Природа акустических колебаний сообщение

Обновлено: 18.05.2024

Звук как механические колебания воздуха, воспринимающие слуховым аппаратом человека. Частота - важнейшая характеристика звука. Сущность вибрации и шума, способы защиты. Особенности действия шума на организм человека. Понятие шума, ультразвука, инфразвука.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 13.01.2011
Размер файла 42,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Поволжский кооперативный институт (филиал) "Российский университет кооперации"

по дисциплине: Безопасность жизнедеятельности

Тема: "Акустические колебания. Действие шума на человека. Инфразвук. Ультразвук"

План

1. Основные характеристики шума и вибрации

2. Воздействие шума на человека

3. Допустимые величины шума и вибрации

4. Способы и средства защиты от шума и вибрации

5. Акустические колебания

6. Действие шума на организм человека

7. Шум. Ультразвук. Инфразвук

Заключение

Список использованной литературы

Введение

С первых дней жизни человек находится в мире звуков и других колебаний. Звук - это механические колебания воздуха, которые воспринимаются слуховым аппаратом человека. Звук, как и свет, -важнейший источник информации и общения человека с окружающим его миром. Он может быть приятным, доставлять удовольствие, а может раздражать и даже вредить человеку. Восприятие звука людьми в значительной мере субъективно и зависит от их характера, эмоционального и психологического состояния. Одному человеку какая-то музыка доставляет удовольствие, другого раздражает и вызывает негативные реакции.

Большинству людей доставляют удовольствие звуки природного происхождения - шум моря, листвы, щебетание птиц. Звуки же промышленные, издаваемые техническими объектами (станками, технологическим оборудованием и т.д.). транспортными средствами (автомобилями, железной дорогой, самолетами и т.д.), негативно действуют на человека - утомляют, раздражают, вызывают головную боль, снижают внимание и скорость реакции, а в ряде случаев - при длительном воздействии и при высоких уровнях вызывают различные заболевания и даже звуковые травмы.

Звук, неприятный для человека, принято считать шумом. На первых этапах развития технической цивилизации шумы были более или менее терпимы для человеческого уха. Но с наступлением научно-технической революции проблема шума заявила о себе в полный голос. Техническая цивилизация стремительно изменяет окружающую нас акустическую среду, и, к сожалению, не в лучшую сторону.

Механические волны распространяются не только в воздухе, но и в других средах, в том числе в твердой. Их мы воспринимаем не как звуки, а как колебания различной интенсивности - вибрацию.

Механические колебания твердых тел называют вибрацией. Вибрация может иметь и природное происхождение, например вибрация земной поверхности при землетрясениях, камнепадах, вулканических извержениях, но чаще всего она имеет техногенное или антропогенное происхождение, т.е. вызывается работой технических объектов или деятельностью человека (движением транспорта, работой оборудования, ударами молотка, работой дрели или перфоратора и т.д.).

Звук и вибрация, явления по природе своей очень близкие и связаны между собой. Колебания твердого тела вызывают колебания воздуха, которые распространяются в виде звука. И наоборот, звуковые колебания воздуха могут вызвать колебания твердого тела, например вибрацию оконного стекла.

Вибрация воспринимается человеком негативно, а при длительном воздействии и высоких уровнях, которые характерны в ряде случаев для производственных условий, может привести к очень серьезным заболеваниям.

1. Основные характеристики шума и вибрации

При распространении звука частицы воздуха начинают колебаться относительно положения равновесия. Эти колебания передаются по воздуху с большой скоростью. Скорость распространения звука в воздушной среде равна 344 м/с.

Колебания частиц воздуха вызывают изменения давления. Разность между давлением в данной точке колеблющейся воздушной среды и давлением, которое наблюдается в невозмущенной среде, называется звуковым давлением (р). Звуковое давление измеряется в паскалях (Па).

При распространении звуковой волны происходит перенос энергии. Энергию звуковой волны принято характеризовать интенсивностью звука (I) - энергией, переносимой звуковой волной через единицу площади в единицу времени.

Величины звукового давления и интенсивности звука, с которыми приходится иметь дело человеку, изменяются в очень широком диапазоне: подавлению до 108 раз, по интенсивности до 1016 раз. Оперировать с цифрами такого широкого диапазона очень неудобно. Кроме того, ухо человека реагирует не на абсолютное изменение интенсивности, а на его относительное изменение. В соответствии с законом Вебера-Фехнера ощущения человека. возникающие при различного рода раздражениях. в частности шуме, пропорциональны логарифму количества энергии раздражителя. Поэтому в практику введены логарифмические величины - уровни звукового давления (LI) и интенсивности (Lр).

Важной характеристикой звука является его частота (0 - количество колебаний воздушной среды в единицу времени. Частота измеряется в герцах (Гц, 1/с) - количестве колебаний в секунду.

Слуховой аппарат человека может воспринимать лишь слышимые воздушные колебания с частотой от 16 до 20 000 Гц. Этот диапазон может воспринимать человек только с хорошим слухом.

Основными источниками шума в жилых и общественных помещениях являются в первую очередь жизнедеятельность людей (разговор, крики, игра на музыкальных инструментах, ходьба, передвижение мебели) и работа радиотелеприемников, магнитофонов, электромеханических бытовых приборов, а также эксплуатация инженерного и санитарно-технического оборудования. Приведенные данные показывают, что практически уровни звука в жилых помещениях от различных источников могут достигать значительной величины, хотя в среднем редко превышают 80 дБ.

На крупных магистралях городов шум порой превышает 100 дБ днем и даже ночью не бывает ниже 70 дБ. Шум при взлете реактивного самолета - 140 дБ, ракеты - 175 дБ.

Таблица 1

Источник шума

Уровень звука, Б

Примечание

Тихая сельская местность

На расстоянии 0,3 м

Речь средней громкости

На расстоянии 1 м

На рабочих местах

На рабочих местах

На расстоянии 7 м

На расстоянии 1 м

На расстоянии 1 м

Источники шума. Источники звука

Уровни звука, ДБ

Шум. проникающий с улицы

Шум в жилом помещении

Игра на пианино

Слив воды из крана

Шум, проникающий в комнату

Наполнение водой бачка в туалете

Удар крышки клапана мусоропровода

Шум, проникающий в квартиру

Проход кабины лифта

В смежных квартирах

Удар дверей лифта

Вибрация характеризуется скоростью (v, м/с) и ускорением (а, м/с2) колеблющейся твердой поверхности. Обычно эти параметры называют виброскоростью и виброускорением и, как и шум, также характеризуют уровнями виброскорости и виброускорения, измеряемыми в дБ. Запороговые значения виброскорости и виброускорения - стандартизованные в международном масштабе величины: уо= 5 х 10-8м/с, а0= 3 х 10-4м/с2.

Вибрация также характеризуются частотой колебаний (F), изменяющейся в широком диапазоне: от 0,5 до 8000 Гц.

2. Воздействие шума на человека

Человек воспринимает звук посредством органа слуха, костей черепа и при особенно интенсивном звуке - всем телом.

Поэтому очень важно защищать органы слуха от повреждений, ибо с помощью звуков мы получаем информацию, общаемся. Звуки дают ощущение полноты и красоты жизни.

Орган слуха, т.е. наше ухо и следующие за ним органы обработки сигнала на пути к мозгу, позволяет человеку воспринимать звук в широкой области изменения интенсивностей и частот, а также улавливать направление его прихода. Чувствительность человеческого органа слуха превосходит во многих отношениях технические характеристики лучших образцов современной электроакустической техники.

Долгое время влияние шума на организм человека не было объектом специального исследования, хотя о вреде шума знали уже давно и правила ограничения шума в городах и общественной жизни существовали еще в античную эпоху. В настоящее время существует отрасль науки, изучающая влияние звука на функции организма. Учеными ведутся многочисленные научные исследования с целью выяснения влияния шума на здоровье человека. Установлено, что шум наносит ощутимый вред организму и здоровью человека. Его влияние еще более усиливается, если шум действует одновременно с другими неблагоприятными факторами - вибрацией, пылью.

В условиях городского шума происходит постоянное напряжение органов слуха, приводящее к их утомлению, снижению остроты слуха. Под влиянием шума нарушается состояние центральной нервной системы, снижаются внимание, работоспособность, особенно умственная.

При уровнях шума свыше 60 дБ снижаются:

- объем кратковременной памяти;

- умственная работоспособность;

- реакция на различные жизненные ситуации.

Кроме того, отмечаются повышенная утомляемость и головные боли, развиваются сердечно-сосудистые заболевания.

Шум является одним из наиболее нетерпимых раздражителей в ночное время. Человек с трудом засыпает, часто просыпается, сон становится поверхностным и не дает хорошего отдыха. Отсутствие нормального отдыха после трудового дня приводит к тому, что естественное утомление после работы не исчезает, а постепенно переходит в хроническое переутомление, способствующее развитию заболеваний центральной нервной системы, гипертонической болезни. Постоянное действие шума может явиться причиной язвенной болезни, гастрита в результате нарушения секреторной и моторной функций желудка.

Таким образом, длительное воздействие шумов вызывает изменения функционального состояния не только со стороны органа слуха, сердечно-сосудистой системы, но и организма в целом, в первую очередь страдает центральная нервная система. Английские медики подсчитали: в Великобритании один из четырех мужчин и одна из трех женщин больны неврозами из-за шума.

Но и абсолютная тишина угнетает человека. В полной тишине, например в сурдокамере, сразу начинают беспокоить звуки, в обычных условиях остающиеся незамеченными, - удары сердца, дыхание и даже шорох ресниц. Эти обычно неслышимые звуки в условиях абсолютной тишины воспринимаются человеком так, что могут стать причиной серьезных психических расстройств.

Шумы природного происхождения - шум морского прибоя, листвы, дождя, журчание ручья и другие естественные шумы - благотворно влияют на человеческий организм, они успокаивают, усыпляют.

Итак, воздействие шума на человека двоякое. По-этому, говоря о борьбе с шумом, нужно помнить, что речь идет не о всех звуках вообще, а лишь о нежелательных, раздражающих, вредно влияющих на организм. Однако здесь важна и субъективная реакция на шум. Установлено, например, что люди умственного труда, люди с развитой чувствительностью (ученые, представители творческих профессий) ощущают воздействие шума острее, чем представители других форм занятости. Поэтому с субъективной точки зрения шум можно определить как всякий нежелательный, мешающий, вредный звук.

К шуму человек постепенно привыкает, наступает некоторая слуховая адаптация, однако она не может защитить его от патологического процесса, а лишь временно отодвигает сроки его наступления. Шум, обладая кумулятивными свойствами, как яд или радиация, накапливается в организме.

Уровень шума в 20-30 дБ практически безвреден для человека. Это естественный шумовой фон, без которого невозможна человеческая жизнь. Звук в 130 дБ уже вызывает у человека болевое ощущение, а в 150 - становится для него непереносимым, может произойти разрыв барабанной перепонки.

3. Допустимые величины шума и вибрации

Как и для других вредных факторов среды обитания человека, для шума и вибрации в санитарно-гигиенических нормах устанавливаются предельно-допустимые уровни (ПДУ).

Величина ПДУ для шума зависит от вида деятельности или отдыха человека. Некоторые значения ПДУ в помещениях жилых и общественных зданий и на территориях застройки приведены в таблице.

Таблица 1

Помещения или территории

Жилые комнаты квартир, жилые помещения домов отдыха, пансионатов, спальные помещения в детских дошкольных учреждениях

Площадки отдыха на территории микрорайонов и групп жилых домов, домов отдыха и пансионатов, площадки детских дошкольных учреждений, школ и других

Классные помещения, учебные кабинеты, учительские комнаты, аудитории школ и других учебных заведений читательские залы библиотек

Территории, непосредственно прилегающие к жилым домам, зданиям поликлиник, домов отдыха. пансионатов. детских дошкольных учреждений, школ и других учебных заведений

Торговые залы магазина, пассажирские залы аэропортов и вокзалов, приемные пункты предприятий бытового обслуживания

Акустические колебания

Акустические колебания – это волнообразные механические колебания частиц, распространяющиеся в упругих средах - газообразных, жидких и твёрдых. Образуются такие колебания от воздействия на эти среды какими-либо механическими колебательными системами. Простейшими акустическими колебаниями являются гармонические колебания синусоидальной формы. Они характеризуются: интенсивностью, звуковым давлением, частотой и спектральным составом. Гармонические колебания возникают от воздействия на колебательную систему периодически изменяющейся внешней силы, которая восполняет потери энергии, потраченной на преодоление сил сопротивления среды. Вследствие такого пополнения, вынужденные колебания являются незатухающими. Спектр акустических колебаний включает в себя несколько диапазонов.

Инфразвуковые колебания, с частотой ниже 16 Гц возникают как от естественных, так и искусственных источников колебаний: - цунами, грозовые разряды, землетрясения, взрывы, работающие двигатели, станки, и многие другие источники. Распространяются такие колебания на значительные расстояния, что позволяет использовать их в сейсмических исследованиях.

Слышимый звук, с частотой в диапазоне 16 Гц – 20 кГц – это акустические колебания, воспринимаемые органами слуха. Источником слышимого звука могут быть различные тела, колеблющиеся с такой частотой. В мире человека и животных слышимый звук является одним из основных средств общения.

Ультразвуковые колебания с частотой в диапазоне 20 кГц – 1 ГГц - это акустические колебания за порогом предела слышимости. УЗ колебания по некоторым своим свойствам приближаются к световым лучам, - их также можно фокусировать, формировать излучение и направлять его в нужную сторону; они преломляются при переходе в другую среду и отражаются от препятствий.

до 16 Гц
— инфразвуковые колебания

16 гГц - 20 кГц
— слышимый звук

По другим свойствам они напоминают рентгеновское излучение, т.к. способны проникать в любые материальные среды в т.ч. — прозрачные и непрозрачные; в проводники и диэлектрики. Это позволяет применять ультразвук для исследования таких материалов, а также оказывать на них определённые воздействия.

Генерировать акустические колебания УЗ частоты возможно как чисто механическими колебательными системами (свистки, сирены и пр.), так и преобразователями электрических СВЧ колебаний в механические. В настоящее время применяется только второй метод. Для генерации УЗ колебаний большой мощности излучатель строится на базе сердечника, выполненного из магнитострикционного материала, помещённого в переменное электромагнитное поле соленоида.

Излучатели небольшой мощности строятся на базе пьезоэлектрических материалов, способных менять свои геометрические размеры под действием приложенного к ним переменного напряжения.

Акустические колебания УЗ частоты нашли себе настолько широкое применение во всех сферах человеческой деятельности, что перечислить их все в короткой статье просто невозможно. В качестве иллюстраций можно привести несколько примеров использования ультразвука.

В медицине, кроме УЗИ, в лечебных целях применяется УЗ воздействие с интенсивностью до 0.4 Вт/см2. В промышленности УЗ колебания используются в технологических процессах при обработке стекла, керамики, хрупких и сверхтвёрдых металлов и сплавов. В навигации, гидрографии и рыболовстве широко применяются ультразвуковые гидролокаторы для определения морских глубин, сканирования дна водоёмов, обнаружения косяков рыбы.

На одном из первых мест стоят ультразвуковые дефектоскопы в средствах неразрушающего контроля. Их ценят за высокую чувствительность, большую проникающую способность УЗ излучения, точность определения положения дефекта и его оценку, а также за безопасность персонала при пользовании этими приборами.

Акустическими колебанияминазывают колебания упругой среды. Понятие акустических колебаний охватывает как слышимые, так и неслышимые колебания воздушной среды.

Акустические колебания в диапазоне частот 16 Гц. 20 кГц. воспринимаемые ухом человека с нормальным слухом, называют звуковыми. Акустические колебания с частотой менее 16 Гц называют инфразвуковыми, выше 20 кГц – ультразвуковыми. Область распространения акустических колебаний называют акустическим полeм. Часто акустические колебания называют звуком, а область их распространения – звуковым полем.

Шумом принято называть апериодические звуки различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый человеком звук.

Источники шума.Источниками шума на производстве является транспорт, технологическое оборудование, системы вентиляции, пневмо- и гидроагрегаты, а также источники, вызывающие вибрацию, т.к. колебания твердых тел вызывают колебания воздушной среды. Шум является одним из наиболее существенных негативных факторов производственной среды. Источники шума формируют звуковые волны, возникающие в результате нарушения стационарного состояния воздушной среды.

Параметры, характеризующие акустические колебания (шум).

Колебательная скорость v(м/с) - скорость колебания частиц воздуха относительно положения равновесия.

Скорость распространения звука (скорость звука) с (м/с) - скорость распространения звуковой волны. При нормальных атмосферных условиях (температура 20°С, давление 1034 гПа) скорость распространения звука в воздухе равна 344м/с.

Звуковое давление р (Па) - разность между мгновенным значением полного давления и средним давлением, которое наблюдается в невозмущенной среде

р = v*с,

где р - плотность среды (кг/м 3 ), рс - называют удельным акустическим сопротивлением (Па с/м), равное 410 Па с/м для воздуха, 1,5*10 6 Па с/м - для воды, 4.8*10 7 Па с/м - для стали.

При распространении звука со скоростью звуковой волны происходит перенос энергии, которая характеризуется интенсивностью звука.

Интенсивность звука I (Вт/м 2 ) - это энергия, переносимая звуковой волной в единицу времени, отнесенная к площади поверхности, через которую она распространяется.

I = р 2 / рс.

Как и для вибрации и по тем же самым причинам звуковое давление и интенсивность звука принято характеризовать их логарифмическими значениями – уровнями звукового давления и интенсивности звука.

Уровень звукового давления:

Lp = 10 lg(p 2 /p 2 0) = 20 Ig (р/р0),

где р - звуковое давление, Па; р0- пороговое звуковое давление равное 2 10 -5 Па.

Уровень интенсивности звука:

где I - интенсивность звука. Па; I0 - пороговая интенсивность звука, равная 10 -12 Вт/м 2 .

В качестве пороговых значений приняты минимальные значения звуковою давления и интенсивности звука, которые слышит человек при частоте звука в 1000 Гц, поэтому они получили названия порогов слышимости.

Важной характеристикой, определяющей распространение шума и его воздействие на человека, является его частота. Также как и для вибрации диапазон звуковых частот разбит на октавные полосы (f1/f2=2), характеризуемые их среднегеометрическими частотами fсг. Граничные и среднегеометрические частоты октавных полос (Гц) приведены ниже:

Среднегеометрические значения октавных полос Граничные частоты и диапазоны октавных полос
45. ..90
90. ..180
180. ..355
355. ..710
710. ..1400
1400. ..2800
2800. ..5600
-5600. 11200

Классификация производственного шума(рис.2.15). Шумы классифицируется по частоте, спектральным и временным характеристикам, природе его возникновения.

По частоте акустические колебания различаются на инфразвук (f 20 000 Гц). Акустические колебания звукового диапазона подразделяются на низкочастотные (менее 350 Гц), среднечастотные (от 350 до 800 Гц), высокочастотные (свыше 800 Гц).

По спектральным характеристикам шум подразделяется на широкополосный с непрерывным спектром более одной октавы и тональный (дискретный) в спектре которого имеются выраженные дискретные тона (частоты, уровень звука на которых значительно выше уровня звука на других частотах). Примером широкополосного шум может являться шум реактивного самолета, непостоянного - шум дисковой пилы, с спектре шума которой имеется ярко выраженная частота с доминирующим уровнем звука.




По временным характеристикам шум подразделяется на постоянный и непостоянный. Постоянным считается шум, уровень которого в течение восьми часового рабочего дня изменяется не более чем на 5 дБ, непостоянным - если это изменение превышает 5 дБ. Непостоянные шумы в свою очередь разделяются на: колеблющиеся, уровень звука которых изменяется непрерывно во времени (например, шум транспортных потоков); прерывистые, уровень звука которых изменяется ступенчато (на 5 дБ и более), причем длительность интервалов, в которых уровень звука остается постоянным не менее 1 с. (например, шум прерывисто сбрасываемого из баллонов сжатого воздуха); импульсные, представляющие собой звуковые импульсы, длительностью менее 1 с. (например, шум агрегатов и машин, работающих в импульсном режиме).

По природе возникновения шум можно разделить на: механический, аэродинамический, гидравлический, электромагнитный.

Механические шумы возникают по следующим причинам: наличие в механизмах инерционных возмущающих сил, возникающих из-за движения деталей механизма с переменными ускорениями; соударение деталей в сочленениях вследствие неизбежных зазоров; трение в сочленениях деталей механизмов; ударные процессы (ковка, штамповка, клепка, рихтовка) и ряд других. Основными источниками возникновения шума механического происхождения являются подшипники качения и зубчатые передачи, а также неуравновешенные вращающиеся части машин.

Аэродинамические шумы возникают в результате движения газа, обтекания газовыми (воздушными) потоками различных тел. Аэродинамический шум возникает при работе вентиляторов. воздуходувок, компрессоров, газовых турбин. выпусков пара и газа в атмосферу, двигателей внутреннего сгорания. Причинами аэродинамического шума являются вихревые процессы, возникающие в потоке рабочей среды при обтекании тел и выпуске свободной струю газа, пульсации рабочей среды, вызываемые вращением лопастных колес вентиляторов, турбин, колебания, связанные с неоднородностью и пульсациями потока. Аэродинамический шум - один из самых значительных по уровни звука.

Гидравлические шумы. Эти шумы возникают вследствие стационарных и нестационарных процессов в жидкостях (кавитации, турбулентности, гидравлических ударов). Например, в насосах источником гидравлического шума является кавитация жидкости у поверхностей лопаток насоса при высоких окружных скоростях вращения рабочего колеса.

Электромагнитные шумы возникают в электрических машинах и оборудований, использующим электромагнитную энергию. Основной причиной возникновения электромагнитного шума является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей, а также электрические (пондеромоторные) силы вызываемые взаимодействием электромагнитных полей, создаваемых переменными электрическими токами.

Лекция № 14

Акустические колебания (шум).

Акустическими колебанияминазывают колебания упругой среды. Понятие акустических колебаний охватывает как слышимые, так и неслышимые колебания воздушной среды.

Акустические колебания в диапазоне частот 16 Гц. 20 кГц. воспринимаемые ухом человека с нормальным слухом, называют звуковыми. Акустические колебания с частотой менее 16 Гц называют инфразвуковыми, выше 20 кГц – ультразвуковыми. Область распространения акустических колебаний называют акустическим полeм. Часто акустические колебания называют звуком, а область их распространения – звуковым полем.

Шумом принято называть апериодические звуки различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый человеком звук.

Источники шума.Источниками шума на производстве является транспорт, технологическое оборудование, системы вентиляции, пневмо- и гидроагрегаты, а также источники, вызывающие вибрацию, т.к. колебания твердых тел вызывают колебания воздушной среды. Шум является одним из наиболее существенных негативных факторов производственной среды. Источники шума формируют звуковые волны, возникающие в результате нарушения стационарного состояния воздушной среды.

Параметры, характеризующие акустические колебания (шум).

Колебательная скорость v(м/с) - скорость колебания частиц воздуха относительно положения равновесия.

Скорость распространения звука (скорость звука) с (м/с) - скорость распространения звуковой волны. При нормальных атмосферных условиях (температура 20°С, давление 1034 гПа) скорость распространения звука в воздухе равна 344м/с.

Звуковое давление р (Па) - разность между мгновенным значением полного давления и средним давлением, которое наблюдается в невозмущенной среде

р = v*с,

где р - плотность среды (кг/м 3 ), рс - называют удельным акустическим сопротивлением (Па с/м), равное 410 Па с/м для воздуха, 1,5*10 6 Па с/м - для воды, 4.8*10 7 Па с/м - для стали.

При распространении звука со скоростью звуковой волны происходит перенос энергии, которая характеризуется интенсивностью звука.

Интенсивность звука I (Вт/м 2 ) - это энергия, переносимая звуковой волной в единицу времени, отнесенная к площади поверхности, через которую она распространяется.

I = р 2 / рс.

Как и для вибрации и по тем же самым причинам звуковое давление и интенсивность звука принято характеризовать их логарифмическими значениями – уровнями звукового давления и интенсивности звука.

Уровень звукового давления:

Lp = 10 lg(p 2 /p 2 0) = 20 Ig (р/р0),

где р - звуковое давление, Па; р0- пороговое звуковое давление равное 2 10 -5 Па.

Уровень интенсивности звука:

где I - интенсивность звука. Па; I0 - пороговая интенсивность звука, равная 10 -12 Вт/м 2 .

В качестве пороговых значений приняты минимальные значения звуковою давления и интенсивности звука, которые слышит человек при частоте звука в 1000 Гц, поэтому они получили названия порогов слышимости.

Важной характеристикой, определяющей распространение шума и его воздействие на человека, является его частота. Также как и для вибрации диапазон звуковых частот разбит на октавные полосы (f1/f2=2), характеризуемые их среднегеометрическими частотами fсг. Граничные и среднегеометрические частоты октавных полос (Гц) приведены ниже:

Среднегеометрические значения октавных полос Граничные частоты и диапазоны октавных полос
45. ..90
90. ..180
180. ..355
355. ..710
710. ..1400
1400. ..2800
2800. ..5600
-5600. 11200

Классификация производственного шума(рис.2.15). Шумы классифицируется по частоте, спектральным и временным характеристикам, природе его возникновения.

По частоте акустические колебания различаются на инфразвук (f 20 000 Гц). Акустические колебания звукового диапазона подразделяются на низкочастотные (менее 350 Гц), среднечастотные (от 350 до 800 Гц), высокочастотные (свыше 800 Гц).

По спектральным характеристикам шум подразделяется на широкополосный с непрерывным спектром более одной октавы и тональный (дискретный) в спектре которого имеются выраженные дискретные тона (частоты, уровень звука на которых значительно выше уровня звука на других частотах). Примером широкополосного шум может являться шум реактивного самолета, непостоянного - шум дисковой пилы, с спектре шума которой имеется ярко выраженная частота с доминирующим уровнем звука.

По временным характеристикам шум подразделяется на постоянный и непостоянный. Постоянным считается шум, уровень которого в течение восьми часового рабочего дня изменяется не более чем на 5 дБ, непостоянным - если это изменение превышает 5 дБ. Непостоянные шумы в свою очередь разделяются на: колеблющиеся, уровень звука которых изменяется непрерывно во времени (например, шум транспортных потоков); прерывистые, уровень звука которых изменяется ступенчато (на 5 дБ и более), причем длительность интервалов, в которых уровень звука остается постоянным не менее 1 с. (например, шум прерывисто сбрасываемого из баллонов сжатого воздуха); импульсные, представляющие собой звуковые импульсы, длительностью менее 1 с. (например, шум агрегатов и машин, работающих в импульсном режиме).

По природе возникновения шум можно разделить на: механический, аэродинамический, гидравлический, электромагнитный.

Механические шумы возникают по следующим причинам: наличие в механизмах инерционных возмущающих сил, возникающих из-за движения деталей механизма с переменными ускорениями; соударение деталей в сочленениях вследствие неизбежных зазоров; трение в сочленениях деталей механизмов; ударные процессы (ковка, штамповка, клепка, рихтовка) и ряд других. Основными источниками возникновения шума механического происхождения являются подшипники качения и зубчатые передачи, а также неуравновешенные вращающиеся части машин.

Аэродинамические шумы возникают в результате движения газа, обтекания газовыми (воздушными) потоками различных тел. Аэродинамический шум возникает при работе вентиляторов. воздуходувок, компрессоров, газовых турбин. выпусков пара и газа в атмосферу, двигателей внутреннего сгорания. Причинами аэродинамического шума являются вихревые процессы, возникающие в потоке рабочей среды при обтекании тел и выпуске свободной струю газа, пульсации рабочей среды, вызываемые вращением лопастных колес вентиляторов, турбин, колебания, связанные с неоднородностью и пульсациями потока. Аэродинамический шум - один из самых значительных по уровни звука.

Гидравлические шумы. Эти шумы возникают вследствие стационарных и нестационарных процессов в жидкостях (кавитации, турбулентности, гидравлических ударов). Например, в насосах источником гидравлического шума является кавитация жидкости у поверхностей лопаток насоса при высоких окружных скоростях вращения рабочего колеса.

Электромагнитные шумы возникают в электрических машинах и оборудований, использующим электромагнитную энергию. Основной причиной возникновения электромагнитного шума является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей, а также электрические (пондеромоторные) силы вызываемые взаимодействием электромагнитных полей, создаваемых переменными электрическими токами.

В современных условиях шум - это один из серьезных факторов загрязнения окружающей среды; связанный с ростом городов, развитием транспорта, промышленности, бытовой техники).
Хотя звук химически или физически не изменяет и не повреждает окружающую, как это происходит при обычном загрязнении воздуха или воды, он может достигать такой интенсивности, что вызывает у людей психологический стресс или физиологические нарушения. В этом случае можно говорить об акустическом загрязнении среды.

Содержание работы
Содержимое работы - 1 файл

контрольная.docx

САНКТ-ПЕТЕРБУРГСКАЯ АКАДЕМИЯ УПРАВЛЕНИЯ И ЭКОНОМИКИ

МУРМАНСКИЙ ИНСТИТУТ ЭКОНОМИКИ

ФАКУЛЬТЕТ ЭКОНОМИКИ И ФИНАНСОВ

Заочная форма обучения

Студент Шленская Н.Н.

8 921 045 21 38

Преподаватель Щербина Ф.А.

2 . Шум и его воздействие на организм человека…………….….. … 7

3. Влияние ультразвука на организм человека…….……. . 13

4. Инфразвук, его воздействие и средства борьбы …….……. 15

БИБЛИОГРАФИЧЕСКИЙ СПИСОК .………………………………. 19

В современных условиях шум - это один из серьезных факторов загрязнения окружающей среды; связанный с ростом городов, развитием транспорта, промышленности, бытовой техники).

Хотя звук химически или физически не изменяет и не повреждает окружающую, как это происходит при обычном загрязнении воздуха или воды, он может достигать такой интенсивности, что вызывает у людей психологический стресс или физиологические нарушения. В этом случае можно говорить об акустическом загрязнении среды.

К настоящему времени накоплены многочисленные данные, позволяющие судить о характере и особенностях влияния акустических колебаний на слуховую функцию.

Помимо действия на органы слуха установлено вредное влияние на многие органы и системы организма, в первую очередь на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется нарушение слуховой чувствительности; привести к заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах (нарушение основного, витаминного, углеводного, белкового, жирового, солевого обменов), нарушению функционального состояния сердечно-сосудистой системы. Звуковые колебания могут восприниматься не только органами слуха, но и непосредственно через кости черепа (так называемая костная проводимость). Воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной, сердечно-сосудистой и других систем, которые могут рассматриваться как профессиональное заболевание — шумовая болезнь.

Самые разнообразные специфические и неспецифические воздействия на организм, включая социальные, вызывают мобилизацию клеточных и гуморальных факторов иммунитета. Повышение иммунитета приводит к возрастанию устойчивости к инфекциям и опухолям. Однако резкое повышение иммунитета ведет к гиперчувствительности и аутоиммунным заболеваниям.

Далее немного подробнее рассмотрим - что же такое акустические колебания, виды и их воздействие на организм человека.

К акустическим колебаниям относят шум, инфразвук, ультразвук, которые могут быть как слышимыми, так и неслышимыми.

Акустические колебания в диапазоне 16 Гц – 20 КГц называют звуками. Колебания с частотой меньше 16 Гц – инфразвук. Колебания с частотой больше 20 КГц – ультразвук. Распространяясь в пространстве, звуковые колебания создают акустическое поле.

Органы слуха человека воспринимают звуковые волны с частотой 16-20000 Гц. Колебания с частотой ниже 16 Гц (инфразвук) и выше 20000 Гц (ультразвук) не вызывают слуховых ощущений, но оказывают биологическое воздействие на организм.

При звуковых колебаниях частиц среды в ней возникает переменное давление Р. В каждой точке звукового поля давление и скорость движения воздуха изменяются во времени. Разность между мгновенным значением давления и средним давлением, которые наблюдаются в невозмущенной среде, называют звуковым давлением; измеряется в Па.

Распространение звуковых волн сопровождается переносом энергии, величина которой определяется интенсивностью звука I.

Интенсивностью звука называется средний поток звуковой энергии в единицу времени в какой-либо точке среды, отнесенной к единице поверхности; измеряется в Вт/м 2 .

Минимальное звуковое давление Р0 и минимальная интенсивность звука I0, различаемые ухом человека, называются пороговыми. Интенсивности едва слышимых звуков (порог слышимости) и интенсивность звуков, вызывающих болевые ощущения (болевой порог), отличаются друг от друга более чем в миллион раз.

Интенсивность акустических колебаний I в атмосферном воздухе (интенсивность звука) зависит от мощности Р (Вт) источника звука, расстояния R (м) от источника до объекта воздействия (человека) и свойств среды (воздуха), в которой колебания распространяются. В этом случае:

I = P ∙ Ф / πR 2 ∙ K, (Вт/м 2 ),

Ф – фактор направленности излучений звука;

К - коэффициент, учитывающий уменьшение интенсивности звука на пути его распространения за счёт затухания в воздухе и на различных препятствиях (К = 1 при расстоянии до 50м и отсутствии препятствий).

Уровень интенсивности звука определяют по формуле:

I – интенсивность звука в данной точке;

I0 = 10 -12 Вт/м 2 – интенсивность звука, соответствующая порогу слышимости при частоте 1000 Гц.

Уровень звукового давления определяется по формуле

Р – звуковое давление в данной точке, Па;

Р0 – пороговое звуковое давление, равное 2∙10 -5 Па.

Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности звука над уровнем другого, называется белом. Пользуются единицей в 10 раз меньшей – децибел (дБ). Диапазон звуков, воспринимаемых ухом человека, составляет 0-140 дБ. 1

2 . Шум и его воздействие на организм человека

Всякий нежелательный звук принято называть шумом. Шум - это механические колебания, распространяющиеся в твердой, жидкой или газообразной среде. Частицы среды при этом колеблются относительно положения равновесия. Звук распространяется в воздухе со скоростью 344 м/с.

Звуковые колебания различных частот при одинаковых уровнях звукового давления по-разному воздействуют на органы слуха человека.

Звуковую мощность и звуковое давление как величины переменные можно представить в виде суммы синусоидальных колебаний различной частоты.

Зависимость среднеквадратичных значений этих составляющих (или их уровней) от частоты называется частотным спектром шума.

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным. Если прослушивается звук определенной частоты, то шум называется тональным. Шум, воспринимаемый как отдельные импульсы (удары), называется импульсным.

По характеру спектра шумы подразделяются на низкочастотные (максимальное звуковое давление меньше 400 Гц), среднечастотные (звуковое давление в пределах 400–1000 Гц) и высокочастотные (звуковое давление больше 1000 Гц).

Частотные спектры шума получают с помощью анализаторов шума, представляющих собой набор электрических фильтров, которые пропускают электрический звуковой сигнал в определенной полосе частот (полосе пропускания).

По временным характеристикам шумы подразделяются на постоянные и непостоянные.

Непостоянные шумы бывают колеблющимися по времени, уровень звука которых непрерывно изменяется во времени; прерывистыми, уровень звука которых резко падает до уровня фонового шума; импульсными, состоящими из сигналов менее 1с.

В зависимости от физической природы шумы могут быть:

§ механические – возникающие при вибрации поверхностей машин и при одиночных или периодических ударных процессах (штамповка, клепка, обрубка и т.п.);

§ аэродинамические – шумы вентиляторов, компрессоров, двигателей внутреннего сгорания, выпусков пара и воздуха в атмосферу;

§ электромагнитные – возникающие в электрических машинах и оборудовании за счет магнитного поля, обусловленного электрическим током;

§ гидродинамические - возникающие вследствие стационарных и нестационарных процессов в жидкостях (насосы).

По характеру действия шумы делятся на стабильные, прерывистые, воющие. Последние два особенно неблагоприятно действуют на слух. 2

Шум создается одиночными или комплексными источниками, находящимися снаружи или внутри здания. Это, прежде всего транспортные средства, техническое оборудование промышленных и бытовых предприятий, вентиляторные, газотурбокомпрессорные установки, санитарно-техническое оборудование жилых зданий, трансформаторы.

В производственной сфере шумы наиболее распространены в промышленности, сельском хозяйстве. Значительный уровень шума наблюдается в горнорудной промышленности, в машиностроении, в лесозаготовительной и деревообрабатывающей промышленности, в текстильной промышленности.

Акустика — это раздел физики, изучающий возбуждение, распространение, прием звуковых волн, а также их взаимодействие со средой. Особенностью звуковых волн, отличающих их от электромагнитных или гравитационных, является то, что они могут распространяться только в сплошной упругой среде. Звук окружает нас повсюду: в атмосфере, под водой, под землей, в биологических средах и материалах и даже в космосе. Только звук может распространяться в земных структурах и под водой без существенного затухания, поэтому он широко используется в исследованиях природных сред.

Обычно мы называем звуком то, что мы слышим. Принято считать, что диапазон частот слышимого нами звука лежит в пределах от 20 Гц до 20 кГц. Это соответствует 20–20 000 колебаний в секунду. Звуковые волны, частота колебаний которых выходит за этот диапазон, получили свои специальные названия.

Ультразвуком называют звуковые волны, частота колебаний которых выше 20 кГц. Технологически развитый диапазон применения ультразвука лежит в пределах от 20 кГц до 100 МГц. Более высокочастотная область ультразвука получила название гиперзвук. Звуковые волны гиперзвуковых частот могут распространяться только в кристаллах с малым поглощением звука, таких, как монокристаллы кварца, сапфира, ниобата лития, железо-иттриевого граната и др. Гиперзвук используется при обработке больших массивов информации, в том числе оптических изображений, и исследовании строения твердых тел. Этим занимается наука акустоэлектроника. Диапазон, в котором гиперзвук возбуждается искусственным, контролируемым образом, ограничивается частотами порядка 10 ГГЦ, что связано с высоким затуханием. При столь высоких частотах длина волны такого звука будет уже соизмеримой с межатомным расстоянием в кристалле. В таком случае мы уже не можем считать кристалл сплошной средой.

Звуковые волны, частота которых ниже 20 Гц, называют инфразвуком. Затухание инфразвука невелико, и поэтому инфразвуковые волны активно используются для исследования океана и структуры земли. Звуки взрывов вулканов могут обогнуть весь земной шар, низкочастотный подводный звук распространяется через океаны на тысячи километров.

Далее мы обсудим современные идеи и новые акустические технологии исследования и освоения окружающего мира. Часто акустические методы не имеют альтернативы и поэтому оказываются наиболее эффективными для решения той или иной важной задачи.

Звук и инфразвук в исследовании природы

Объяснение этому интересному эффекту дал Л. М. Бреховских — впоследствии академик и лауреат Государственной премии СССР. Он обратил внимание на то, что температура воды быстро падает до глубины 100–200 м, а затем принимает постоянное значение около 4°C. Падение температуры приводит к уменьшению скорости распространения звука, а рост давления с глубиной приводит к увеличению этой скорости. Таким образом, в зависимости скорости распространения звука от глубины оказывается минимум, в котором и концентрируется акустическая энергия. На рисунке 1 видно, что если поместить излучатель на уровень минимума скорости звука, то звуковые лучи, выходящие из излучателя, в результате рефракции будут удерживаться вблизи этого минимума. В итоге часть звуковых лучей, вышедших из источника под не очень крутыми углами, остаются при распространении в слое толщиной в несколько сот метров. Такой слой представляет собой подводный акустический волновод, или подводный звуковой канал.

Характер распространения звука в акустическом волноводе аналогичен распространению лазерного излучения в оптическом волноводе. В настоящее время особенности распространения звука в подводном акустическом волноводе используются для термометрии океана.

Океан можно рассматривать как гигантский, занимающий огромную площадь термометр. Следя за изменениями температуры глубинных слоев океана, можно следить за потеплением климата. Дело в том, что масштабные климатические изменения надежно определить чрезвычайно трудно из-за больших флуктуаций во времени и пространстве. Огромные массы воды в океане усредняют эти флуктуации. Определить среднюю температуру глубинных слоев океана на масштабах в несколько тысяч километров можно только акустическими методами, электромагнитные волны в морской воде не распространяются на заметное расстояние.

Такая особенность распространения звука используется для дистанционного мониторинга теплопереноса в океане, что важно для прогнозирования климата. Океан формирует погоду на земле. Северный Ледовитый океан является кухней погоды для Европы и существенной части Азии. Распределенная по всему океану система излучателей и приемников звука может решать самые разнообразные задачи. Среди них можно выделить измерение времени распространения сигналов на протяженных трассах для определения содержания тепла и циркуляции океанических вод как на масштабах всего океана, так и в отдельных его частях; обеспечение подводного позиционирования и навигации подо льдом; мониторинг динамики льда, землетрясений и перемещения морских животных при пассивном прослушивании акватории океана. Все эти процедуры система может выполнять в реальном времени.

Исследование атмосферы. Распространение звука в атмосфере подчиняется тем же самым законам, что и распространение звука в океане, с той разницей, что скорость распространения звука в воздухе в нормальных условиях у поверхности земли составляет 340 м/с. Это существенно меньше скорости звука в воде.

На рисунке 2 представлена схема звуковых лучей, выходящих из источника звука в атмосфере. Как видно, в присутствии ветра лучи по-разному ведут себя в зависимости от направления распространения. Поток воздуха увеличивает скорость распространения звука по ветру и несколько снижает ее в противоположном направлении. Как правило, приземный поток воздуха или ветер увеличивает свою скорость с высотой. Скорость распространения звука по ветру на большой высоте больше, чем у земли, поэтому фронт звуковой волны при подъеме вверх заворачивается и волна направляется вниз, где скорость меньше. Возникает рефракция звука. Благодаря этому в приповерхностном слое атмосферы образуется звуковой волновод, в котором концентрируется звук, и на поверхности земли можно регистрировать акустические сигналы, которые распространялись на высоте в несколько десятков километров. Эффект рефракции при распространении против ветра приводит к тому, что звук быстро уходит на большую высоту (десятки километров). Поэтому мы плохо слышим против ветра и хорошо по ветру.

Рис. 2. Схема звуковых лучей, выходящих из источника звука в атмосфере в присутствии ветра

Приземный звуковой волновод может образоваться не только в результате ветра. В тихий безветренный морозный день где-то за городом можно далеко слышать лай собак или шум машины. В такую погоду в приземной атмосфере возможна так называемая температурная инверсия. Обычно температура воздуха понижается с высотой, но в морозный день температура у поверхности земли, особенно в низине, может быть ниже, чем на некоторой высоте. Минимальная температура в приземном слое воздуха соответствует минимуму скорости распространения звука. Таким образом, температурная инверсия обеспечивает волноводное распространение звука у поверхности земли.

На рисунке 3 показано распределение температуры с высотой в атмосфере. Как видно, эта характеристика, как и в океане, имеет слоистую структуру. В областях нижней границы стратосферы (тропопауза) и нижней границы термосферы (мезопауза) температура, а следовательно, и скорость распространения звука достигают минимума. Здесь выполняются условия для существования атмосферных звуковых каналов. Звуковые волны от извержений вулканов или наземных взрывов распространяются по этим каналам на огромные расстояния и даже могут обогнуть Земной шар. Поэтому средняя атмосфера (от 20 до 120 км высоты) является хорошим проводником инфразвука. Это свойство атмосферы позволило ученым разработать методику инфразвукового зондирования атмосферы, базирующейся на явлении рассеяния акустических импульсов на слоистых неоднородностях скорости ветра и температуры атмосферы вплоть до высот нижней термосферы порядка 140 км. С помощью такой методики можно определить флуктуации скорости ветра в диапазоне высот от верхней стратосферы до нижней термосферы (90–140 км).

Рис. 3. Стратификация температуры в атмосфере. Изменение давления показано в гектапаскалях (1 гПа = 100 Па). В областях тропопаузы и мезопаузы температура, а следовательно, и скорость распространения звука достигают минимума. Здесь находятся атмосферные звуковые каналы

Сейсмические волны в земле. Аналогичным образом распространяются сейсмические волны в земле. Они могут быть как естественного происхождения, так и искусственные. В качестве естественных источников сейсмических волн мы можем назвать землетрясения, извержения вулканов, горные обвалы. Искусственным образом сейсмические волны возбуждаются наиболее эффективно взрывом или специальными многотонными вибраторами. Если в океане и атмосфере распространяются только продольные звуковые волны (в жидкостях и газах отсутствует сдвиговая упругость), то сейсмические волны могут быть как продольные, так и поперечные. Поперечные волны, в зависимости от плоскости колебаний, могут иметь разную поляризацию. Скорость распространения поперечных волн, как правило, в 2–3 раза меньше скорости распространения продольных. Наличие сейсмических волн двух типов расширяет возможности сейсмического зондирования в сравнении с зондированием океана или атмосферы.

Центральной задачей сейсмического зондирования является исследование структуры земли и поиск полезных ископаемых. Обе эти задачи требуют выполнения противоречивых подходов. С одной стороны, интересно заглянуть как можно глубже под поверхность земли. Этого можно достичь, понижая частоту сейсмического излучения. С понижением частоты снижаются потери, связанные с затуханием, и звуковые волны распространяются дальше. С другой стороны, уменьшение частоты ведет к росту длины излучаемой волны, а это снижает разрешающую способность дистанционного метода зондирования. Всё возрастающие требования к качеству разведки полезных ископаемых заставляют искать способы повышения разрешающей способности, а следовательно, и точности сейсморазведки.

Разрешить возникшее противоречие удалось за счет развития методов приема сейсмических сигналов. Известно, что чем больше приемная антенна, тем выше ее пространственное разрешение. Если принимать сигналы большим количеством приемников, объединенных в единую сеть, то можно повысить пространственную точность дистанционного зондирования. Но для этого требуется сложная обработка сигналов от многих сотен или даже тысяч приемников. Современная сейсморазведка обеспечивает достаточную точность зондирования, чтобы определить продуктивные залежи полезных ископаемых, например нефти или газа, на глубинах более 10 км. Современные технологии обеспечивают прохождение скважины горизонтально вдоль пласта, чтобы повысить эффективность добычи нефти. Толщина пласта составляет порядка 10 м на глубине несколько километров. При этом длина скважины может быть более 10 км. Точность прокладки скважины соизмерима с точностью выведения ракеты на траекторию к межпланетному полету.

Рис. 4. Вертикальный сейсмический разрез строения верхних слоев земли

Для зондирования структур земли используют естественные низкочастотные сейсмические сигналы от землетрясений или даже приливных волн, вызванных движением Луны. На рисунке 4 показан пример результатов такого зондирования на глубину более 50 км. Он свидетельствует о том, что в структуре земли есть не только горизонтальные слои, но и крупные вертикальные разломы, которые могут доходить до мантии.

Знание особенностей распространения низкочастотного звука в океане, атмосфере и земле позволило разработать и создать эффективную международную систему контроля за выполнением договора о всеобщем запрещении ядерных испытаний. Существует специальная схема расположения станций на земле и в океане, осуществляющих постоянный мониторинг и регистрирующих сейсмические, гидроакустические и инфразвуковые сигналы в атмосфере. Эти станции объединены в общую сеть и поэтому могут определить место и время события, приведшего к появлению того или иного сигнала.

Примером такой эффективности является обнаружение взрыва метеороида в небе над Челябинском 15 февраля 2013 года. Метеороид вошел в атмосферу под углом 20° со скоростью 18 км/с. По мере полета в атмосфере скорость метеороида уменьшалась и происходил его нагрев. Перед ним возникла ударная волна, в которой воздух был сильно сжат и разогрет. Метеороид разрушился, когда разность давлений на фронте ударной волны и на противоположной его стороне превысила предел прочности метеороида. Это разрушение (взрыв) сопровождалось вспышкой яркости излучения в течение пяти секунд. Максимум яркости наблюдался на высоте 23,3 км южнее Челябинска. Примерный эффективный диаметр метеороида равен 18 м, а его масса 11 000 тонн. Семнадцать станций зарегистрировали ударную волну этого взрыва. Последующий анализ позволил оценить эквивалент мощности взрыва в 2–3 кт тринитротолуола.

Современные проблемы применения медицинского ультразвука

Ультразвук мегагерцового диапазона частот достаточно хорошо распространяется в биологических тканях. Как известно, живые организмы почти на 90% состоят из воды. Поэтому скорость распространения звука в таких условиях близка к 1500 м/с, что соответствует скорости распространения звука в воде. Длина волны ультразвука на частоте 1 МГЦ равна при этом 1,5 мм, что обеспечивает достаточно высокое пространственное разрешение ультразвуковых методов.

Хорошо известно применение ультразвука в медицине для диагностики и исследования внутренних органов и суставов (УЗИ). Менее известны успехи в области ультразвуковой хирургии, хотя и здесь есть существенные результаты. Прежде всего это дробление и удаление камней из почек с помощью фокусированного воздействия ударными волнами — так называемая литотрипсия. Начиная с 1980-х годов литотрипсия является наиболее распространенной процедурой для удаления камней из почек. Другим быстро развивающимся направлением исследований является терапевтическое направление применения ультразвука, основное преимущество которого — лечебное воздействие внутри тела без повреждения окружающей ткани. Широкие возможности различных видов ультразвуковой терапии были продемонстрированы экспериментально, а некоторые из них уже нашли применение в клинической практике. Одним из примеров является интенсивный фокусированный ультразвук.

Рис. 5. Схема ультразвукового воздействия на биологические ткани. Пучок интенсивного фокусированного ультразвука используется для локализованного разрушения опухоли или остановки внутреннего кровотечения без повреждения окружающей ткани. Акустическая энергия, излучаемая ультразвуковым преобразователем, концентрируется в объем, примерно равный объему рисового зерна

Укажем на некоторые основные проблемы, которые нуждаются в решении для успешного применения интенсивного ультразвука в практике.

Одной из важных задач является получение больших значений амплитуды акустической волны в фокусе с учетом структуры человеческого тела. Усиление ультразвуковой волны при фокусировке необходимо для обеспечения высокой интенсивности в небольшой фокальной области, чтобы не повредить остальные участки ткани на пути распространения ультразвука. Ультразвуковой ожог кожи является одним из характерных побочных эффектов при применении интенсивного ультразвука, поскольку в коже коэффициент поглощения ультразвука в несколько раз выше, чем в ткани. Поэтому на этом участке акустическая интенсивность должна быть как можно более низкой. Такую процедуру возможно реализовать, применяя многоэлементные ультразвуковые антенны, излучение которых будет согласовано со структурой тела, по которой должно пройти излучение.

Важными также являются технические разработки по созданию хорошего акустического согласования ультразвукового излучателя с телом. Дело в том, что ультразвуковые излучатели делаются, как правило, из пьезоэлектрической керамики. И для того чтобы обеспечить наилучшую передачу звуковой энергии в человеческое тело, нужно согласовать условия прохождения звука от твердой пьезокерамики к мягким биологическим тканям. Для этого применяют специальные контактные смазки или жидкости. Например, по сравнению с вогнутыми источниками плоские УЗ преобразователи гораздо труднее сделать фокусирующими, но зато для них легче обеспечить согласование при непосредственном контакте с кожей. Поглощение в костях еще сильнее, вот почему важно минимизировать попадание на них ультразвука. Соответствующая технология предполагает использование многоэлементных фазированных антенн для осуществления электронной фокусировки. На рисунке 6 показано схематическое изображение такой антенны для фокусировки ультразвукового излучения в мозг через кости черепа.

Рис. 6. Схема ультразвукового транскраниального воздействия на мозг

Мозг является тем органом, где применение терапии с использованием фокусированного ультразвука имеет свои особенности. Принципиальной трудностью здесь является тот факт, что ультразвуковые волны плохо проходят сквозь черепную коробку из-за поглощения в кости и отражения на ее границах. Кроме того, кости черепа неоднородны по толщине и характеризуются более высокой (по сравнению с расположенными за ними мягкими тканями) скоростью звука, что приводит к трудно предсказуемым эффектам рефракции. Решение проблемы ультразвукового воздействия и визуализации через толстые кости черепа возможно при использовании разработанных в последнее время методов волновой физики, связанных с компенсацией потерь и аберраций при распространении волн в неоднородной среде. В основе лежит голографический принцип, согласно которому распределение характеристик волнового поля на некоторой поверхности в этом поле содержит информацию о всей трехмерной структуре поля, а также принцип обратимости недиссипативных волновых процессов во времени и связанный с этим метод обращения волнового фронта.

Обратим внимание на еще одну особенность, требующую учета при применении интенсивного фокусированного ультразвука, — это акустическая нелинейность. Дело в том, что в уже использующихся в практике системах ультразвуковой хирургии уровни акустической интенсивности в области фокуса достигают 10 000– 30 000 Вт/см 2 . При таких интенсивностях волна ведет себя нелинейным образом. Скорость распространения звуковой волны становится зависящей от ее фазы: волна в области сжатия имеет большую скорость распространения, чем в области разрежения. Поэтому в синусоидальной волне фаза сжатия догоняет фазу разрежения — в волне образуются разрывы и волна превращается в пилообразную, что в спектральном представлении соответствует обогащению монохроматического ультразвукового излучения высшими гармониками. Обогащение спектра излученного сигнала сказывается и на процессе дифракции. Дифракция и, соответственно, фокусировка ультразвукового излучения становятся нелинейными, т.е. амплитуднозависимыми процессами. Расстояние, на котором образуется разрыв в плоской гармонической волне с характерной для медицинских приложений частотой 1,5 МГц, составляет всего 3–5 мм. Этот масштаб соизмерим с размерами фокальной области ультразвукового пучка, поэтому при описании акустических полей таких систем безусловно необходимо учитывать нелинейные эффекты.

Читайте также: