Паровые двигатели 7 класс технология сообщение

Обновлено: 04.07.2024

Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.

Паровой двигатель — тепловой поршневой двигатель, в котором потенциальная энергия водяного пара, поступающего из парового котла, преобразуется в механическую работу возвратно-поступательного движения поршня или вращательного движения вала.

Пар является одним из распространенных теплоносителей в тепловых системах с нагреваемым жидким или газообразным рабочим телом наряду с водой и термомаслами. Водяной пар имеет ряд преимуществ, среди которых простота и и гибкость использования, низкая токсичность, возможность подведения к технологическому процессу значительного количества энергии. Он может использоваться в разнообразных системах, подразумевающих непосредственный контакт теплоносителя с различными элементами оборудования, эффективно способствуя снижению затрат на энергоресурсы, сокращению выбросов, быстрой окупаемости.

Закон сохранения энергии— фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы.

История изобретения паровых машин. Создание паровой машины

Возможности в использовании энергии пара были известны в начале нашей эры. Это подтверждает прибор под названием Героновский эолипил, созданный древнегреческим механиком Героном Александрийским. Древнее изобретение можно отнести к паровой турбине, шар которой вращался благодаря силе струй водяного пара.

Приспособить пар для работы двигателей стало возможным в XVII веке. Пользовались подобным изобретением недолго, однако оно внесло существенный вклад в развитие человечества. К тому же история изобретения паровых машин очень увлекательна.

Понятие

Паровая машина состоит из теплового двигателя внешнего сгорания, который из энергии водяного пара создает механическое движение поршня, а тот, в свою очередь, вращает вал. Мощность паровой машины принято измерять в ваттах.

Принцип действия

Для работы всей системы необходим паровой котел. Образовавшийся пар расширяется и давит на поршень, в результате чего происходит движение механических частей. Принцип действия лучше изучить с помощью иллюстрации, представленной ниже.

Если не расписывать детали, то работа паровой машины заключается в преобразовании энергии пара в механическое движение поршня.

Коэффициент полезного действия

КПД паровой машины определяется отношением полезной механической работы по отношению к затраченному количеству тепла, которое содержится в топливе. В расчет не берется энергия, которая выделяется в окружающую среду в качестве тепла.

КПД паровой машины измеряется в процентах. Практический КПД будет составлять 1-8%. При наличии конденсатора и расширении проточной части показатель может возрасти до 25%.

Преимущества

Главным преимуществом парового оборудования является то, что котел в качестве топлива может использовать любой источник тепла, как уголь, так и уран. Это существенно отличает его от двигателя внутреннего сгорания. В зависимости от типа последнего требуется определенный вид топлива.

История изобретения паровых машин показала преимущества, которые заметны и сегодня, поскольку для парового аналога можно использовать ядерную энергию. Сам по себе ядерный реактор не может преобразовывать свою энергию в механическую работу, но он способен выделять большое количество тепла. Оно то и используется для образования пара, который приведет машину в движение. Таким же образом может применяться солнечная энергия.

Локомотивы, работающие на пару, хорошо показывают себя на большой высоте. Эффективность их работы не страдает от пониженного в горах атмосферного давления. Паровозы до сих пор применяют в горах Латинской Америки.

В Австрии и Швейцарии используют новые версии паровозов, работающих на сухом пару. Они показывают высокую эффективность благодаря многим усовершенствованиям. Они не требовательны в обслуживании и потребляют в качестве топлива легкие нефтяные фракции. По экономическим показателям они сравнимы с современными электровозами. При этом паровозы значительно легче своих дизельных и электрических собратьев. Это большое преимущество в условиях горной местности.

Недостатки

К недостаткам относится, прежде всего, низкий КПД. К этому стоит добавить громоздкость конструкции и тихоходность. Особенно это стало заметно после появления двигателя внутреннего сгорания.

Применение

До середины ХХ века паровые машины применяли в промышленности. Также их использовали для железнодорожного и парового транспорта.

Заводы, которые эксплуатировали паровые двигатели:

  • сахарные;
  • спичечные;
  • бумажные фабрики;
  • текстильные;
  • пищевые предприятия (в отдельных случаях).

Паровые турбины также относятся к данному оборудованию. С их помощью до сих пор работают генераторы электроэнергии. Около 80% мировой электроэнергии вырабатывается с применением паровых турбин.

В свое время были созданы различные виды транспорта, работающие на паровом двигателе. Некоторые не прижились из-за нерешенных проблем, а другие продолжают работать и в наши дни.

Транспорт с паровым двигателем:

  • автомобиль;
  • трактор;
  • экскаватор;
  • самолет;
  • локомотив;
  • судно;
  • тягач.

Большая часть подобного транспорта стала непопулярной после появления двигателя внутреннего сгорания, чей КПД значительно выше. Такие машины были более экономичными, при этом легкими и скоростными.

Настольная рабочая модель двигателя Стирлинга

Типы двигателей

Двигатели бывают двух основных типов:

  • двигатели внешнего сгорания (например, паровые двигатели) сжигают топливо в одном месте и производят энергию в другой части той же машины;
  • двигатели внутреннего сгорания (например, автомобильные двигатели) сжигают топливо и производят мощность в одном и том же месте (в автомобиле все это происходит в сверхпрочных металлических цилиндрах).

Оба типа двигателей полагаются на тепловую энергию, заставляющую газ расширяться, а затем остывать.

Чем больше разница температур (между самым горячим и самым холодным газом), тем лучше работает двигатель.

Как работает паровой двигатель

Есть угольный костер, который нагревает воду до тех пор, пока она не закипит и не превратится в пар.

Пар проходит по трубе в цилиндр через открытый входной клапан, где он толкает поршень и приводит в движение колесо.

Затем входной клапан закрывается, и открывается выходной клапан.

Импульс колеса заставляет поршень вернуться в цилиндр, где он выталкивает охлажденный нежелательный пар через выход и дальше вверх по дымовой трубе (дымоходу).

Детали парового двигателя

Паровые двигатели, такие как у этого Локомотива, являются примерами двигателей внешнего сгорания.

Огонь, который и создаёт теплоту, пламя и является источником энергии (1), находится снаружи (вне) цилиндра, где тепловая энергия превращается в механическую энергию (3). Между ними есть котел (2), который превращает тепловую энергию в пар. Пар действует как теплоноситель, толкая поршень (4), который перемещает колеса с помощью кривошипа (5) и приводит в движение поезд (6). Пар и тепловая энергия постоянно выбрасываются из дымовой трубы (7), что делает этот способ особенно неэффективным и неудобным для питания движущейся машины.

Есть много проблем с паровыми двигателями, но вот четыре из них - наиболее очевидных.

Во-первых, котел, который производит пар, работает под высоким давлением, и существует риск, что он может взорваться (взрывы котлов были серьезной проблемой с очень ранними паровыми двигателями).

Взрыв парового котла паровоза

Во-вторых, котел обычно находится на некотором расстоянии от цилиндра, поэтому энергия теряется по пути. Температура внутри кабины машиниста была как в бане – доходила до 100 градусов. Всё это тепло расходовалось, по сути, впустую.

В-третьих, пар, выходящий из дымовой трубы, все еще достаточно горяч, поэтому он содержит потраченную энергию, которая никак не конвертировалась в механическую.

В-четвертых, поскольку пар выбрасывается из цилиндра каждый раз, когда поршень толкается вперед, двигатель должен потреблять огромное количество воды, а также топлива.

Как работает локомотив

  1. Топка
  2. Дверь Топки
  3. Колосники / Колосниковая Решетка
  4. Поддувало – место для поддува воздуха
  5. Уголь
  6. Вода
  7. Жаровые трубы
  8. Регулятор
  9. Коллектор для другого парового оборудования (т. е. свисток, перерывы, воздуходувка и т. д)
  10. Паровой купол
  11. Главная Паровая Труба
  12. Выхлопная труба
  13. Взрывная Труба
  14. Цилиндр
  15. Поршень
  16. Задвижка
  17. Дымоход
  18. Шатун
  19. Рукоятка
  20. Ведущее колесо
  21. Паропровод для тормозов поезда
  22. Боковые резервуары для воды
  23. Песочница, для тяги по мокрым рельсам
  24. Дымосборник
  25. Предохранительный клапан

Паровой двигатель использует угольный огонь (хотя есть и некоторые исключения) в качестве источника энергии для кипячения воды и получения пара.

Горячие газы от горящего угля в топке проходят через котел в "огненных трубах" (144 штуки в случае Локомотива "Барклай"), прежде чем покинуть двигатель через дымовую трубу и дымоход.

По мере того как вода в котле закипает, горячий “мокрый” пар поднимается вверх и собирается из парового купола на верхней части котла через регулирующий клапан, который машинист использует для управления скоростью движения локомотивов.

Из регулятора пар подается по трубопроводу в цилиндры и поочередно поступает через клапаны-золотники (расположенные сбоку корпуса цилиндра), толкая поршень в цилиндре вперед и назад.

Поршень соединен с ведущими колесами через "шатун" и "кривошип" (или "клапанный механизм", как его обычно называют), и движение поршня туда-сюда вращает ведущие колеса. Каждый раз, когда поршень цилиндра движется вперед и назад, ведущее колесо совершает полный оборот.

Рычаг "кривошипа" на каждой стороне локомотива смещен на 90 градусов, чтобы предотвратить его заклинивание, если паровоз остановится с ними в горизонтальном положении.

После выхода из цилиндра отработанный пар выходит из двигателя через дутьевую трубу и поднимается в дымоход в коптильне. Действие пара в дутьевой трубе создает более низкое давление в дымовой трубе, а также помогает вытягивать горячие газы из огня через трубы котла и в свою очередь производить больше пара.

Паровые двигатели используют горячий пар из кипящей воды для перемещения поршня (или поршней) вперед и назад. Затем движение поршня использовалось для привода машины или вращения колеса. Чтобы создать пар, большинство паровых двигателей нагревало воду, сжигая уголь.

Важность парового двигателя в промышленности

Паровой двигатель способствовал промышленной революции. До появления энергии пара большинство фабрик и мельниц работали на воде или ветре. Вода была хорошим источником энергии, но фабрики должны были располагаться возле реки. И вода, и энергия ветра могут быть ненадежными, так как иногда реки могут высыхать во время засухи или замерзать зимой,а ветер не всегда дует.
Мощность пара позволяла фабрикам размещаться где угодно. Он также обеспечивал надежное питание и мог использоваться для питания больших машин.

Кто изобрел паровой двигатель?

Один из первых паровых двигателей был изобретен Томасом Савери в 1698 году. Он был не очень полезен, но другие изобретатели со временем сделали его улучшение. Первый полезный паровой двигатель был изобретен Томасом Ньюкоменом в 1712 году. Двигатель Ньюкомена использовался для откачки воды из шахт.Высокоскоростной паровой
двигатель Porter-Allen был популярен в конце 1800-х и начале 1900-х годов.
Мощность пара действительно выросла благодаря усовершенствованиям, сделанным Джеймсом Уаттом в 1778 году. Паровая машина Watt значительно повысила эффективность паровых двигателей. Его двигатели меньше и используют меньше угля. К началу 1800-х годов паровые двигатели Watt использовались на заводах по всей Англии.

Где использовался паровой двигатель?

На протяжении 1800-х годов паровые двигатели были усовершенствованы. Они стали меньше и эффективнее. Большие паровые двигатели использовались на заводах и мельницах для питания машин всех типов. Меньшие паровые двигатели использовались в транспортировке, включая поезда и пароходы.

Паровые двигатели все еще используются сегодня?

Паровой двигатель был в значительной степени заменен электричеством и двигателем внутреннего сгорания (бензин и дизель). Некоторые старые паровые двигатели до сих пор используются в старинных локомотивах.
Тем не менее, паровая энергия все еще широко используется во всем мире для различных отраслях. Многие современные электростанции используют пар, образующийся при сжигании угля, для производства электроэнергии. Кроме того, атомные электростанции используют пар, вырабатываемый в результате ядерного синтеза, для производства электроэнергии.

Интерес к водяному пару, как доступному источнику энергии, появился вместе с первыми научными познаниями древних. Приручить эту энергию люди пытались на протяжении трёх тысячелетий. Каковы основные этапы этого пути? Чьи размышления и проекты научили человечество извлекать из него максимальную пользу?

Предпосылки появления паровых двигателей

Потребность в механизмах, способных облегчить трудоёмкие процессы, существовала всегда. Примерно до середины XVIII века для этой цели использовались ветряные мельницы и водяные колеса. Возможность использования энергии ветра напрямую зависит от капризов погоды. А для использования водяных колёс фабрики приходилось строить по берегам рек, что не всегда удобно и целесообразно. Да и эффективность тех и других была чрезвычайно мала. Нужен был принципиально новый двигатель, легко управляемый и лишённый этих недостатков.

История изобретения и совершенствования паровых двигателей

Создание парового двигателя — результат долгих размышлений, удач и крушений надежд множества учёных.

Начало пути

Первые, единичные проекты были лишь интересными диковинками. Например, Архимед сконструировал паровую пушку, Герон Александрийский использовал энергию пара для открывания дверей античных храмов. А заметки о практическом применении энергии пара для приведения в действие иных механизмов исследователи находят в трудах Леонардо да Винчи.

Рассмотрим наиболее значительные проекты по этой тематике.

В XVI веке арабский инженер Таги аль Дин разработал проект примитивной паровой турбины. Однако практического применения она не получила из-за сильного рассеяния струи пара, подаваемой на лопасти колеса турбины.

Перенесемся в средневековую Францию. Физик и талантливый изобретатель Дени Папен после многих неудачных проектов останавливается на следующей конструкции: вертикальный цилиндр заполняли водой, над которой устанавливали поршень.

Первая паровая машина Папена.

Цилиндр нагревали, вода закипала и испарялась. Расширяющийся пар приподнимал поршень. Его закрепляли в верхней точке подъёма и ожидали остывания цилиндра и конденсации пара. После конденсации пара в цилиндре образовывался вакуум. Освобожденный от крепления поршень под действием атмосферного давления устремлялся в вакуум. Именно это падение поршня предполагалось использовать как рабочий ход.

Итак, полезный ход поршня был вызван образованием вакуума из-за конденсации пара и внешним (атмосферным) давлением.

Потому паровой двигатель Папена как и большинство последующих проектов получили название пароатмосферных машин.

Эта конструкция обладала весьма существенным недостатком — не была предусмотрена повторяемость цикла. Дени приходит к идее получать пар не в цилиндре, а отдельно в паровом котле.

В историю создания паровых двигателей Дени Папен вошел как изобретатель весьма важной детали — парового котла.

Французский учёный Дени Папен.

А поскольку пар стали получать вне цилиндра, сам двигатель перешел в разряд двигателей внешнего сгорания. Но из-за отсутствия распределительного механизма, обеспечивающего бесперебойную работу, эти проекты почти не нашли практического применения.

Новый этап в разработке паровых двигателей

Около 50 лет для откачки воды в угольных шахтах использовался паровой насос Томаса Ньюкомена. Он во многом повторял предыдущие конструкции, но содержал весьма важные новинки — трубу для вывода сконденсированного пара и предохранительный клапан для выпуска излишнего пара.

Его существенным минусом было то, что цилиндр приходилось то нагревать перед впрыскиванием пара, то охлаждать перед его конденсацией. Но потребность в таких двигателях была столь высока, что, несмотря на их очевидную неэкономичность, последние экземпляры этих машин прослужили вплоть до 1930 года.

В 1765 году английский механик Джеймс Уатт, занявшись усовершенствованием машины Ньюкомена, отделил конденсатор от парового цилиндра.

Англичанин Джеймс Уатт.

Появилась возможность цилиндр держать постоянно нагретым. КПД машины сразу вырос. В последующие годы Уатт значительно усовершенствует свою модель, оснастив её устройством для подачи пара то с одной, то с другой стороны.

Принципиальная схема работы машины Уатта.

Стало возможным использовать эту машину не только как насос, но и для приведения в действие различных станков. Уатт получил патент на свое изобретение — паровой двигатель непрерывного действия. Начинается массовый выпуск этих машин.

Макет паровой машины Джеймса Уатта.

К началу XIX века в Англии работало более 320 паровых машин Уатта. Их стали закупать и другие европейские страны. Это способствовало значительному росту промышленного производства во многих отраслях как самой Англии, так соседних государств.

Двадцатью годами ранее Уатта, в России над проектом паровой машины работал алтайский механик Иван Иванович Ползунов.

Заводское начальство предложило ему построить агрегат, который приводил бы в действие воздуходувку плавильной печи.

русский изобретатель Иван Ползунов.

Построенная им машина была двухцилиндровой и обеспечивала непрерывное действие подсоединённого к ней устройства.

Успешно проработав более полутора месяцев, котёл дал течь. Самого Ползунова к этому времени уже не было в живых. Ремонтировать машину не стали. И замечательное творение русского изобретателя-одиночки было забыто.


В силу отсталости России того времени мир узнал об изобретении И. И. Ползунова с большим опозданием….

Итак, для приведения в действие паровой машины необходимо, чтобы пар, вырабатываемый паровым котлом, расширяясь, давил на поршень или на лопасти турбины. А затем их движение передавалось другим механическим частям.

Применение паровых машин на транспорте

Несмотря на то, что КПД паровых двигателей того времени не превышал 5%, к концу XVIII века их стали активно использовать в сельском хозяйстве и на транспорте:

  • во Франции появляется автомобиль с паровым двигателем;
  • в США начинает курсировать пароход между городами Филадельфия и Берлингтон;
  • в Англии продемонстрирован железнодорожный локомотив на паровой тяге;
  • российский крестьянин из Саратовской губернии запатентовал построенный им гусеничный трактор мощностью 20 л. с.;
  • неоднократно предпринимались попытки построить самолёт с паровым двигателем, но, к сожалению, малая мощность этих агрегатов при большом весе самолёта делала эти попытки неудачными.

Автомобиль на паровом двигателе.

Уже к концу XIX столетия паровые двигатели, сыграв свою роль в техническом прогрессе общества, уступают место двигателям внутреннего сгорания и электродвигателям.

Паровые устройства в XXI веке

С появлением новых источников энергии в XX и XXI веке снова появляется потребность в использовании энергии пара. Паровые турбины становятся неотъемлемой частью АЭС. Пар, приводящий их в действие, получают за счёт ядерного топлива.

Паровая турбина на АЭС.

Широко используются эти турбины и на конденсационных тепловых электростанциях.

В ряде стран проводятся эксперименты по получению пара за счёт солнечной энергии.

Не забыты и поршневые паровые двигатели. В горных местностях в качестве локомотива до сих пор используют паровозы.

Современный паровоз.

Эти надёжные труженики и безопаснее, и дешевле. Линии электропередач им не нужны, а топливо — древесина и дешёвые сорта угля всегда под рукой.

Современные технологии позволяют улавливать до 95% выбросов в атмосферу и повысить КПД до 21%, так, что люди решили пока с ними не расставаться и работают над паровыми локомотивами нового поколения.


Категория: Физика

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Конспект урока по технологии

Учитель Аметова С.М.

Дата Класс № урока

Дата Класс № урока

Дата Класс № урока

Тема : Воздушные, гидравлические, паровые двигатели.

Цели (образовательные; воспитательные; развивающие):

Планируемые результаты (ФГОС) :

Предметные: Познакомить учащихся с двигателями, ознакомить с воздушными и гидравлическими двигателями.

Метапредметные (УУД): совершенствовать умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.
Способствовать формированию умения организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;

Личностные: формировать и развивать экологическое мышление, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации; формирование установки на безопасный, здоровый образ жизни, наличие мотивации к творческому труду, работе на результат, бережному отношению к материальным и духовным ценностям

Тип урока : Эвристический метод, индивидуальная, групповая, фронтальная работа, исследование

Оборудование: план-конспект урока.

1.Организационный момент.Приветствие.Готовность к уроку.Прооверка отсутствующих

2.Актуализация знаний.Запишите тему урока: Двигатели. Воздушные двигатели. Гидравлические двигатели.

3.Целеполагание(мотивация). Двигателем называют устройство, преобразующее какой-либо вид энергии в механическую работу или в энергию другого вида. В зависимости от вида используемой энергии механическая энергия может быть получена от:

· Ротора, вращающегося под действием внешних или внутренних сил;

· Поршня, совершающего воздушно-поступательные движения;

· Природного источника или аппарата, подающего на рабочий орган поток газа или жидкости;

· Струи жидкости или газа как источников энергии.

4.Основная часть урока(новый материал).

Двигатели приводят в действие все рабочие машины и технологические установки на производстве. Все виды сухопутного, водного, воздушного и космического транспорта оборудованы соответствующими двигателями. Двигатели установлены во многих современных приборах.

Первые двигатели, которые были созданы людьми, преобразовывали кинетическую энергию ветра и движущейся воды в механическую работу. (рис. 4.1, а). Большое распространение таких двигателей получили в средние века на ветряных мельницах в виде крыльчатки и водяных мельницах в виде водяного колеса.

С развитием науки на смену ветряному и водяному колесам в конце 18 века пришел паровой двигатель (рис. 4.1, б) , а в 19 веке – двигатель внутреннего сгорания.

В двигателе внутреннего сгорания химическая энергия, полученная от сгорания топлива, превращается в механическую энергию.

Новый этап промышленной революции начался с изобретения электрического двигателя (рис. 4.1, в). Его работа основана на том, что при прохождении электрического тока по проводнику вокруг него возникает магнитное поле. Взаимодействуя с другим полем, проводник начинает двигаться. Однако вначале электрический двигатель не рассматривался применительно к производству. Это были маломощные устройства, так на электрическую энергию для них получали только от гальванических элементов (батареек).

С изобретением мощных генераторов электрической энергии и постройкой электростанций рабочие машины и технологические установки стали оснащать электрическими двигателями.

С середины прошлого века началась эра реактивных и ракетных двигателей.

Тяга реактивного двигателя (рис. 4.1, г) обеспечивается за счет того, что им с большей скоростью из сопла выбрасывается струя газа или жидкости. Это создает тягу жидкости. Наибольшее распространение получили воздушно-реактивные двигатели.

Работа ракетного двигателя похожа на работу реактивного двигателя. Он также обеспечивает поступательное движение за счет выброса с большей скоростью струи газа. Полет ракеты уже не зависит от окружающей среды, она может летать и в безвоздушном пространстве. Ракета несет в себе и горючее, и окислитель для его снижения и получения струи раскалённых газов.

Основные понятии:
Воздушный двигатель – это устройство, работающее под действием давления или набегающего потока какого-либо газа, обычно воздуха.
Гидравлический двигатель – это устройство, предназначенное для преобразования кинетической энергии движущейся воды в механическую энергию.
Паровой двигатель – это устройство, предназначенное для преобразования тепловой энергии пара в механическую работу

Пояснения:
Первичные двигатели (ветряные и водяные) используют природную энергию, вторичные – полученную из других источников.
Конструктивно такие двигатели могут быть лопаточными и роторными.
К вторичным двигателям относятся пневмомоторы, гидромоторы, паровые машины и паровые турбины.

6.Первичное усвоение новых знаний.

Поделка с детьми "Ветряная мельница"

Что нужно для поделки:

Цветная бумага, картон, клей карандаш, клей пистолет, трубочки коктейльные, зубочистки, толстая игла, бусины, ножницы, линейка, карандаш



Из цветной бумаги вырезаем 4 квадрата 10х10 см. Разрезаем каждый квадрат на 2 равных треугольника


Из картона вырезаем небольшой круг, клеим каждый треугольник к кругу как на фото

Вот что должно получится:


Теперь нужно каждый уголок приклеить к серединке


Обратите внимание, клеить нужно не по часовой стрелке а наоборот, то есть в моем случае это: розовый, зелёный, красный, фиолетовый и тд.

Из картона вырезаем маленький кружок и клеим в серединку


Толстой иглой насквозь протыкаем серединку, затем вставляем зубочистку, на неё насаживаем бусинку и сверху крепим горячим клеем чтоб она не соскакивала

С обратной стороны также насаживаем бусинку, ее не крепим, иначе вертушка не будет крутиться



Вставляем зубочистку, даём полностью высохнуть. Не вставляйте зубочистку до конца, то есть прям впритык к бусине, оставьте примерно 2мм, иначе может плохо крутиться


По желанию, в трубочку с другого конца, можно вставить шпажку для шашлыка, обрезать по размеру трубочки и закрепить горячим клеем, так, основание вертушки будет более твёрдым и не будет гнуться.

Читайте также: