Подготовьте сообщение по темам на выбор применение теплоизоляторов

Обновлено: 02.07.2024

Собственники загородного жилья нередко сталкиваются с проблемой выбора подходящего утеплителя, так как на рынке представлен широчайший ассортимент теплоизоляционных изделий с самыми разными характеристиками. Даже профессиональные строители порой не могут прийти к единому мнению и дают прямо противоположные оценки одним и тем же материалам. И все же есть простые критерии выбора, понимание которых поможет покупателю приобрести наиболее оптимальный в его случае утеплитель.

Современные утеплители имеют следующие свойства:

Качественные теплоизоляционные материалы обладают перечисленными характеристиками. К ним можно отнести изделия на основе каменной ваты, пенополиуретана, эковаты. Эти материалы позволяют создать слой теплоизоляции практически без щелей, а благодаря отсутствию вредных веществ они могут быть использованы для утепления жилых загородных домов. Срок службы подобных утеплителей может составлять десятки лет.

Минераловатные утеплители

Теплоизоляционные изделия на основе минваты производятся в огромных объемах. Их изготавливают из базальта и доломита, шлаков, стеклянного боя. Самыми качественными из них являются базальтовые утеплители.

Каменная вата обладает высокой стойкостью к химическому воздействию, не подвержена горению и гниению, не боится грызунов, не теряет своей формы долгие годы. Минераловатные утеплители позволяют повысить пожаробезопасность строительных конструкций, увеличить срок службы здания, улучшить микроклимат в жилых помещениях.

Благодаря наличию микропустот между каменными волокнами внутри минераловатного утеплителя циркулирует воздух, выводя лишнюю влагу и препятствуя образованию конденсата. В утепленных таким материалом конструкциях снижается количество влаги, не появляется плесень и грибок. Это способствует поддержанию здоровой атмосферы в жилых помещениях, а также благоприятно сказывается на прочностных и эксплуатационных характеристиках строительных конструкций.

Минеральная вата может прослужить много лет, сохраняя свои теплоизоляционные показатели. Главным условием безупречной службы утеплителя является наличие гидроизоляционных и пароизоляционных пленок, а также правильный монтаж плит, матов и рулонов на основе каменной ваты. Профессионально выполненная укладка этих изделий позволяет предотвратить появление зазоров на стыках и щелей между утеплителем и конструкциями.

Теплоизоляция с помощью эковаты

Эковата является экологичным, долговечным и эффективным теплоизоляционным материалом. Она изготавливается из целлюлозы, полученной при переработке макулатуры. Хотя компоненты, из которых состоит эковата, являются горючими, утеплитель можно отнести к пожаробезопасным материалам. При воздействии огня верхний слой целлюлозы обугливается и предотвращает дальнейшее горение внутренних слоев. Кроме того, содержащаяся в капиллярах целлюлозы влага замедляет процесс горения. Для повышения стойкости к огню в состав эковаты добавляются антипирены.

Для утепления зданий эковатой используют способ напыления. При этом получается абсолютно бесшовный слой теплоизоляции, не подверженный усадке и растрескиванию. Увлажненная целлюлозная масса надежно склеивается с различными конструкциями из металла, дерева, бетона и кирпича.

Эковата, в отличие от минераловатных утеплителей, почти не меняет своих теплоизоляционных показателей при насыщении влагой. Это объясняется тем, что вода впитывается внутрь капилляров, а не прилипает к волокнам, как в каменной вате. Соответственно, пространство между волокнами остается сухим, благодаря чему теплопроводность утеплителя не снижается.

Пенополиуретан - наиболее эффективный утеплитель

Главное отличие пенополиуретана от других теплоизоляционных изделий состоит в том, что он имеет значительно более низкий коэффициент теплопроводности. Он утепляет конструкции вдвое эффективнее по сравнению с минеральной ватой и пенопластом. С помощью технологии напыления можно создать бесшовный слой теплоизоляции. При этом не требуются гидроизоляционные материалы, так как пенополиуретан не впитывает влагу и не теряет своих свойств во влажной среде.

Этот утеплитель прочно склеивается с теплоизолируемыми конструкциями, не отслаивается и не разрывается при механических нагрузках. Обладая хорошей эластичностью, пенополиуретан сохраняет свою целостность при вибрациях, усадках строительных конструкций.

В пенополиуретане отсутствуют летучие, токсичные компоненты. Это биостойкий и экологически безопасный материал, пригодный для использования внутри помещений.

Одно из важнейших преимуществ этого материала заключается в высокой скорости монтажа. Метод напыления позволяет практически без усилий выполнить утепление конструкций большой площади, закончить работы в сжатые сроки.

Использование вышеперечисленных теплоизоляционных материалов способствует улучшению условий проживания в загородном доме, снижению тепловых потерь и сокращению затрат на отопление. Профессиональная укладка утеплителей гарантирует безупречное функционирование теплоизоляционного слоя на протяжении десятилетий.



Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.

примеры теплопередачи

Примеры теплопередачи можно встретить повсюду - в природе, технике и повседневной жизни.

Примеры передачи тепловой энергии

Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?

Вот некоторые из них:

  • Газовая или электрическая плита и, например, сковорода для жарки яиц.
  • Автомобильные виды топлива, такие как бензин, являются источниками тепловой энергии для двигателя.
  • Включенный тостер превращает кусок хлеба в тост. Это связано с лучистой тепловой энергией тоста, который вытягивает влагу из хлеба и делает его хрустящим.
  • Горячая чашка дымящегося какао согревает руки.
  • Любое пламя, начиная от спичечного пламени и заканчивая массивными лесными пожарами.
  • Когда лед помещают в стакан с водой, тепловая энергия из воды его плавит, то есть сама вода является источником энергии.

примеры теплопередачи в природе

Тепло - это движение

Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

примеры теплопередачи в быту

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Факторы проводимости

Хорошая или плохая проводимость зависит от нескольких факторов:

  • Вид и качество материала, из которого сделаны предметы.
  • Площадь поверхности двух объектов, находящихся в контакте.
  • Разница температур между двумя объектами.
  • Толщина и размер предметов.

примеры теплопередачи в природе быту технике

В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.

Примеры проводимости

Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками. Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух. Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.

Конвекция

Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности. Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине. Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

примеры теплопередачи в технике

Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.

Излучение

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.

примеры теплопередачи в природе и технике ветры

Излучение - это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос. Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.

Примеры теплопередачи в природе, быту, технике

Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.

Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения. Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла. Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.

Испарение

Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться. Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом. В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.

примеры теплопередачи в природе и технике картинки

Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.

Основные понятия

  • Проводимость - это передача тепла через вещество при непосредственном контакте атомов или молекул.
  • Конвекция - это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
  • Излучение - это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
  • Испарение - это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром. - это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории - это водяной пар и углекислый газ. - это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
  • Теплопроводность - это скорость, с которой материал передает тепловую энергию через себя.
  • Тепловое равновесие - это состояние, в котором все части системы находятся в одинаковом температурном режиме.

примеры теплопередачи

Применение на практике

Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо. Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды. Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

2. Теплопередача. Виды теплопередачи

Процесс изменения внутренней энергии без совершения работы называется теплопередачей. Без совершения работы тела могут нагреваться и остывать. Без совершения работы могут перемешиваться теплые и холодные слои жидкостей и газов. Без совершения работы может изменяться внутренняя энергия тела путем излучения, в том числе и через пустоту - вакуум. Рассмотрим виды теплопередачи.

Теплопроводность – явление передачи энергии от более нагретой части тела к менее нагретой в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Можно провести опыт, сконструировав установку: на треноге помещается кольцо из тонкой оцинкованной жести. В кольцо под углом 120 градусов вставляются (прикрепляются) три проволоки (медь, алюминий и сталь) в виде спиц, предварительно нужно окунуть их в расплавленный воск от старых свечей. Пока воск на них застывает, нужно прикрепить хотя бы через сантиметр сапожные гвоздики шляпками к стержню. Три начала спиц близко расположены в середине кольца. Зажжем спиртовку (или таблетку сухого спирта), поместим на подставке так, чтобы три начала спиц одинаково нагревались. И наблюдаем: через некоторое время начинает таять воск и первыми начинают отпадать гвоздики на медной спице, чуть позже – на алюминиевой и ещё позже – на железной.

Металлы обладают хорошей теплопроводностью, плохой теплопроводностью обладают пластмасса, резина, стекло, дерево, плексиглас, большинство изоляторов.

Второй вид теплопередачи – конвекция .

Конвекция – процесс теплообмена, осуществляемый путём переноса энергии потоками жидкости или газа. Проведём опыт: в колбу налить подкрашенную воду: капнуть раствора медного купороса или кристаллик марганцовки и снизу на спиртовке (или таблетка сухого спирта , или свеча) нагревать колбу. Через некоторое время можно заметить перемещение слоёв воды снизу вверх (а потом и по кругу).

Воздух – плохой проводник тепла, но он в комнате нагревается сам и, перемешивая тёплые и холодные слои, нагревает всю комнату. Под окнами находятся батареи центрального отопления. Здесь прикоснувшиеся к чугунной батарее, слои теплого воздуха по закону Архимеда, вытесняются холодными и поднимаются вверх. На освободившееся место подходят холодные слои, прикасаясь к поверхности батареи, нагреваются, и опять идут вверх и т.д. Слои теплого и холодного воздуха перемешиваются и нагревают всю комнату.

Третий вид теплопередачи - излучение . Излучение – перенос энергии от одного тела к другому, обусловленный процессами испускания, распространения, рассеяния и поглощения электромагнитного излучения. Можно показать распространение солнечного света и тепла, проговорив, что излучение передаётся и через вакуум. Светлая поверхность отражает излучение, а темная поглощает. Поэтому летом нужно использовать светлую одежду, а зимой – темную. Поэтому самолеты и ракеты красят светлой краской, цистерны с перевозимым топливом – то же красят в светлые тона.

Нажмите, чтобы узнать подробности

Данный проект поможет учащимся научиться объяснять многие природные явления, поможет в изучении данной темы в школе, привлечёт большее внимание школьников к этому физическому процессу.

Тип проекта: исследовательский.

Муниципальное общеобразовательное учреждение



Виды теплопередачи.

Их использование человеком.

Автор проекта:

Акылбекова Алина, 7 класс

Наставник проекта:

Бондаренко Людмила Петровна,

учитель физики

Способы изменения внутренней энергии тела

Значение теплопередачи в природе и в жизни людей ………. 5

Экспериментальное определение факторов, влияющих на

изменение внутренней энергии тела ……………………………. 6

Аннотация наставника

Проект разработан в рамках программы по физике в 8 классе при изучении темы: Виды теплопередачи. В проекте рассматриваются факторы, влияющие на изменение внутренней энергии тел.

Данный проект поможет учащимся научиться объяснять многие природные явления, поможет в изучении данной темы в школе, привлечёт большее внимание школьников к этому физическому процессу.

Тип проекта: исследовательский.

Проект направлен на формирование потребности у учащихся самостоятельного познания окружающего мира, способствует развитию творческих и коммуникативных способностей детей, учит получать информацию из разных источников (в том числе из сети Интернет), осмысливать её и применять в своей деятельности.

“Как же передаётся тепло? Как его сохранить” - один из самых важных вопросов в физике. Данный вопрос, по моему мнению, актуален и в наше время, так как человек разрабатывает новые материалы, которые лучше сохраняют тепло, как в строительстве, так и в одежде. Ответ на вопрос, конечно же, есть в обычном учебнике по физике, но чтобы удостовериться, я еще лично проведу исследовательскую работу.

Актуальность исследовательской работы состоит в изучении современных достижений науки и техники в области теплопередачи и это вызывает живой интерес в исследовании данной темы.

В зимнее время года возникает необходимость утеплять как самих себя, так и своё жильё, желательно используя современные достижения науки. Изучение этих достижений и определило выбор темы исследования.

Цели моего исследования:

изучить различные виды теплопередачи и их применение в нашей жизни;

изучение литературы по теме;

практическое исследование особенностей теплопроводности, конвекции, излучения;

подготовка и проведение демонстраций теплопроводности, конвекции, излучения;

При исследовании я ставила перед собой следующие задачи:

Изучить явление теплопередачи.

Рассмотреть виды теплопередачи и их применение.

Провести опыты по различным видам теплопередачи.

Проанализировать и обобщить полученные данные.

Объект исследования – процесс теплопередачи.

Предмет исследования - теплопередача и ее виды;

Методы исследования:

Изучение теории, сравнение, проведение опытов, обобщение и анализ полученных результатов.

Практическая значимость: использование теоретических знаний на практике.

Практическая значимость работы состоит в том, что использование поставленных опытов на уроках природоведения, географии, биологии, физики, позволит убедиться, что виды теплопередачи имеют широкое применение в нашей жизни.

Способы изменения внутренней энергии тела

И так, теплопередача, по слову можно понять, что это передача тепла. Это физический процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей. Существует 3 вида теплопередачи.
Первый вид – это теплопроводность. Теплопроводность – это явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.

Второй вид – это конвекция. Конвекция – это вид теплообмена, при котором внутренняя энергия передается струями и потоками.

Третий вид – это излучение. Излучение – это процесс испускания и распространения энергии в виде волн и частиц.

1.2 Значение теплопередачи в природе и в жизни людей.

Вот так мы узнали, какие бывают виды теплопередачи, а вот сейчас вопрос “Какое же их значение в природе, мире?”. Ответ кроется ещё в прошлом, когда люди еще не знали о теплопередачи, о её видах и свойствах, они пытались получить и сохранить тепло. В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Это можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение). Различные виды теплопередачи находят широкое применение в повседневной жизни, природе и технике. Например, батареи отопления устанавливаются ближе к полу и чаще всего у окна, так как воздух, находящийся около батареи, нагревается, расширяется, становится более легким и поднимается вверх. На его место опускаются более тяжелые холодные слои воздуха. Таким образом, постепенно воздух в комнате прогревается.

В природе благодаря явлению конвекции образуются теплые и холодные течения в океанах. Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.

К примеру, излучение. Мы знаем, что энергия передаётся в виде волн.

Солнце, образно говоря, греет землю, с помощью электромагнитных волн передаёт тепло земле или без конвекции в доме не было бы так тепло. Таких примеров можно приводить много.

Экспериментальное определение факторов, влияющих на изменение внутренней энергии тела

В ходе исследования мною использовались такие методы как наблюдение и опыты, которые проводились в домашних условиях.

1 опыт. Теплопроводность разных тел.

Для опыта нам потребуется стакан, кипяток и ложки (металлическая, деревянная и пластмассовая).

Наливаем кипяток в стакан и опускаем разные ложки. А теперь дотронемся до ложек и выясним, какая из них горячее.

Ответ: металлическая – у нее высокая теплопроводность, а дерево и пластмасса – плохие проводники тепла.

Если вы хотите, чтобы чай быстрее остыл, то следует опустить в стакан с кипятком металлическую ложку.

2 опыт. Теплопроводность разных тел.

Налейте чай в алюминиевую и фарфоровую кружки. Когда будем пить чай из алюминиевой кружки, то мы сильнее обожжем губы, чем из фарфоровой, так как, большее количество теплоты от горячего чая передается губам через алюминиевую кружку, так как теплопроводность алюминия выше, чем у фарфора.

3 опыт. Теплопроводность разных тел.

Часто бывает необходимо сохранить пищу горячей или холодной. В этих случаях используют термос.

Он состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Безвоздушное пространство между стенками почти не проводит тепло. Металлический слой препятствует передаче энергии излучением. Термос помещают в металлический или пластмассовый футляр. Сосуд закупоривают пробкой, а сверху навинчивается колпачок.

4 опыт. Конвекция

Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

Комнатный термометр заворачиваем в шубу и проверяем, меняются ли его показания через некоторое время. Это конечно не происходит, продемонстрировав этот эксперимент родителям, объясняем, почему же не греет шуба. (Шуба сама не может греть, так как сама не является источником энергии, она лишь является теплоизолятором, не давая зимой нам мёрзнуть, к тому же между телом человека и шубой находится воздушная прослойка).

5 опыт. Конвекция

Охлаждение кастрюли с горячей жидкостью проводилось двумя способами: 1 - кастрюля ставилась на лед и 2 - лед помещался на кастрюлю.
Во втором случае охлаждение происходило быстрее. Объясняется это следующим. Когда мы кладем лед на кастрюлю, верхние слои охлаждаются и становятся тяжелее, в результате они опускаются вниз. На их место приходят более нагретые слои жидкости. Таким образом, в результате конвекции происходит охлаждение жидкости.

Во втором случае конвекция не будет происходить, т.к. охлаждение будет происходить снизу, и холодные слои подняться вверх не могут, процесс охлаждения будет проходить медленно, перемешивание жидкости не происходит. Таким образом, мы можем предложить родителям охлаждать любые продукты сверху: класть их не на лед, а лед поверх продуктов, ведь они охлаждаются не столько льдом, сколько холодным воздухом, который опускается вниз.

6 опыт. Конвекция

Где лучше предусмотреть расположение форточки?

Форточку лучше располагать в верхней части окна. Теплый воздух более легкий, он располагается в верхней части комнаты, ему на смену будет приходить более холодный воздух с улицы. При таком расположении форточки будет осуществляться более быстрое проветривание комнаты. Перемещение воздуха по комнате можно проследить с помощью зажженной свечи.

7 опыт. Излучение

С помощью уличного термометра измерьте температуру сначала на солнечной стороне дома, затем на теневой. Показания термометров будут разными.

В летний солнечный день возьмите большую двояковыпуклую линзу и расположите ее так, чтобы в ее фокусе появилось маленькое, в виде точки, изображение солнца. Если вы направите его на бумажку, она загорится.

Способность тел по-разному поглощать энергию излучения используется на практике. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в холодном.

А почему снег в городе тает быстрее, чем за городом?

(снег в городе более грязный, поэтому он лучше поглощает энергию и тает)

Из всех моих приведённых объяснений, рассуждений, доказательств, опытов и выводов мною и моим учителем физики Бондаренко Л.П. было подтверждено, что теплопередачей называют процесс передачи тепла от более нагретого тела к менее нагретому. Существует три вида теплопередачи: теплопроводность, конвекция, излучение. В жизни все они чаще всего действуют одновременно. Поэтому вокруг себя мы можем наблюдать множество примеров применения разных видов теплопередачи.

Таким образом, я подтвердила свою гипотезу, что знания различных способов передачи тепла имеют большое значение в жизни человека. Применяя эти знания, можно многое объяснить. А ученые-технологи создают новые строительные материалы, которые хорошо защищают жилище человека от холода и воздействия атмосферных явлений.

Работая над темой своего исследования, я нашла ответы на свои вопросы.

Теперь без затруднения я смогу ответить на вопросы:

1. Почему птицы в холодную погоду распушают свои перья?

(Между перьями находится воздух, а воздух плохой проводник тепла).

2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая? (Между шерстинками находится воздух, который плохо проводит тепло).

3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

Данная тема актуальна и сейчас, тем, что от теплопередачи и её видов и от их существования зависит жизнь людей, животных и всего мира.

Люди активно используют процесс изменения внутренней энергии тела в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс.

Опыты, которые я провела, были очень интересными, и я думаю, что в дальнейшем эти знания мне помогут при изучении физики в следующем классе.

Перышкин А.В., Физика 8 класс, М.:2017

Лукашик В.И. Иванова Е.В, Сборник задач по физике для 7, 8 и 9 классов, М.: 2010

Детская энциклопедия. Издание второе. Том 3. – Просвещение, 1965-1968

Мустафаев Р.А. Физика. В помощь поступающим в вузы: Учеб. Пособие для слушателей подгот. отд. вузов /Р.А. Мустафаев, В.Г. Кривцов. – М.: Высшая школа, 1989

Физика. Большой справочник для школьника /Ю.И. Дик, В.А. Ильин, Д.А. Исаев. – М.: Дрофа, 2007

Читайте также: