Применение алюминия сообщение по химии

Обновлено: 05.07.2024

Алюминий или еще одно его менее распространённое название Глиний — это хим. элемент, в периодической табл. Менделеева находится под атомным номером 13, химический элемент 3й группы. Алюминий относится к легким металлам, его цвет серебристо-белый, также к его свойствам относятся: гранецентрированная и кристаллическая кубическая решетка, невысокая плотность, а также он начинает плавиться при 660 ˚С. Атомный вес приблизительно равен 27,04. Элемент открыл Ганс К. Эрстед.

Название элемента произошло от латинского слова alumen, оно еще за полтысячелетия до н.э. означало алюминиевые квасцы. Они применялись в качестве протравы во время окрашивания ткани, а также во время дубления кожи.

Алюминий по распространённости в природной среде занимает 3-е место, а также по распространённости среди металлов занял 1-е место. По причине своих химических свойств алюминий не встречается в чистом и свободном виде в природной среде. Зато его множество во всевозможных соединениях, а конкретно в силикатах. Огромное количество соединений с алюминием находятся в горных породах. Он встречается в таких соединениях, как слюда, глина и корунда.

В 1827 году Велер сделал открытие, он 1-й добыл алюминий в свободном состоянии, его открытие выглядело в виде порошка серого цвета. А в 1846 году Велер сделал еще одно открытие получив алюминий в виде металлических шариков блестящего цвета. Также Велером были описаны свойства алюминия. Через 8 лет Сен-Клер Девиллему удалось разработать и значительно усовершенствовать способ получения алюминия.

Теплопроводность алюминия значительно зависит от уровня его чистоты. Для алюминия с техническими характеристиками и чистотой 99,49 и 99,70%, при 200°С теплопроводность равняется 209 и 222 Вт/(м×К). Для алюминия чистота которого равняется 99,9%, и он является рафинированным электролитиески, его теплопроводность при 190°С поднимается до показателя до 343 Вт/(м×К).

По характеристикам теплопроводности алюминий занимает 4-е место. Уровень деформации, при каком режиме была выполнена термообработка, очень важен аспект наличия примесей и то что собой представляют эти добавки, все это воздействует на уровень электропроводности металла. Самыми частыми и массовыми добавками в алюминии есть железо, цинк, кремний, титан и медь.

Чем меньше в алюминии различных добавок, тем выше поднимается уровень его умения отображать от своей поверхности белый свет.

Химический элемент с легкостью может вступить в реакцию с кислородом при комнатной температуре окружающей среды. В ходе реакции на поверхности образуется оксидная пленка, при которой металлу не страшна коррозия. После того как на поверхности металла образуется пленка металл не будет взаимодействовать с водой, концентратами азотной и серной кислоты, по этим причинам тара из алюминия используется для их перевозки.

Оксидная пленка с металла с легкостью снимается при помощи солей аммония, горячей щелочи, ртутных сплавов. Когда пленка будет разрушена, элемент может вступать в химическую реакцию с некоторым рядом неметаллов и различными соединениями.

При помощи электролиза раствора глинозема в расплавленном криолите при температуре 960-970°С, добывают алюминий в максимально чистом виде.

Алюминий широко распространён в качестве конструкционного материала. Его часто используют во время производства посуды, фольги. Его нередко используют в авиастроительстве включая космическую отрасль. Чистый алюминий нельзя применять в строении, в связи с малой прочностью, прочность металла повышают за счет сплава.

Также алюминий применяется в металлургии, во время производства взрывчатых веществ. Он активно используется во время перевозок жидких газов, некоторых кислот, пищевых масел, воды, а также перекиси водорода.

Потребность в алюминии, его производство и потребление все время поднимается.

Доклад №2

Алюминий – это серебристый металл с голубовато-серым оттенком. Он отличается пластичностью, малым весом, а также отличной проводимостью тепла и электричества. Поддаётся обработке давлением и сварке. В сочетании с кислородом, образует защитную пленку, предупреждающую дальнейшее распространение коррозии. Примеси различных металлов изменяют качественную характеристику алюминия. Например, соединения алюминия с марганцем или магнием снижают его проводниковые свойства, кремневое легирование – уменьшает пластичность, сочетание с железом снижает стойкость алюминия к коррозии.

Чистый алюминий применяют в производстве полупроводниковых приборов, проводов для электрической сети, а также зеркал. Металл сложно поддается обработке из-за своей хрупкости. Поэтому, для получения готовой продукции, чаще используются его сплавы.

Прочность сплавов, полученных с помощью литья, является их отличительной особенностью, так же как и повышенная твердость. Изменение свойств алюминия позволяет проводить качественную обработку металла, а также получать заготовки различной степени сложности.

Наиболее пластичными являются алюминиевые сплавы, которые деформируются путём обработки горячим или холодным давлением. В производстве выпускаются в форме пластин, прутиков, полос, проволоки. В свою очередь, сплавы, подвергающиеся деформации, можно разделить на два вида: упрочняемые и не упрочняемые тепловой обработкой.

Не упрочняемые сплавы в своей основе имеют алюминий в совокупности с магнием или марганцем. Такие сочетания металлов, являются самыми благоприятными для изготовления пластичных и не подверженных коррозии изделий, одним, из которых является алюминиевая посуда.

Упрочнение сплавов совершается за счет закалки и последующего старения металла. Это происходит либо естественным способом, либо в результате повышения и понижения температуры. Сплав с медью – дюралюминий, является упрочняемым, он в два раза превышает исходные качества чистого алюминия, не утяжеляясь, но имеет низкую стойкость к ржавлению. Для предотвращения коррозии, изделия, изготовленные из дюралюминия, плакируют, то есть, покрывают слоем лака или чистого алюминия.

Алюминиевые сплавы имеют широкое распространение. Из них изготавливают пластины, которые впоследствии используются для изготовления консервных банок. Пищевая фольга является алюминиевой. Но самое большое применение сплавов этого металла происходит при строительстве автомобилей и самолетов.

9 класс, свойства, применение

Алюминий

Алюминий

Владимир Алексеевич Солоухин - известный советский поэт и писатель, один из наиболее значимых представителей "деревенской прозы".

Тихий океан – самый глубокий. Средняя глубина этого океана около 4 километров, а самая глубокая точка – Марианский желоб, его глубина около 11 километров. Также Тихий океан самый большой. Он занимает половину от всего Мирового океана и треть всей

Внешней памятью компьютера принято называть память долговременного хранения информации различной формы. Данный тип памяти не имеет зависимости от процессора.

Алюминий в природе Применение Алюминия. Доклад по химии. 9 класс.

Алюминий – элемент 13 группы периодической таблицы Менделеева. Или же по старой классификации элемент главной подгруппы III группы. Для алюминия характерен светло-серебристый оттенок, а также, металлический блеск.

Алюминий не всегда был металлом для массового использования. Будучи полученным из реакции между хлоридом алюминия и амальгамой калия датским физиком Эрстедом в 1825 году, алюминий стал очень дорогим. Его название произошло от латинского alumen – квасцы (так называемые двойные соли). Ввиду дороговизны металла, он был самым желанным подарком. Например, Менделееву подарили весы с золотой и алюминиевой чашами. Но, к двадцатому веку найден был способ получения алюминия электролизом, что привело к его обесцениванию.

Алюминий в природе и его свойства

В земной коре это вещество занимает 1 место по распространённости среди металлов, а также, 3 место среди всех элементов. По его производству на данный момент лидирует Китай, не отстают США, а также, Канада.

У алюминия имеются особенные физические свойства. Хорошая пластичность (у технического составляет примерно 35%, а у чистого 50%), что позволяет преобразовать алюминий в листы или даже в фольгу. Алюминий обладает высокой электропроводностью (38 000 000 Сименс на метр). А также он является парамагнетиком, что позволяет ему притягиваться к магнитам.

Среди химических свойств можно также выделить ряд особенностей. С большинством простых веществ он реагирует достаточно легко, например, 4Al+3O2=2Al2O3. С галогенами (помимо фтора) он также реагирует. Но, с остальными неметаллами он может реагировать лишь при высоких температурах. Алюминий имеет на себе защитную оксидную пленку, препятствующую его окислению.

Все эти свойства позволяют очень широко использовать алюминий. Например, он широко применяется для строительства. Ведь, металл легко штампуется, а также он не требует замены, из-за наличия оксидной плёнки. Алюминий используют в приборостроении. Ведь, как было сказано выше, он имеет высокую электропроводность (хоть и Al2O3-диэлектрик). Используют алюминий и в пищевой промышленности, не только для создания посуды и столовых приборов, но и пищевой фольги (он нетоксичен). А также, его используют и для создания зеркал. Ведь вакуумное напыление нанести на него довольно просто. В космической промышленности он ценится за устойчивость, как к низким, так и к относительно высоким температурам. Применяется он и в криогенных установках, так как не приобретает хрупкость при низких температурах. А также, есть еще огромное количество вариантов применения алюминия. Например, в нефтедобывающей промышленности и в пиротехнике, и, даже, в военной отрасли для создания техники и стрелкового оружия.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

на тему: АЛЮМИНИЙ

Петров Семён Геннадьевич

Воронаев Иван Геннадьевич

Глава 1. Физические и химические свойства алюминия ………………………………….. 3

1.1. Физические свойства алюминия ……………………………………………………….. 3

1.2. Химические свойства алюминия ………………………………………………………. 3

Глава 2. Применение алюминия ..…………………………………………………………. 4

Список использованной литературы ………………………………………………………. 6

Алюминий – химический элемент 3 периода IIIA группы. Порядковый номер – 13. Металл. Символ – Al. По распространённости в земной коре занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Но в свободном виде алюминия в природе нет, в связи с высокой химической активностью он встречается почти исключительно в виде соединений. Важнейшие природные соединения алюминия: алюмосиликаты, бокситы, корунд и криолит. Алюмосиликаты составляют большую часть массы земной коры.

Рассмотрим физические и химические свойства алюминия, его соединения и области применения.

1. Физические и химические свойства алюминия
1.1 Физические свойства алюминия

Алюминий – лёгкий, серебристо-белый, пластичный металл. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. Температура плавления равна 660 градусов по Цельсию, кипения – 2500 С. Хорошо поддается разнообразной механической обработке. Алюминий обладает высокой стойкостью к коррозии.

1.2 Химические свойства алюминия

На внешнем электронном слое у атома алюминия три электрона. В реакциях он отдаёт эти электроны и превращается в положительно заряженный ион. При комнатной температуре на воздухе алюминий не изменяется, поскольку его поверхность покрыта тонкой и прочной оксидной плёнкой, которая защищает его от взаимодействия с компонентами воды и воздуха. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

– с кислородом, образуя оксид алюминия;

– с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия.

С другими неметаллами реагирует при нагревании:

– со фтором, образуя фторид алюминия;

– с серой, образуя сульфид алюминия;

– с азотом, образуя нитрид алюминия:

– с углеродом, образуя карбид алюминия:

Со сложными веществами:

– восстанавливает металлы из их оксидов (алюминотермия).


Алюминий играет важную роль во многих отраслях промышленности именно благодаря своим свойствам. Его низкая плотность позволяет значительно сократить вес оборудования для грузоперевозок, например, транспортных средств для наземных, морских и воздушных перевозок, контейнеров, которые постоянно используются для организации перевозок. В механическом машиностроении уменьшение веса приводит к значительному сокращению потребления энергии, а также затрат на организацию производства и технического обслуживания. Чистый алюминий практически не образует ядовитых соединений, поэтому активно используется в пищевой промышленности при производстве кухонной посуды, упаковки пищевых продуктов, тары для напитков. Высокая пластичность позволяет изготавливать тонкую фольгу, которая используется в различных производствах. Легкость алюминия и его сплавов стали основополагающими при использовании в авиакосмической отрасли при изготовлении большинства элементов конструкции летательных аппаратов: от несущих конструкций, до элементов обшивки, корпусов приборов и оборудования.


С самого момента открытия в середине XIX века алюминий считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов. О значении его в мировой экономике говорит тот факт, что в металлургии он занимает второе место после железа, а по массе его производят больше, чем всех остальных цветных металлов, вместе взятых. Вот почему алюминиевая промышленность считается ведущей отраслью цветной металлургии. Россия по объёму производства алюминия занимает 2 место в мире.

Общая химия: Учебное пособие для вузов. - 22-е изд., исправленное/Под ред. Рабиновича В.А.- Л.:Химия, 1982. - 720 с., ил.

Г12 Химия, 9 класс: учебник/О.С.Габриелян. - 5-е изд., стереотип. - М.: Дрофа, 2017. - 319, [1]с.: ил.

Р41 Репетитор по химии/под ред. А.С. Егорова. - Изд. 55-е. - Ростов н/Д: Феникс, 2018. - 762, [1]с.: ил. - (Абитуриент).

Алюминий

Алюминий — очень редкий минерал семейства меди-купалита подкласса металлов и интерметаллидов класса самородных элементов. Преимущественно в виде микроскопических выделений сплошного мелкозернистого строения. Может образовывать пластинчатые или чешуйчатые кристаллы до 1 мм., отмечены нитевидные кристаллы длиной до 0,5 мм. при толщине нитей несколько мкм. Лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура алюминия

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596×10 -10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10 -10 м, а атомный объем 9,999×10 -6 м 3 /г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки. Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10 -5 см), но прочной пленкой оксида алюминия А1203, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

СВОЙСТВА

Самородный алюминий

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см 3 ), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой – оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты – соли, содержащие алюминий в составе аниона.

ЗАПАСЫ И ДОБЫЧА

Кусочки алюминия

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.
Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

ПРОИСХОЖДЕНИЕ

Алюминий с байеритом

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

ПРИМЕНЕНИЕ

Изделие из алюминия

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Ключевые слова конспекта: алюминий, свойства алюминия, получение и применение алюминия, алюмосиликаты, глина, оксид алюминия, боксит, дюралюмин, дюраль.

Алюминий Al – элемент № 13, 3–го периода, IIIA группы, Ar (Al) = 27. Электронная конфигурация невозбуждённого атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 :

Алюминий

Алюминий является р-элементом. В своих соединениях он всегда имеет степень окисления +3. Оксид и гидроксид алюминия (Al2O3 и Al(ОН)3 соответственно) амфотерны. Существует водородное соединение алюминия – гидрид алюминия AlH3 (алан) – белый порошок.

По распространённости в земной коре алюминий занимает 4-е место (после О, Si, Н). Основная масса алюминия сосредоточена в алюмосиликатах. Продуктом разрушения алюмосиликатов является глина, она состоит из каолинита – Al2O3 • 2SiO2 • 2H2O. Обычно глина содержит примесь соединений железа, придающую ей бурый цвет. Из других минералов наибольшее распространение имеет боксит – Al2O3nH2O.

АЛЮМИНИЙ – ПРОСТОЕ ВЕЩЕСТВО

Алюминий – серебристо-белый металл (на воздухе покрывается плотной тонкой плёнкой оксида), плотность 2,7 г/см 3 (лёгкий металл), легкоплавкий (t°пл. = 660 °С).

На воздухе алюминий покрывается прочной тончайшей (10 –8 м) защитной плёнкой оксида, которая препятствует проникновению кислорода к металлу и практически полностью прекращает дальнейшее окисление.


Алюминиевый порошок сгорает при нагревании в кислороде:

При окислении алюминия выделяется большое количество теплоты. Нагретый порошок алюминия при попадании в атмосферу кислорода реагирует с выделением огромного количества теплоты, достигается температура до 3000–3500 °С. Тепловой эффект реакции алюминия с кислородом чрезвычайно высок, образование этого соединения энергетически очень выгодно.


При нагревании алюминий легко реагирует с серой:


Алюминиевый порошок легко реагирует с галогенами и сгорает в атмосфере хлора. Кусочек алюминия, с которого снята оксидная плёнка, бурно реагирует с бромом. Эти реакции идут без нагревания:

Алюминиевый порошок реагирует с кристаллическим йодом, в присутствии катализатора (или при нагревании) выделяются капельки воды.


Алюминий без оксидной плёнки реагирует с азотом при сильном нагревании (800–1200 °С), образуя нитрид алюминия:


При сильном нагревании (1500–1700 °С) алюминий реагирует с углеродом (графитом) с образованием карбида алюминия:

Алюминий непосредственно не реагирует с водородом. Гидрид алюминия получают косвенным путём.


Алюминий энергично взаимодействует с водой, если механическим путём или амальгамированием снять предохраняющее действие оксидной плёнки:


Вследствие высокого теплового эффекта соединения алюминия с кислородом алюминий активно восстанавливает многие металлы из оксидов (алюмотермия):

При этом реакция обычно сопровождается выделением большого количества тепла и повышением температуры до 1200–3000 °С. Алюмотермия применяется в производстве марганца, хрома, ванадия, вольфрама, ферросплавов.

Как метод получения металлов, алюмотермия была предложена Н. Бекетовым в 1859 г. Её используют для получения многих металлов (Мп, Cr, V, W, Sr, Ва и др.).


Алюминий реагирует с галогеноводородными кислотами, разбавленной серной и азотной кислотами с образованием солей, в которых алюминий находится в катионной форме, и выделением водорода. Например:


Алюминий не реагирует с азотной и серной концентрированными кислотами в обычных условиях. На поверхности алюминия образуется защитная оксидная плёнка, алюминий пассивируется. Алюминий реагирует с разбавленной азотной кислотой (2–3 моль/л) с образованием нитрата алюминия, нитрата аммония и воды:


Алюминий активно взаимодействует с растворами щелочей. Щёлочи растворяют оксидную плёнку на поверхности алюминия. Образуются соли, в которых алюминий находится в анионной форме, и выделяется водород:


Алюминий реагирует с растворами солей, восстанавливая катионы менее активных металлов (металлов, расположенных в ряду напряжений правее алюминия):

ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЛЮМИНИЯ

Основным сырьём для производства алюминия служат бокситы, содержащие 32–60% глинозёма Al2O3. Алюминий получают электролизом расплава глинозёма Al2O3 в расплавленном криолите Na3AlF6. В электролизёре находится 6–8% глинозёма и 92– 94% криолита. Криолит в ходе электролиза не расходуется. Его получают искусственным путём – взаимодействием Al(ОН)3, HF и Na2CO3.

На катоде происходит восстановление алюминия: Al 3+ + 3е – → Al 0 ,

на аноде – окисление его оксида: 2Al2О3 – 12е – → 4Al 3+ + 3O2↑,

а затем вторичная реакция на аноде: С + O2 → СO2 или 2С + O2 → 2СО

По широте применения сплавы алюминия занимают 2–е место после чугуна и стали. Алюминий – основа лёгких сплавов (например, дюралюмина, силумина), его применяют для производства различных ёмкостей и аппаратов, фольги и проволоки, в качестве раскислителя стали и восстановителя в алюмотермии. Высокая электропроводность и коррозионная стойкость позволяют применять aлюминий для изготовления электрических проводов, кабелей, конденсаторов. Лёгкость, коррозионная стойкость алюминия и относительная нетоксичность его соединений позволяют применять aлюминий для изготовления бытовой посуды, а алюминиевую фольгу – в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Из сплавов алюминия наиболее распространены дюралюмин, сокращённо – дюраль. Большую твёрдость дюралю по сравнению с чистым алюминием придают добавки меди, марганца и т. д. Дюралюмин – основной конструкционный материал в самолётостроении. Сплавы алюминия широко используются в автомобилестроении, судостроении, авиационной технике.

Читайте также: