Распределение случайных величин информатика сообщение

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

1. Закон распределения ДСВ:

Случайная величина. Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Например, число бракованных лампочек среди 10 купленных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2,….,10. Случайные величины обозначаются прописными буквами латинского алфавита: X , Y , Z и так далее, а их значения – соответствующими строчными буквами x , y , z и так далее.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если множество её значений конечно или счетно, то есть множество её значений представляет собой конечную последовательность x 1 , x 2 ,…. x n или бесконечную последовательность x 1 , x 2 . x n ,

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного множества. Число возможных значений непрерывной случайной величины бесконечно.

Например, если в качестве случайной величины рассматривать оценку студента на экзамене, то с определенной вероятностью, которая зависит от многих факторов, студент может получить или 2, или 3, или 4, или 5, но в результате сданного одним студентом экзамена в ведомости всегда стоит только одна оценка.

Случайная величина может быть задана законом распределения .

Законом распределения дискретной случайной величины (сокращенно ДСВ) называют соответствие между возможными значениями и их вероятностями.

Закон распределения дискретной случайной величины можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины таблица состоит из двух строк и называется законом или рядом распределения дискретной случайной величины X. Первая строка таблицы содержит возможные значения случайной величины, а вторая - соответствующие им вероятности.

Значения записываются в таблице, как правило, в порядке возрастания. Приняв во внимание, что в каждом отдельном испытании случайная величина принимает только одно возможное значение случайной величины X, заключаем, что события несовместны и образуют полную группу событий. Следовательно, сумма вероятностей этих событий, т.е. сумма вероятностей второй строки таблицы, равна единице:

В издательстве выпущено 100 книг по овцеводству. Лотереей разыграны одна книга в 500 руб. и 10 по 10 руб. Найти закон распределения случайной величины х - возможного выигрыша одной книги.

Возможны значениях: Х 1 = 500, х 2 = 10 ,х 3 = 0. Вероятности: р 1 =0,01; р 2 =0,1; р 3 =1 - 1 + р 2 ) = 0,89.

2. Числовые характеристики дискретной случайной величины:

Функцией распределения случайной величины называют функцию F ( x ), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х, то есть F ( x ) = P ( X x ).

Кроме закона распределения, который дает полное представление о случайной величине, часто используют числа, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. К ним относятся математическое ожидание, дисперсия и среднее квадратичное отклонение дискретной случайной величины .

Математическим ожиданием (М) дискретной величины называют сумму произведений всех ее возможных значений, умноженных на их вероятности.

где x i , - значение случайной величины, p i - вероятность случайной величины.

Математическое ожидание дискретной случайной величины обладает свойствами , которые вытекают из его определения.

1. Математическое ожидание постоянной величины С есть постоянная величина

2. Математическое ожидание дискретной случайной величины X, умноженной на постоянную величину С, равно произведению математического ожидания М(Х) на С. То есть постоянный множитель можно выносить за знак суммирования

3. Математическое ожидание суммы дискретных случайных величин X и У равно сумме их математических ожиданий.

4. Математическое ожидание произведения независимых дискретных случайных величин X и Y равно произведению их математических ожиданий

Часто требуется оценить рассеяние возможных значений случайной величины вокруг его среднего значения. Дисперсией (рассеянием) D ( x ) случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D ( X ) = М[Х -М(Х)] 2 .

Формула для вычисления дисперсии D ( X ) = М(Х 2 )-[М(Х)] 2 .

Средним квадратичным отклонением ( (х)) случайной величины х называют квадратный корень из дисперсии: ( х )

Исследование вариационных статистических рядов рассмотрим на примере.

Пример: Дан дискретный вариационный ряд

где X x 1 x 2 , x 3 > характеристики случайной величины X ,N n 1 , п 2 ,п 3 > - частоты появления элементов в выборке.

Провести исследование дискретного вариационного ряда

1) найти объём выборки;

2) составить закон распределения случайной величины X ;

3) найти математическое ожидание, дисперсию и среднее квадратичное отклонение.

1) Найдём объем выборки: п = n 1 + n 2 +п 3 =10+15+25=50.

2) Найдём относительные частоты: W 1 =10/50=1/5, w 2 =15/50=3/10, w 3 =25/50у =1/2.

Закон распределения случайной величины X представлен таблицей:

3) Найдём математическое ожидание, дисперсию и среднее квадратичное отклонение:

M=w 1 x 1 + w 2 x 2 + w 3 x 3 =l/5 • 1+3/10 · 4+1/2 · 6=4/4;

D= w 1 (x 1 -M) 2 + w 2 (x 2 -M) 2 + w 3 (x 3 -M) 2 = 1/5 · (1-4,4) +3/10 · (4- 4,4) +1/2 · (6- 4,4)=3,64;(x) = ==1,9

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина могущая принять любое значение из сегмента . Поэтому

Если, далее, и ( 0 . Смысл параметров a и будет установлен в дальнейшем. Исходя из связи между плотностью распределения и функцией распределения , имеем

График функции симметричен относительно прямой x=a. Несложные исследования показывают, что функция достигает максимума при x=a, а ее график имеет точки перегиба при и . При график функции асимптотически приближается к оси Ox. Можно показать, что при увеличении кривая плотности распределения становится более пологой. Наоборот, при уменьшении график плотности распределения сжимается к оси симметрии. При a=0 осью симметрии является ось Oy . На рис. 3 изображены два графика функции y =. График I соответствует значениям a =0,=1, а график II - значениям a =0, =1/2.


Покажем, что функция удовлетворяет условию, т.е. при любых a и выполняется соотношение


В самом деле, сделаем в этом интеграле замену переменной, полагая . Тогда


В силу четности подинтегральной функции имеем




В результате получим


(4)


Найдем вероятность . По формуле имеем

Сделаем в этом интеграле замену переменной, снова полагая


Тогда , и
(5)


Как мы знаем, интеграл не берется в элементарных функциях. Поэтому для вычисления определенного интеграла (5) вводится функция (6)
называемая интегралом вероятностей. Для этой функции составлены таблицы ее значений для различных значений аргумента (см. табл. II Приложения). Используя формулу (6) получим




(7)

Легко показать, что функция Ф(х) (интеграл вероятностей) обладает следующими свойствами.

2°. ; при величина практически равна 1/2 (см. табл. II).

3°. =- т.е. интеграл вероятностей является нечетной функцией.

График функции изображен на рис. 4.

Таким образом, если случайная величина нормально распределена с параметрами a и , то вероятность того, что случайная величина удовлетворяет неравенствам , определяется соотношением (7).

Пусть . Найдем вероятность того, что нормально распределенная случайная величина отклонится от параметра a по абсолютной величине не более, чем на , т.е. .


Так как неравенство равносильно неравенствам то полагая в соотношении (7) , получим


Вследствие того, что интеграл вероятностей - нечетная функция, имеем (8)

Пример 1. Пусть случайная величина подчиняется нормальному закону распределения вероятностей с параметрами a=0, =2.


1) Используя формулу (7), имеем

Из табл. II находим, что Ф(1)=0,34134 , Ф(1,5)=0,43319. Следовательно 3

2) Так как a=0 , то . По формуле (8) находим

Пример 2. В каких пределах должна изменяться случайная величина, подчиняющаяся нормальному закону распределения, чтобы
)=0,9973

Решение: По формуле (8) имеем

Следовательно, . Из табл. II находим, что этому значению соответствует =3,откуда.

Из последнего примера следует, что если случайная величина подчиняется нормальному закону распределения, то можно утверждать с вероятностью, равной 0,9973 , что случайная величина находится в интервале . Так как данная вероятность близка к единице, то можно считать, что значения нормально распределенной случайной величины практически не выходят за границы интервала Этот факт называют правилом трех сигм.

6.Условные законы распределения

Как было показано выше, зная совместный закон распределения можно легко найти законы распределения каждой случайной величины, входящей в систему.

Однако, на практике чаще стоит обратная задача – по известным законам распределения случайных величин найти их совместный закон распределения.

В общем случае эта задача является неразрешимой, т.к. закон распределения случайной величины ничего не говорит о связи этой величины с другими случайными величинами.

Кроме того, если случайные величины зависимы между собой, то закон распределения не может быть выражен через законы распределения составляющих, т.к. должен устанавливать связь между составляющими.

Все это приводит к необходимости рассмотрения условных законов распределения.

Распределение одной случайной величины, входящей в систему, найденное при условии, что другая случайная величина приняла определенное значение, называется условным законом распределения.

Условный закон распределения можно задавать как функцией распределения так и плотностью распределения.

Условная плотность распределения вычисляется по формулам:



Условная плотность распределения обладает всеми свойствами плотности распределения одной случайной величины.


Таблица I: Значения функции:

Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения.

Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал.


Функция распределения случайной величины X - вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х. Обозначается F (x): .

Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.


· Случайная величина Х называется дискретной, если существует такая неотрицательная функция , которая ставит в соответствие значению хi переменной Х вероятность рi , с которой она принимает это значение. Дискретную величину удобно задавать таблицей значений


· Случайная величина Х называется непрерывной, если для любых a

Тогда, график полигона частот:


2)


Мода равна варианту, имеющему наибольшую частоту: - две моды;


Медиана равна среднему варианту выборки: ;

3) Чтобы найти функцию распределения, составим таблицу вероятностей:

xi
pi 0,2 0,2 0,3 0,3



Тогда функция распределения:

3.1. Случайные величины и законы распределения

Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения.

Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал.


Функция распределения случайной величины X - вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х. Обозначается F (x): .

Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.


· Случайная величина Х называется дискретной, если существует такая неотрицательная функция , которая ставит в соответствие значению хi переменной Х вероятность рi , с которой она принимает это значение. Дискретную величину удобно задавать таблицей значений

· Случайная величина Х называется непрерывной, если для любых a

Биномиальный закон распределения описывает вероятность наступления события А m раз в n независимых испытаниях, при условии, что вероятность р наступления события А в каждом испытании постоянна.

Биномиальный закон распределения

Например, отдел продаж магазина бытовой техники в среднем получает один заказ на покупку телевизоров из 10 звонков. Составить закон распределения вероятностей на покупку m телевизоров. Построить полигон распределения вероятностей.

В таблице m - число заказов, полученных компанией на покупку телевизора. Сn m - число сочетаний m телевизоров по n, p - вероятность наступления события А, т.е. заказа телевизора, q - вероятность не наступления события А, т.е. не заказа телевизора, P m,n - вероятность заказа m телевизоров из n. На рисунке 1 изображен полигон распределения вероятностей.

2.Геометрическое распределение.

Геометрическое распределение случайной величины имеет следующий вид:

Геометрическое распределения

P m - вероятность наступления события А в испытание под номером m.
р - вероятность наступления события А в одном испытании.
q = 1 - p

Пример. В компанию по ремонту бытовой техники поступила партия из 10 запасных блоков для стиральных машин. Бывают случаи, что в партии оказывается 1 блок бракованный. Проводится проверка до обнаружения бракованного блока. Необходимо составить закон распределения числа проверенных блоков. Вероятность того, что блок может оказаться бракованным равна 0,1. Построить полигон распределения вероятностей.

Из таблицы видно, что с увеличением числа m, вероятность того, что будет обнаружен бракованный блок, снижается. Последняя строчка (m=10) объединяет две вероятности: 1 - что десятый блок оказался неисправным - 0,038742049 , 2 - что все проверяемые блоки оказались исправными - 0,34867844. Так как вероятность того, что блок окажется неисправным относительно низкая (р=0,1), то вероятность последнего события P m (10 проверенных блоков) относительно высокая. Рис.2.

3.Гипергеометрическое распределение.

Гипергеометрическое распределение случайной величины имеет следующий вид:

Гипергеометрическое распределение

Гипергеометрическое распределение

Например, составить закон распределения 7-ми угаданных чисел из 49. В данном примере всего чисел N=49, изъяли n=7 чисел, M - всего чисел, которые обладают заданным свойством, т.е. правильно угаданных чисел, m - число правильно угаданных чисел среди изъятых.

Из таблицы видно, что вероятность угадывания одного числа m=1 выше, чем при m=0. Однако затем вероятность начинает быстро снижаться. Таким образом, вероятность угадывания 4-х чисел уже составляет менее 0,005, а 5-ти ничтожно мала.

4.Закон распределения Пуассона.

Случайная величина Х имеет распределение Пуассона, если закон ее распределения имеет вид:

Закон распределения Пуассона

λ = np = const
n - число испытаний, стремящиеся к бесконечности
p - вероятность наступления события, стремящаяся к нулю
m - число появлений события А

Например, в среднем за день в компанию по продаже телевизоров поступает около 100 звонков. Вероятность заказа телевизора марки А равна 0,08; B - 0,06 и C - 0,04. Составить закон распределения заказов на покупку телевизоров марок А,В и С. Построить полигон распределения вероятностей.

Из условия имеем: m=100, λ 1 =8, λ 2 =6, λ 3 =4 ( ≤10 )

Пример распределения Пуассона

(таблица дана не полностью)

Если n достаточно большое и стремится к бесконечности, а значение p стремится к нулю, так что произведение np стремится к постоянному числу, то данный закон является приближением к биномиальному закону распределения. Из графика видно, что чем больше вероятность р, тем ближе кривая расположена к оси m, т.е. более пологая. (Рис.4)

Необходимо отметить, что биномиальный, геометрический, гипергеометрический и закон распределения Пуассона выражают распределение вероятностей дискретной случайной величины.

5.Равномерный закон распределения.

Если плотность вероятности ϕ(х) есть величина постоянная на определенном промежутке [a,b], то закон распределения называется равномерным. На рис.5 изображены графики функции распределения вероятностей и плотность вероятности равномерного закона распределения.

Равномерный закон распределения

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

Форма обучения

2000 руб / 120 мин - подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин - индивидуально (базовый уровень). 2000 руб / 120 мин - студенты.

6.Нормальный закон распределения (закон Гаусса).

Среди законов распределения непрерывных случайных величин наиболее распрастраненным является нормальный закон распределения. Случайная величина распределена по нормальному закону распределения, если ее плотность вероятности имеет вид:

Плотность вероятности нормального закона распределения

где
а - математическое ожидание случайной величины
σ - среднее квадратическое отклонение

График плотности вероятности случайной величины, имеющей нормальный закон распределения, симметричен относительно прямой х=а, т.е х равному математическому ожиданию. Таким образом, если х=а, то кривая имеет максимум равный:

Плотность вероятности нормального закона распределения

При изменении величины математического ожидания кривая будет смещаться вдоль оси Ох. На графике (Рис.6) видно, что при х=3 кривая имеет максимум, т.к. математическое ожидание равно 3. Если математическое ожидание примет другое значение, например а=6, то кривая будет иметь максимум при х=6. Говоря о среднем квадратическом отклонении, как можно увидеть из графика, чем больше среднее квадратическое отклонение, тем меньше максимальное значение плотности вероятности случайной величины.

Функция, которая выражает распределение случайной величины на интервале (-∞,х), и имеющая нормальный закон распределения, выражается через функцию Лапласа по следующей формуле:

Функция нормального закона распределения

Т.е. вероятность случайной величины Х состоит из двух частей: вероятности где x принимает значения от минус бесконечности до а, равная 0,5 и вторая часть - от а до х. (Рис.7)

7.Показательный закон распределения.

Закон распределения случайной величины Х называется показательным (или экспоненциальным), если плотность вероятности имеет вид:

Плотность вероятности показательного закона распределения

где λ - параметр обратно-пропорциональный математическому ожиданию.

График плотности вероятности с параметрами
λ = 2, λ = 4, λ =6 изображен на рис.8

Функция распределения случайной величины Х, которая имеет показательное распределение, имеет вид:

Функция показательного закона распределения

График функции изображен на рис.9

Если функцию распределения случайной величины выразить через плотность вероятности при х ≥ а, то она примет вид:

Функция показательного закона распределения, выраженная через плотность вероятности

8.Логарифмически-нормальное распределение.

Если логарифм непрерывной случайной величины изменяется по нормальному закону, то случайная величина имеет логарифмически-нормальное распределение. Функция логаривмически-нормального распределения имеет вид.

Из графика видно, что чем меньше σ и больше математическое ожидание а, тем кривая становится более пологая и больше стремится к симметрии. Данный закон, чаще всего, используется для описания распределения поступления денежных средств (доходов), банковских вкладов, износа основных средств и т.д. (Рис.10)

9. χ ² распределение

Сумма квадратов k независимых случайных величин, которые распределены по нормальному закону, называется χ ² распределением.

χ ² распределение имеет вид:

Распределение хи квадрат

А i - i-ая случайная величина, распределенная по нормальному закону (i = 1,2,3. k).

Плотность вероятности случайной величины, распределенной по распределению χ ² имеет вид:

Плотность вероятности распределения хи квадрат

Из графика видно, что чем больше n=k, тем кривая стремиться к нормальному распределению. Рис.11.

10.Распределение Стьюдента (t - распределение)

Распределение непрерывной случайной величины называется распределением Стьюдента, если оно имеет вид:

Функция распределения Стьюдента (t-распределение)

Z - случайная величина, распределенная по нормальному закону.
χ ² - случайная величина, имеющая χ ² - распределение с k степенями свободы.

Плотность вероятности распределения Стьюдента имеет вид:

Плотность вероятности распределения Стьюдента

На рис.12 изображена плотность вероятности распределения Стьюдента. Из графика можно увидеть, что чем больше k, тем больше кривая приближается к нормальному распределению.

11. Распределение Фишера-Снедекора.

Распределение случайной величины Фишера-Снедекора имеет вид:

Функция распределения Фишера-Снедекора

Плотность вероятности случайной величины имеет вид:

Плотность вероятности распределения Фишера-Снедекора

При стремлении n к бесконечности распределение Фишера-Снедекора стремится к нормальному закону распределения.(Рис.13)

Читайте также: