Подготовить сообщение на тему триггер или сумматор

Обновлено: 02.07.2024

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

ТРИГГЕР. ПОЛУСУММАТОР.

ГБОУ СОШ №591 Невского района Санкт-Петербурга

Учитель: Кудряшов Игорь Александрович

Важнейшей структурой единицей оперативной памяти компьютера , а также внутренних регистров процессора является триггер. Это устройство позволяет запоминать, хранить и считывать информацию.

Триггер — это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле, электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные системы счетчиков (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистров, счетчиков, процессоров, ОЗУ.

Классификация триггеров

Триггеры подразделяются на две большие группы — динамические и статические. Названы они так по способу представления выходной информации.

Динамический триггер представляет собой управляемый генератор, одно из состояний которого (единичное) характеризуется наличием на выходе непрерывной последовательности импульсов определённой частоты, а другое (нулевое) — отсутствием выходных импульсов. Смена состояний производится внешними импульсами.

К статическим триггерам относят устройства, каждое состояние которых характеризуется неизменными уровнями выходного напряжения (выходными потенциалами): высоким — близким к напряжению питания и низким — около нуля. Статические триггеры по способу представления выходной информации часто называют потенциальными.

Классификация триггеров по способу ввода информации

Функциональная классификация триггеров

Типы триггеров

RS-триггер или SR-триггер — триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы.

Условное графическое обозначение синхронного RS-триггера.

Условное графическое обозначение асинхронного RS-триггера.

Типы триггеров

D-триггер (D от англ. delay — задержка, либо от data - данные) — запоминает состояние входа и выдаёт его на выход. D-триггеры имеют, как минимум, два входа: информационный D и синхронизации С. После прихода активного фронта импульса синхронизации на вход С D-триггер открывается. Сохранение информации в D-триггерах происходит после спада импульса синхронизации С. Так как информация на выходе остаётся неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защёлкой.

Условное графическое обозначение D-триггера со статическим входом синхронизации С

Типы триггеров

Т-триггер (от англ. Toggle - переключатель) часто называют счётным триггером, так как он является простейшим счетчиком до 2.

Условное графическое обозначение синхронного T-триггера с динамическим входом синхронизации С на схемах.

Условное графическое обозначение JK-триггера со статическим входом С

Типы триггеров

Триггеры с любым числом устойчивых состояний

Типы триггеров

В обычном состоянии на входы триггера подан сигнал 0, и триггер хранит 0. Для записи 1 на вход S (установочный) подается сигнал 1. Последовательно рассмотрев прохождение сигнала по схеме, видим, что триггер переходит в это состояние и будет устойчиво находиться в нем и после того , как сигнал на выходе S исчезнет. Триггер запомнил 1, то есть с выхода триггера Q можно считать 1.

Полусумматор

Полусумматор — комбинационная логическая схема, имеющая два входа и два выхода (двухразрядный сумматор, бинарный сумматор). Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды (биты) обычно двоичного числа, при этом результатом будут два бита S и C, где S — это бит суммы по модулю 2, а C — бит переноса.

Существуют сумматоры и полусумматоры работающие не в двоичной логике.

Отличается от полного сумматора тем, что не имеет входа переноса из предыдущего разряда. Для построения полного сумматора необходимо иметь дополнительный вход переноса из предыдущего разряда, таким образом, полный сумматор имеет 3 входа.

Полусумматоры используется для построения полных сумматоров.

Двоичный полусумматор

Двоичный полусумматор может быть определён тремя способами:

1) табличным, в виде таблиц истинности,

2) аналитическим, в виде формул

3) графическим, в виде логических схем.

Так как формулы и схемы могут преобразовываться в соответствии с алгеброй логики, то, одной таблице истинности двоичного полусумматора могут соответствовать множества различных формул и схем. Поэтому, табличный способ определения двоичного полусумматора является основным.

Двоичный полусумматор формирует две бинарные двоичные логические функции: это сумма по модулю два, иначе эта функция называется ИСКЛЮЧАЮЩЕЕ ИЛИ (XOR) — формирует бит суммы S и разряд переноса при формируется функцией И (AND) — бит C.

Двоичный полусумматор

Полусумматор, реализованный на элементах ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

Полусумматор, реализованный на элементах ИЛИ с инверсными входами и И.

Троичный полусумматор

На схеме изображен полусумматор, состоящий из вентилей ИСКЛЮЧАЮЩЕЕ ИЛИ и И.

Гост

ГОСТ

Основные логические элементы реализуют 3 основные логические операции:

  • логическое умножение;
  • логическое сложение;
  • инверсию (отрицание).

Устройства компьютера, которые выполняют обработку и хранение информации, могут быть собраны из базовых логических элементов, у которых $2$ входа и $1$ выход. К логическим устройствам компьютера относятся группы переключателей, триггеры, сумматоры.

Связь между алгеброй логики и компьютерной техникой также лежит в двоичной системе счисления, которая используется в ЭВМ. Поэтому в устройствах ПК можно хранить и обрабатывать как числа, так и значения логических переменных.

Логический элемент компьютера – это часть электронной схемы, которая выполняет элементарную логическую функцию.

Переключательные схемы

В ЭВМ используются электрические схемы, которые состоят из большого количества переключателей. Переключатель, находясь в замкнутом состоянии ток пропускает, в разомкнутом – не пропускает. Работа таких схем удобно описывается при помощи алгебры логики. В зависимости от состояния переключателя можно регулировать получение или неполучение сигналов на выходах.

Вентили

Среди логических элементов компьютеров выделяют электронные схемы И, ИЛИ, НЕ, И–НЕ, ИЛИ–НЕ и другие (их называют вентили).

Эти схемы позволяют реализовать любую логическую функцию, которая описывает работу устройств ПК. Обычно вентили имеют $2–8$ входов и $1$ или $2$ выхода.

У каждого логического элемента есть условное обозначение, выражающее его логическую функцию, но не указывающее на электронную схему, которая в нем реализована. Такой подход реализован для упрощения записи и понимания сложных логических схем.

Готовые работы на аналогичную тему

Работа логических элементов описывается таблицами истинности.


Триггер

Триггеры и сумматоры состоят из вентилей.

Триггер – важнейшая структурная единица оперативной памяти ПК и внутренних регистров процессора.

Триггер – логическая схема, которая способна хранить $1$ бит информации ($1$ или $0$). Строится на $2$-х элементах ИЛИ–НЕ или на $2$-х элементах И–НЕ.


Самый распространённый тип триггера – $RS$-триггер (Reset/Set), который имеет $2$ входа $S$ и $R$ и два выхода $Q$ и $\bar$. На каждый из входов $S$ и $R$ могут подаваться входные сигналы в виде кратковременных импульсов (рис.3): есть импульс – $1$, нет импульса – $0$.

Кратковременный импульс

Рисунок 3. Кратковременный импульс

Сумматор

Сумматоры широко применяются в арифметико-логических устройствах процессора и отвечают за суммирование двоичных разрядов.

Сумматор – логическая схема, которая способна суммировать 2 одноразрядных двоичных числа с переносом из предыдущего разряда.


Сумматор может находить применение и в других устройствах машины.

Для суммирования двоичных слов длиной от двух бит можно использовать последовательное соединение многоразрядных сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Пример реализации логической схемы


Алгоритм реализации:

    Определим количество переменных данного выражения, значит столько входов будет иметь схема. В данном случае это входы $A, B, C$.

С помощью базовых логических элементов реализуются основные операции в порядке их следования:

На выходе каждого элемента прописывается логическое выражение, которое реализуется данным элементом, что позволяет осуществить обратную задачу, т.е. по готовой схеме составить логическое выражение, которое реализует данная схема.

Тема: Логические основы компьютера.

1. Основы логики.

Логика – наука о законах и формах мышления.

Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно.

Утверждение – суждение, которое требуется доказать или опровергнуть.

Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.

Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

2. Логические элементы компьютера. Схемы логических элементов и их таблицы истинности.

Как при строительстве дома применяют различного рода типовые блоки – кирпичи, рамы, двери и т.п., так и при разработке компьютера используют типовые электронные схемы. Каждая схема состоит из определенного набора типовых электронных элементов.

Электронным элементом называется соединение различных деталей, в первую очередь – диодов и транзисторов, а также резисторов и конденсаторов, в виде электрической схемы, выполняющей некоторую простейшую функцию.

Электронный элемент, реализующий логическую функцию, называется логическим элементом.

Логический элемент компьютера – это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Тысячи микроскопических электронных переключателей в кристалле интегральной схемы сгруппированы в системы, выполняющие логические операции, т.е. операции с предсказуемыми результатами, и арифметические операции над двоичными числами. Соединенные в различные комбинации, логические элементы дают возможность компьютеру решать задачи, используя язык двоичных кодов.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер, регистр, сумматор.

Триггер – это логическая схема, способная сохранять одно из двух состояний до подачи нового сигнала на вход. Это, по сути, разряд памяти, способный хранить 1 бит информации.

Регистр – это устройство, состоящее из последовательности триггеров. Регистр предназначен для хранения многоразрядного двоичного числового кода, которым можно представлять и адрес, и команду, и данные.

Сумматор – это устройство, предназначенное для суммирования двоичных кодов.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности – это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значениями истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Презентация на тему: " Тема: Триггер и сумматор. Сумматор двоичных чисел Полусумматор. При сложении двух двоичных цифр образуется сумма в данном разряде и при этом возможен." — Транскрипт:

1 Тема: Триггер и сумматор

2 Сумматор двоичных чисел Полусумматор. При сложении двух двоичных цифр образуется сумма в данном разряде и при этом возможен перенос в старший разряд. слагаемыеперено с сумма АВРS Таблица сложения одноразрядных двоичных чисел с учетом переноса в старший разряд выглядит следующим образом

3 Перенос можно реализовать с помощью операции логического умножения: р = А & В. Для определения суммы можно применить следующее логическое выражение: S = (А v В) & (А & В). Построим схему полусумматора АВАВ И р = А & В НЕ A&B ИЛИ А v В И S = (А v В) & (А & В). АВРS

4 Полный одноразрядный сумматор p i p i-1 a n……… a i a i-1… a 0 b n ………b i b i-1 …b 0 S n+1 S n …S i S i-1 …S 0 + слагаемые Перен ос из млад шего разря да пере нос сумм а ABP0P0 PS P=(A&B)+(A&P 0 )+(B&P 0 ) S=(A+B+P 0 )&P S=(A+B+P0)&P 0 +(A&B&P 0 )

5 P=(A&B)+(A&P 0 )+(B&P 0 ) S=(A+B+P 0 )&P S=(A+B+P 0 )&P 0 +(A&B&P 0 ) Построим схему сумматора

6 Многоразрядный сумматор процессора состоит из полных одноразрядных сумматоров. На каждый разряд ставится одноразрядный сумматор причем выход (перенос) сумматора младшего разряда подключен ко входу сумматора старшего разряда.

7 Триггер. Важнейшей структурной единицей оперативной памяти компьютер, а также внутренних регистров процессора является триггер. Триггер может находиться в одном из двух устойчивых состояний, что позволяет запоминать, хранить и считывать 1 бит информации.

8 Схема триггера : входывыход SR 00Q Для записи 1 бит на вход S подается 1, на выходе Q в этом случае устанавливается 1. этот сигнал будет устойчиво хранится в триггере. Для того чтобы сбросить бит данных и подготовиться к новому биту на вход R подается 1 и триггер возвратиться к состоянию 0

9 Задание Построить функциональные схемы для логических выражений: (А+В)С А В +СА А(А+В+С) На дом: выучить конспект наизусть

Читайте также: