что нам делать с нашим пристрастием к алкоголю?

– В лаборатории, которую я возглавляю, ведутся работы по изучению генетических факторов, предрасполагающих к алкоголизму. У русских в сравнении с другими европейцами нет никаких особенностей метаболизма алкоголя, заставляющих нас пить. Так что жаловаться на плохую генетику в связи с пьянством нам нечего.

– В какую сторону сегодня движется развитие науки генетики?

– В будущем мы надеемся перейти с уровня понимания того, какими генами вызывается болезнь, на уровень понимания того, как она возникает – как гены работают и как они между собой взаимодействуют. Это даст нам возможность приблизиться к более точному предсказанию болезней. Еще одно интересное направление касается действия лекарств. Оказывается, для каждого человека скорость этого действия, а значит, и эффективность индивидуальна. Это тоже генетически обусловленный факт. Эту скорость с определенной степенью достоверности тоже можно будет предсказать по анализу генов. Таким образом, знание генетической конституции позволит определить, что нам необходимо для лечения и в какой дозе.


Обзор

Автор
Редакторы

Изучение человеческого генома имеет одну конечную цель — оно затевается исключительно ради того, чтобы, взглянув на последовательность ДНК конкретного индивида, можно было бы получить о нем максимум информации. О том, какими болезнями он может заболеть, какие способности в себе развить, и какие опасности его могут поджидать при выборе того или иного жизненного пути. История изучения этого вопроса довольно продолжительна, однако заветная цель приближается к нам далеко не так быстро, как хотелось бы.

История вопроса

В начале прошлого столетия казалось, что до выяснения природы наследственности рукой подать, ведь были заново открыты законы Менделя, сформулирована Хромосомная теория наследственности Моргана. Согласно представлениям того времени, наследственные факторы — гены — являлись белковыми молекулами, последовательно соединенными между собой в хромосомах. Казалось, что вот-вот эти белки будут выделены из хромосом и все встанет на свои места. При этом, естественно, ни у кого и в мыслях не было, что в генетическом материале организма могут присутствовать элементы, напрямую не определяющие каких-либо его свойств. Была уверенность в том, что каждый ген-белок отвечает за определенную функцию. Однако все оказалось куда сложнее.

Во-первых, к середине 40-х годов XX века, благодаря опытам Эйвери, Маклеода и Маккарти становится понятно, что функции хранения и передачи наследственной информации могут выполнять вовсе не белки. Внимание ученых начинает концентрироваться на изучении ДНК — полимерной молекулы, состоящей из дезоксирибонуклеотидов. К тому моменту было хорошо известно, что ДНК входит в состав хромосом, однако полагали, что эта молекула выполняет структурные функции, являясь своего рода хромосомным каркасом. Окончательно обосновали ключевую роль ДНК в наследственности Альфред Херши и Марта Чейз, только в начале 50-х годов показав, что бактериофаги способны размножаться без собственных белков — в инфицируемой ими бактериальной клетке оказывается и реплицируется только молекула ДНК.

Структуру ДНК впервые описывают Джеймс Уотсон и Френсис Крик в своей работе 1953 года [1]. В последующие 20 лет накапливаются знания о природе генетического кода (М. Ниренберг и Дж. Маттеи), работе генов и регуляторных элементов (Ф. Жакоб и Ж. Моно), тонкой структуре гена (С. Бензер), об укладке ДНК на нуклеосомах (А. Корнберг). Также становится понятно, что в геномах организмов содержатся не только уникальные последовательности структурных генов — в них присутствует огромное количество часто повторяющихся и вовсе не кодирующих белки последовательностей.

Своя и чужая ДНК

В середине прошлого века тезис о том, что генетический материал организма содержит исключительно структуры, необходимые для формирования фенотипических признаков, было странно подвергать сомнению. Любую особенность организма пытались объяснить с позиций целесообразности, и поэтому считалось, что лишних и нефункциональных структур быть просто не должно.


Рисунок 1. Барбара МакКлинток.

Примерно одновременно с работами по изучению роли ДНК в наследственности подвергается первой критике хромосомная теория Моргана в хрестоматийном ее понимании. Это связано с тем, что Барбара МакКлинток обнаруживает генетические элементы, которые, по ее мнению, способны менять свою локализацию на хромосоме [2]. Эти революционные исследования поначалу не находят понимания, поскольку противоречат принятому тогда постулату о том, что каждый ген имеет свой постоянный хромосомный локус. Сама МакКлинток даже получает обидное прозвище crazy Barbara (сумасшедшая Барбара). Однако позднее выясняется, что подобные мобильные генетические элементы присутствуют у всех живых организмов (стоит также упомянуть, что МакКлинток спустя 30 лет после своего открытия удостаивается Нобелевской премии в области физиологии и медицины [3]).

У животных, а конкретно, у дрозофилы, мобильные элементы впервые обнаруживают в лабораториях Хогнесса в США и Георгиева в СССР. Причем очень быстро становится ясно, что таких элементов огромное множество, в геномах они представлены очень широко, а по своим структурным и функциональным особенностям могут отличаться очень сильно. Изучение структуры различных классов мобильных элементов генома (МГЭ) приводит ученых к выводу об их родстве с вирусами. Жизненные циклы вирусов и многих МГЭ очень похожи, да и белки, кодируемые их генами, выполняют одни и те же функции, что отчетливо указывает на общность происхождения этих примитивных живых систем.

Экология генома: молекулярные паразиты и эндосимбионты

Разумеется, помимо пользы от мобильных генетических элементов можно вполне ожидать и проблем. В частности, они могут провоцировать хромосомные аберрации, вызывать своими перемещениями мутации и изменения в активности генов, приводить к дестабилизации структуры всего генома. Взаимодействие между МГЭ и хозяйским геномом могут приводить к самым разнообразным и любопытным последствиям: от возникновения наследственных заболеваний до провоцирования процессов видообразования и образования новых генов.

Запутанная молекулярная инструкция


Рисунок 2. Классы повторов в геноме человека.

LINE — Long interspersed nuclear repeats. Одни из самых древних элементов. Содержат ген обратной транскриптазы и способны вносить разрывы в геномную ДНК при транспозиции. Часто образуют несовершенные копии.

SINE — Short interspersed nuclear repeats. Короткие последовательности, содержащие промотор полимеразы III. Их транспозиции происходят за счет белков, кодируемых генами LINE-элементов.

LTR (long terminal repeat) retrotransposons — группа элементов, по своей организации больше всего напоминающая вирусы (если точнее — ретровирусы). Считается, что часть ретротранспозонов произошла от вирусов, когда-то проникнувших в геном. Некоторые LTR-элементы сохраняют возможность покидать клетку-хозяина и инфицировать другие клетки. Включают от одного до нескольких генов.

DNA transposons — мобильные элементы, не требующие стадии образования РНК-копии для транспозиций. Кодируют фермент транспозазу, необходимую для перемещения.

ДНК – что это такое простыми словами и как она устроена? Физически это макромолекула, которая не только хранит в себе наследственную информацию, но и является подробной инструкцией по развитию всего организма условно из одной универсальной клетки.

Если сравнить человека с компьютером, а все многообразие биологической жизни – с различными формами роботизированных компьютеров, ДНК в этом сравнении будет биологическим языком программирования. С той лишь разницей, что биологические виды устроены намного сложнее и совершеннее самых передовых компьютеров.

К примеру, все биологические виды обладают уникальной способностью деления и преобразования клетки. Фактически в ходе самовоспроизводства клетки биомасса не только материализуется сама из себя, но и физически преобразовывается под решение множества узкоспециализированных задач. А все многообразие живых видов, их форм, уникальных способностей исходит из деления одной универсальной клетки. Одно это уже уходит далеко за грань всех современных генетических достижений.

История открытия

Фактически открытие дезоксирибонуклеиновой кислоты произошло дважды. Первым открытие молекулы совершил Иоганн Фридрих Мишер в 1869 году. Будучи швейцарским биологом и физиологом, он из клеток, содержащихся в гное, смог выделить большую молекулу с высоким содержанием азота и фосфора. Свое открытие он назвал нуклеин, а позже – нуклеиновой кислотой, когда были открыты ее кислотные свойства.

Первоначально ученые считали, что основная функция нуклеиновой кислоты состоит в хранении фосфора. А предположения, что она может содержать в себе наследственную информацию, вызывали насмешки, поскольку структура молекулы казалась им слишком простой и однообразной для таких функций. Также считалось, что наличие дезоксирибонуклеиновой кислоты свойственно только животным клеткам, а в растениях содержится только РНК. Но в 1934–1935 годах советские ученые-биологи А. Н. Белозерский и А. Р. Кизель это наглядно опровергли и опубликовали результаты своих работ в советских и мировых научных журналах.

Повторное открытие ДНК уже в качестве носителя наследственной информации и не только было совершено в 1944 году. Группа исследователей, состоящая из Освальда Эвери, Колина Маклауда и Маклина Маккарти, проводила эксперименты с трансформацией бактерий и доказала, что основную роль в этом процессе играет дезоксирибонуклеиновая кислота.

Значение ДНК в медицине

Открытие ДНК в медицине, расшифровка этой кислоты – это события, значение которых трудно преувеличить. Большая часть современных прорывных технологий и исследований прямо или косвенно базируется на этом фундаментальном для науки открытии. Не знай мы про гены, не было бы многих современных методов лечения и диагностики, многих технических изобретений. По сути, не было бы и генетики как полноценной самостоятельной науки. Застопорилось бы изучение клетки и того, как она функционирует. А без этих знаний и множество открытий в этой области было бы невозможно.

На сегодняшний день знания о генах помогают многим людям:

  • Узнать о заболевании намного раньше наступления первых симптомов. Лечение на сверхранней стадии всегда более успешно.
  • Узнать свою генетику просто – для этого достаточно сделать ДНК-анализ. С помощью него вы можете понять, к каким заболеваниям у вас есть предрасположенность, или, например, как вам стоит питаться, какие витамины просто необходимо включить в рацион, а какие вещества, наоборот, нужно ограничить, и даже определить, каким видом спорта вам стоит заниматься
  • Найти своих близких и родных. Узнать много подробностей о своем роде
  • Благодаря открытию носителя наследственной информации у медицины появился шанс побороть наследственные заболевания, которые ранее казались неизлечимыми
  • Вполне возможно, что именно благодаря этому открытию человечество решит задачу многих тысячелетий и найдет эликсир бессмертия или таблетку от всех болезней.

Молекула ДНК

ДНК-определение, поиск ее места в уже систематизированном знании не так прост. По существу, к молекулам ДНК отнесли условно, для удобства. Молекула ДНК – это структура, превосходящая размером обычные молекулы. И она имеет уникальную спиральную структуру. В то время как физики и химики считают молекулами электрически нейтральные частицы, состоящие из одного и более атомов, связанных ковалентными связями. Либо же, по результатам международного съезда химиков 1860 года, молекулой считается наименьшая частица вещества, обладающая всеми его химическими свойствами.

Структура ДНК

У всех на слуху, что дезоксирибонуклеиновая кислота имеет двуспиральную структуру. В интернете, в фильмах, в рекламе – всюду можно встретить ее многократно увеличенное изображение. Но что ответить, если попросят объяснить подробнее. Это уже более сложный вопрос. Давайте разберемся лучше, из чего эта структура состоит:

  1. Нуклеотиды – базовые структурные элементы.
  2. Две цепочки генов, закрученные в спираль.
  3. Каждая цепочка состоит из нуклеотидов, которые кодируют определенный ген.
  4. Связывают две цепочки воедино водородные связи.

В цепочках нуклеотидов присутствуют и совсем не изученные структуры, которые, на первый взгляд, никак не участвуют в физиологических процессах. Эти довольно обширные участки называют мусорными.

Состав ДНК

Если говорить о составе ДНК более подробно, то нуклеотиды – это базовый структурный элемент, кирпичики, из которых состоят обе цепи спирали. Нуклеотиды подразделяются на 4 разновидности: аденин, тимин, гуанин и цитозин. И всего четыре этих нуклеотида осуществляют запись всей наследственной информации и составляют все известные гены.

Закручиваются в спираль обе цепочки генов тоже не просто так. Из всех четырех различных нуклеотидов находиться напротив друг друга в разных цепочках они могут только двумя парами: аденин-тимин и гуанин-цитозин. В науке эти пары называются комплементарными.

Между парными нуклеотидами возникает крепкая водородная связь. При этом связь аденином и тимином немного слабее, чем между гуанином и цитозином. Но закручиваются цепочки в спираль по иным причинам:

Исследования показали, что скручивание помогает сократить длину цепочки генов в 5-6 раз. А во время суперспирализации (такое тоже бывает) длина цепочки может сократиться в целых 30 раз!

Помимо того, что пара цепочек генов закручена в спираль, существует и суперспирализация. За это явление отвечают гистоновые белки, которые имеют форму катушек для ниток. Уже закрученная двойная спираль наматывается на эти белки, как нитка. Что не оставляет сомнений в том, что спиральность как таковая специально служит тому, чтобы более компактно упаковать наследственную информацию в клетку.

Роль в клетке

Помимо того, что хромосома содержит в себе подробную инструкцию по функционированию клетки, она же путем активации актуальных моменту генов провоцирует клетку вырабатывать определенные белки с самыми различными свойствами. Например, в борьбе с опухолями активно участвует ген старости, который старит ее недоброкачественные клетки и не дает им бесконечно делиться.

Что такое нуклеотиды

Нуклеотиды – это четыре элемента, которые являются основой биоязыка программирования цепи ДНК, так же, как ноль и единица являются основой ассемблера (первого из языков программирования). Уникальная последовательность нуклеотидов в одной из двух цепочек ДНК является геном. Если хотя бы немного изменить эту последовательность, то ген уже будет поврежден или разрушен.

Синтез белка

Синтез белков – это ключевое таинство всей физиологии человека. Именно белки запускают и контролируют все процессы в организме на клеточном уровне. Если полностью изучить, какие гены и группы генов в каких случаях запускают синтез белков и сами эти белки, то наука научится полностью настраивать и перенастраивать весь человеческий организм.

На сегодняшний день нам известно, что, реагируя на различные раздражители, в двойной спирали дезоксирибонуклеиновой кислоты активируются гены или участки с генами. Информация с этих участков копируется на РНК (рибонуклеиновая кислота), и уже РНК переносит информацию из ядра клетки, в котором находятся хромосомы, в саму клетку. РНК выступает своего рода глашатаем, который читает указ всем работникам. Так РНК заставляет клетку вести себя тем либо иным образом и вырабатывать различные белки.


Что такое РНК

Если ДНК – это кабинет министров, которые всем управляют и принимают все решения, то РНК – это пресс-атташе. Она извещает всех о новых распоряжениях и указах и раздает инструкции на местах.

РНК – это рибонуклеиновая кислота, которая может копировать формы различных участков дезоксирибонуклеиновой кислоты и транспортировать их из ядра клетки в ее внутриклеточное пространство.

Расшифровка ДНК

ДНК-расшифровка стала возможна только благодаря открытию полимеразной цепной реакции, и происходит она следующим образом:

Проба, содержащая образцы дезоксирибонуклеиновой кислоты, быстро нагревается. Это необходимо, чтобы двойная спираль раскрутилась и распалась на две самостоятельные нити.

К интересующему исследователей участку цепи генов прилепляется полимераза. Эта процедура происходит при немного более низких температурах.

Полимераза активирует деление пойманного участка – так происходит синтез необходимых для изучения участков генов.

Участки пропитываются специальной краской, которая светится при воздействии направленного пучка лазера. Так получают картину гена, которую можно изучать и расшифровывать.

Таким образом, изучение ДНК стало доступным инструментом, который позволяет людям узнать о себе много нового и может помочь сохранить здоровье, избавиться от уже имеющихся заболеваний, похудеть, сохранить молодость и улучшить качество своей жизни!

Геном человека. Один ген - один белок - справедливо ли?

Появившись на свет, мы очень быстро узнаем, что все люди разные. Для большинства из нас эта разница заключена в чем-то простом, например цвете волос или глаз. Для других эта разница приобретает большую выраженность, принимая форму врожденных дефектов или синдромов. Накапливаясь, они приводят к росту заболеваемости и смертности. В канадском исследовании было показано, что около 12% людей имеют проблемы со здоровьем, вызванные или связанные с генетическими заболеваниями, проявившимися в период от рождения до раннего зрелого возраста. Генетика изучает признаки и наследственные различия индивидуумов.

Как показал еще Грегор Мендель, мы способны уяснить принципы наследования и без знаний о ДНК и ее организации в геноме. Однако традиционное понимание медицины и медицинской генетики сейчас стоит на пороге революционного пересмотра. В этой технологической революции геномной медицины мы тем не менее все еще нуждаемся в понимании фундаментальных принципов генетики и наследственности.

Геномика — наука о наборе генов живых организмов, их функциях и взаимодействии между собой и с окружающей их средой, изучающая, кроме того, как генетическое разнообразие соотносится с риском развития тех или иных заболеваний и с эффективностью того или иного метода лечения (фармакогеномика). Усилия по выделению и картированию генов привели к созданию функциональной геномики, которая пытается выяснить функции того или иного гена, генную регуляцию и генное взаимодействие.

Знания и технологии, полученные с помощью геномики, оказывают и будут оказывать столь же существенное влияние на репродуктивную медицину, как и на другие ее разделы. Акушеры и гинекологи должны будут не только обладать знаниями в области генетики и принципов наследования, но и иметь представление о геномике и ее технологиях, а также о том, каким образом они могут повлиять на риск, диагностику и лечение патологических состояний. Врачи будут способны не только использовать традиционную парадигму диагностики и лечения заболеваний, но и распознавать и лечить геномные заболевания еще до их манифестации.

геном человека

Они должны быть готовыми столкнуться с этическими, юридическими и социальными аспектами такого революционного подхода. И хотя эра геномной медицины принесет новые инструменты индивидуализации риска заболеваний, эффективной профилактики и лечения, фундаментальными компонентами медицины все же останутся базовое обследование и сбор семейного анамнеза.

Более 10% генома составляют повторяющиеся последовательности ДНК, которые могут отвечать за структуру самих хромосом. Описано множество длинных и коротких разбросанных повторяющихся элементов, в том числе так называемое Alu-семейство. Alu-последовательности обнаружены в богатых генами регионах и, вероятно, играют роль в генетической рекомбинации.

Геном человека содержит более 3 млрд пар оснований, последовательность которых идентична на 99,9% у всех людей. Удивительно, но все разнообразие человечества построено всего лишь на 0,1% геномной последовательности. Однонуклеотидный полиморфизм — наиболее распространенный вариант ДНК в геноме, встречается с частотой около 1 на 10 млн. Однонуклеотидный полиморфизм — замещения одного основания, происходящие в среднем в 1 из 1250 нуклеотидов. Замена основания не приводит к изменению фенотипа; это явление обнаруживают приблизительно в 1% популяции.

Из-за своей повсеместной распространенности в человеческом геноме однонуклеотидный полиморфизм имеет большую ценность в определении изменений последовательностей, связанных с повышенным риском тех или иных заболеваний, с помощью традиционного анализа групп сцепления и популяционных исследований ассоциаций. Несмотря на то что однонуклеотидный полиморфизм, по-видимому, не влияет на кодирование белка, он может способствовать развитию некоторых заболеваний за счет присутствия в регуляторных регионах или интронах. Однонуклеотидный полиморфизм также может определять чувствительность заболевания к терапии, например в случае с полиморфизмом рецептора к ангиотензину II типа 1 и его ассоциации с застойной сердечной недостаточностью.

Читайте также: