Применение солей алюминия сообщение

Обновлено: 02.07.2024

Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV) и кислород:

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия, сернистый газ и кислород:

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например , тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:

Na[Al(OH)4] разбиваем на NaOH и Al(OH)3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами .

Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO2:

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например , с соляной кислотой:

Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Комплекс разрушается при взаимодействии с хлорной водой (водным раствором хлора) Cl2:

2Na[Al(OH)4] + Cl2 → 2Al(OH)3↓ + NaCl + NaClO

При этом хлор диспропорционирует.

Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Гидролиз солей алюминия

Растворимые соли алюминия и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Al 3+ + H2O = AlOH 2+ + H +

II ступень: AlOH 2+ + H2O = Al(OH )2 + + H +

Однако сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы разделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO2 разбиваем на Na2O и Al2O3

Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия :

KAlO2 + 4HCl → KCl + AlCl3 + 2H2O

NaAlO2 + 4HCl → AlCl3 + NaCl + 2H2O

В мире существует довольно много веществ, которые не могут существовать в нормальных условиях. Из-за высокой химической активности или других окружающих факторов они сразу же разлагаются на воздухе на составные части или же вступают в реакцию со всеми подряд элементами с образованием новых соединений.


Для хранения подобных веществ приходится обеспечивать им специальные условия, которые позволили бы материалу, находящемуся внутри, сохранять свое агрегатное состояние. Карбонат алюминия относится как раз к той группе веществ, которые не могут существовать при нормальных условиях. Для его хранения пришлось бы воссоздать очень сложную систему, которая бы оберегала вещество от доступа извне.


Но вопрос стоит в том, что в этом совершенно нет никакой необходимости. Соединение не несет в себе никакой прорывной научной ценности, так что держать его в таких сложных условиях и тратить на это огромные деньги совершенно ни к чему. Поэтому о данной соли алюминия можно найти совсем немного информации.

Как получают вещество?


Образование соединения алюминия с солью карбонатной кислоты получается в результате спекания алюминиевого основания с карбонатами щелочных металлов. В итоге можно получить нужное вещество, но оно сразу же разлагается из-за гидролиза карбоната алюминия.

Причина кроется в том, что слабая кислота в симбиозе со слабым основанием дают слабую соль, которая не может противостоять атмосферному воздействию. Подобные реакции проводятся только для наглядных опытов, потому что сами вещества не несут промышленной ценности, а затраты на их хранение были бы намного больше полезности.


Также промежуточно можно получить соединение при реакциях:

  • • карбонат калия+оксид алюминия;
  • • хлорид алюминия+карбонат натрия;
  • • сульфат алюминия+карбонат натрия;
  • • оксид алюминия+карбонат натрия;
  • • карбонат натрия нитрат алюминия;
  • • хлорид алюминия+карбонат калия.

Карбонат калия


Есть еще большое количество реакций с карбонатами калия и натрия, которые вытесняют алюминий из его солей и промежуточно меняются местами. Но в итоге все равно получается алюминат калия или натрия, так что полученное соединение не сохраняется. Поэтому весьма проблематично изучить его свойства. Ни один справочник по химии не дает ответа на данный вопрос, так как он просто напросто не изучен.

Взаимодействие металлического алюминия с карбонатом натрия


Натрий является одним из самых активных металлов, так что используется для большого количества опытов, причем, как в чистом виде, так и в своих соединениях. Поэтому интересным вопросом выглядит реакция карбонат натрия→алюминий. Алюминий ни при каких условиях не вытесняет натрий из его солей, так что по-хорошему и никакой реакции быть не должно. Но при определенных условиях она происходит.


Самое главное, что итог будет весьма странным: алюминий растворяется в концентрированном растворе карбоната натрия. В результате получается сложный окисел, в который входит сразу два металла. Такая реакция возможна благодаря амфотерности алюминия, проявляющего разные свойства в зависимости от условий среды реагирования. Ни с одним другим веществом повторить подобный опыт не получится из-за невозможности поставить металл на место неметалла в данной ситуации.


Оксид карбоната алюминия также не существует в природе по описанным причинам. Зато при помощи теплового сопровождения на уровне 1200 градусов по Цельсию, можно сплавить оксиды натрия и алюминия, чтобы получить алюминат. Этот материал является промежуточным и идет на нужды других отраслей промышленности, например, играет роль протравочного вещества перед покраской тканей в текстильном производстве.

Использование сложных солей алюминия на практике


Сложные многоатомные соединения часто используются в фармацевтике, так как там нужно применять нестандартные подходы для поиска оптимального состава лекарственных препаратов. Например, вещество алюминия гидроксид-магния карбонат магния-гидроксид представляет собой сложное многоатомное соединение, которое обладает большим набором полезных качеств.

Его свойства можно изложить списком:

  • • Является сильнейшим атацидным средством, так что может быстро успокаивать желудок при ощущении в нем дискомфорта после острой или кислой пищи.
  • • Нейтрализует среду желудка, забирая на себя избыточную соляную кислоту.
  • • Возвращает в норму кислотно-щелочной баланс.


Алюминия гидроксида-магния карбоната гель-магния гидроксид прописывают пациентам при изжоге, повышенной кислотности желудка, хронических гастритах и язвенной болезни, грыже. Также он позволит снять негативное воздействие алкоголя на организм после его злоупотребления.

При диетах или приеме других лекарств будет положительно влиять на желудок, так как избавит его от избыточной кислоты, которая всегда доставляет дискомфорт и приводит к болевым ощущениям и ухудшению самочувствия. Противопоказаниями к применению выступают только болезнь Альцгеймера и тяжелые нарушения функции почек, которые не позволяют им работать в полную силу.


Побочные эффекты проявляются крайне редко и могут иметь вид тошноты, незначительной диареи или изменения вкусовых ощущений. Также иногда пациенты чувствуют слабость быструю утомляемость или замедленную реакцию на окружающий мир. С другими лекарственными препаратами отмечается отличный уровень взаимодействия, но в любом случае нужно все делать только после консультации со своим лечащим врачом.

Из гидроксида алюминия можно получить практически все соли алюминия. Почти все соли алюминия хорошо растворимы в воде. В растворе соли алюминия показывают кислую реакцию.

Практическое значение имеют многие соли алюминия. Безводный хлорид алюминия АlСl3 используется в качестве катализатора при переработке нефти, а также при получении толуола.

Соли алюминия и сильных кислот хорошо растворимы в воде и подвергаются в значительной степени гидролизу по катиону, создавая сильнокислотную среду, в которой растворяются такие металлы, как магний и цинк. Нерастворимы в воде фторид AlF3 и ортофосфат АlРO4.

Квасцы (двойные соли алюминия) - обладают сильными вяжущими свойствами и применяются при дублении кожи, а также в медицинской практике как кровоостанавливающее средство.

Алюмосиликаты - группа природных и синтетических силикатов, комплексные анионы которых содержат кремний и алюминий.

Природные алюмосиликаты, не содержащие группы (OH) и кристаллической воды, являются тугоплавкими, термически стойкими соединениями.

Синтетические алюмосиликаты получают гидротермальным синтезом при нагреве оксидов кремния SiO2 и алюминия Al2O3 с оксидами металлов.

Алюминий используется для получения алюминиевых сплавов. Чистый алюминий – конструкционный материал в строительстве, применяется в электротехнике, является раскислителем чугуна и стали, восстановителем оксидов в производстве металлов методом алюмотермии.

Оксид алюминия применяется в качестве огнеупорного и абразивного материала, для производства керамических резцов и электротехнической керамики.

Гидроксид алюминияиспользуется при производстве соединений алюминия, компонент зубных паст, применяется в медицине.

Хлорид алюминия применяется в качестве катализатора в органическом синтезе, для очистки сточных вод и обработки дерева.

Сульфат алюминия– коагулянт для обработки питьевых и промышленных вод, применяется при производстве бумаги и в текстильной промышленности.

Углерод. Аллотропия. Химические свойства углерода. Карбиды металлов. Сероуглерод, способы получения и свойства.

Углеро́д (C) — при обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства.

Аллотропия: Существует три основных геометрии атома углерода.

- тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp3-гибридизация). Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

- тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация). Такая геометрия углерода характерна для графита, фенола и др.

- диагональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Этот лёгкий и устойчивый к коррозии металл широко используется для получения сплавов, которые находят применение в авиационной и космической технике, речных судах и катерах, автомобилях, а также в промышленности для изготовления посуды, бытовой техники и др.

Применение алюминия.jpg

Высокие электропроводность и теплопроводность алюминия позволяют использовать этот металл для производства электрических проводов и радиаторов систем отопления.

Краской-серебрянкой, содержащей алюминиевую пудру, покрывают крыши, заборы, другие поверхности. Такое покрытие хорошо смотрится и устойчиво к внешним воздействиям.

Широко используются соединения алюминия. Так, минерал корунд (природный оксид алюминия) очень твёрдый и применяется как абразивный материал для обработки твёрдых поверхностей. Его разновидности, минералы рубин (красный) и сапфир (синий) — драгоценные камни. Из них изготавливают ювелирные украшения.

Читайте также: