Кротовые норы в космосе сообщение

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Цель работы: Сравнительный анализ чёрных дыр и кротóвых нор.

Задачи: 1. Собрать материал о чёрных дырах и кротóвых норах;

2. Сделать подробный анализ полученной информации;

3. Сравнить чёрные дыры и кротóвые норы;

4. Создать познавательный фильм для учащихся.

Гипотеза: Возможно ли путешествие в пространстве-времени благодаря кротóвым норам.

Объект исследования: литература и другие ресурсы о кротóвых норах и чёрных дырах.

Предмет исследования: версии о существовании кротовых нор.

Методы: изучение литературы; использование Интернет-ресурсов.

Практическая значимость данной работы заключается в том, чтобы собранный материал использовать в учебных целях на уроках физики и во внеклассных занятиях по этому предмету.

В представленной работе использовались материалы научных статей, периодической печати, ресурсы сети Интернет.

Глава 1. Историческая справка

Долгое время эта работа не вызывала у астрофизиков большого интереса. Но в 90-е годы XX века интерес к таким объектам начал возвращаться. Прежде всего, возвращение интереса было связано с открытием в космологии темной энергии.

В физике концепция кротовых нор возникла в 1916 г. ‒ всего через год после того, как Эйнштейн опубликовал свой великий труд ‒ общую теорию относительности. Физик Карл Шварцшильд, служивший тогда в кайзеровской армии, нашел точное решение уравнений Эйнштейна для случая изолированной точечной звезды. Вдалеке от звезды ее гравитационное поле очень похоже на поле обычной звезды; Эйнштейн даже воспользовался решением Шварцшильда при вычислении отклонения траектории света около звезды. Результат Шварцшильда произвел немедленное и очень сильное действие на все разделы астрономии, и сегодня он по-прежнему остается одним из самых известных решений уравнений Эйнштейна. Несколько поколений физиков использовали гравитационное поле этой гипотетической точечной звезды в качестве приближенного выражения для поля вокруг реальной звезды с конечным диаметром. Но если рассмотреть это точечное решение серьезно, то в центре его неожиданно обнаружится чудовищный точечный объект, который почти столетие изумлял и шокировал физиков, ‒ черная дыра. [2; 4]

Глава 2. Кротовая нора и черная дыра

2.1. Кротовая нора

Кротовые норы, через которые может проходить свет и другая материя в обе стороны, называются проходимыми кротовыми норами. Существуют и непроходимые кротовые норы. Это такие объекты, которые внешне (на каждом из входов) являются как бы черной дырой, но внутри такой черной дыры нет сингулярности (сингулярностью в физике называют бесконечную плотность материи, которая разрывает и уничтожает любую другую материю, попадающую в нее). При этом свойство сингулярности обязательно для обычных черных дыр. А сама черная дыра определяется наличием у неё поверхности (сферы), из-под которой наружу не может вырваться даже свет. Такая поверхность называется горизонтом черной дыры (или горизонтом событий).

Таким образом, материя может попасть внутрь непроходимой кротовой норы, но выйти из нее уже не может (очень похоже на свойство черной дыры). Могут существовать и полупроходимые кротовые норы, в которых материя или свет может проходить по кротовой норе только в одну сторону, но не может проходить в другую.

Особенностями кротовых нор являются следующие характеристики:

- Кротовая нора должна соединять между собой две не искривленные области пространства. Место соединения и называется кротовой норой, а его центральный участок ‒ горловиной кротовой норы. Пространство вблизи горловины кротовой норы достаточно сильно искривлено.

- Кротовая нора может соединять либо две разные Вселенные, либо одну и ту же Вселенную в разных частях. В последнем случае расстояние через кротовую нору может оказаться короче, чем расстояние между входами, измеренное снаружи.

- Понятия времени и расстояния в искривленном пространстве-времени перестают быть абсолютными величинами, т.е. такими, какими мы подсознательно всегда привыкли их считать.

Исследование моделей кротовых нор показывает, что для их стабильного существования в рамках теории относительности Эйнштейна необходима экзотическая материя. Иногда такую материю называют еще фантомной. Для стабильного существования кротовой норы достаточно сколько угодно малого количества фантомной материи - скажем всего 1 миллиграмм (а может и еще меньше). В этом случае остальная часть материи, поддерживающая кротовую нору, должна удовлетворять условию: сумма плотности энергии и давления равна нулю. А в этом ничего необычного уже нет: даже самое обыкновенное электрическое или магнитное поле удовлетворяет этому условию. Это как раз именно то, что нужно для существования кротовой норы со сколько угодно малой добавкой фантомной материи.

2.2. Черная дыра

Чёрная дыра ‒ область в пространстве-времени. Гравитационное притяжение настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий.

Различают четыре сценария образования чёрных дыр:

гравитационный коллапс (сжатие) достаточно массивной звезды;

коллапс центральной части галактики или протогалактического газа;

и два гипотетических:

формирование чёрных дыр сразу после Большого Взрыва (первичные чёрные дыры);

возникновение в ядерных реакциях высоких энергий.

Условия, при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. [8]

Исследователи чёрных дыр различают первичные чёрные дыры и квантовые. Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе ‒ их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр. В результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации.

Заключение

Если кротовая нора является непроходимой, то внешне ее практически невозможно отличить от черной дыры. На сегодняшний день теория физики кротовых нор и черных дыр является чисто теоретической наукой. Кротовые норы – это топологические особенности пространства-времени, описанные в рамках специальной теории относительности Эйнштейном в 1935 году.

Общая теория относительности математически доказывает вероятность существования кротовых нор, но до сих пор ни одна из них не была обнаружена человеком. Сложность ее обнаружения заключается в том, что предполагаемая огромная масса кротовых нор и гравитационные эффекты просто поглощают свет и не дают ему отразиться.

Проанализировав всю найденную информацию, мы узнали, чем отличаются кротовые норы от черных дыр и пришли к выводу, что мир космоса еще очень мало изучен, и человечество стоит на пороге новых открытий и возможностей.

Список использованных источников и литературы

Энциклопедия для детей. Т. 8. Астрономия [Текст] / Глав. ред. М. Аксёнова; метод. ред. В. Володин, А. Элиович. – М.: Аванта, 2004. С. 412-413, 430-431, 619-620.

Кротовые норы - это теоретические туннели, которые проходят в пространстве-времени, вроде тех, что есть в аквапарках, но вместо того, чтобы идти и заканчиваться в бассейне, эти туннели заканчиваются в другой вселенной или в другом месте нашей вселенной, находящейся в миллионах световых лет от нас.

Самый простой способ объяснить, как работает червоточина, - это представить пространство-время в виде листа бумаги. Мы хотим добраться из точки А в точку Б. Самый быстрый путь, конечно же, ехать по прямой, не так ли?

Не, совсем :) Если это лист бумаги, то самым быстрым способом было бы сложить бумагу и выровнять точки, а затем создать отверстие, проходящее через них, а затем - БУМ, из-за отверстия мы теперь можем перемещаться из точки A в точку B быстрее чем скорость света. Пространство-время можно искривлять из-за теории относительности Эйнштейна , которая гласит, что пространство - это не твердое тело, а, скорее, надувной матрас, который можно сгибать, разорвать и залатать.

Это был пример искусственных червоточин, но есть два других типа:

Мосты Эйнштейна-Розена

Мосты Эйнштейна-Розена были впервые представлены в Теории общей теории относительности, в которой говорилось, что каждая черная дыра является своего рода червоточиной, а другой конец - белой дырой. Это означает, что когда кто-то пересекает горизонт событий, он попадает в совершенно новое место нашей Вселенной или другое. Другой конец известен как белая дыра.

Единственная проблема в том, что человеку потребуется бесконечное количество времени, чтобы выйти с другой стороны, что сделало бы ее непроходимой.

Червоточины по теории струн

Если Теория струн дает правильное описание нашей Вселенной, это будет означать, что есть много Кротовых Нор, которые только и ждут своего открытия. В ранней Вселенной у квантовых флуктуаций пространства-времени уже могли быть проходимые Кротовые Норы, проходящие через космические струны. Когда произошел Большой взрыв, эти струны были потянуты за миллиарды световых лет от нас, образуя Кротовые Норы.

Можем ли мы найти Кротовые Норы и использовать их?

Тут, все довольно сложно.

Даже если мы когда-нибудь найдем пригодную для использования Кротовую Нору, она должна быть чрезвычайно большой и стабильной. Однако чтобы она оставалась открытой все время нам понадобится нечто, называемое отрицательной энергией. Но мы до сих пор не знаем, что это такое, где эту энергию искать и как управлять ей.

Если вам понравилась статья - подписывайтесь на канал! Возможно вам так же будет интересно почитать:


Если персонажи научно-фантастических произведений путешествуют по Вселенной или между мирами быстро, причина – кротовая нора

Термин "червоточина" был введен в 1957 году американским физиком Джоном Уилером. Он назвал их в честь буквальных отверстий, которые черви оставляют в плодах и древесине. До этого их называли одномерными трубами и мостиками.

Сквозь кротовую нору

Представьте себе червя, прогрызающего себе путь через яблоко или кусок дерева? Образовавшийся в результате туннель, соединяющий одну часть поверхности с другой, более удаленной частью, является идеальной метафорой для чего-то, что может соединять отдаленные места во Вселенной. И поскольку Эйнштейн показал, что пространство и время фундаментально взаимосвязаны, путешествие через червоточину может не только привести нас в другое далекое место, но и послужить кратчайшим путем в другое время.


Червоточины – это своего рода туннели в пространстве-времени

Неудивительно, что идея червоточен так популярна в научной фантастике. В реальной жизни ничто не способно превысить скорость света. Это означает, что солнечному свету требуется более 5 часов, чтобы добраться до Плутона и годы, чтобы достичь других звездных систем. А в научно-фантастических книгах и фильмах герои редко тратят столько времени на перемещение по космосу. Таким образом, червоточины – это идеальный способ обойти ограничение скорости Эйнштейна и заставить героев и злодеев путешествовать по галактике в разумные сроки. Кроме того, они позволяют элементу путешествия во времени войти в сюжетную линию, не нарушая никаких законов физики. Но могут ли реальные люди также воспользоваться преимуществами червоточин?

Еще больше увлекательных статей о последних научных открытиях в области астрофизики и космологии, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи которых нет на сайте

Тайны Вселенной

Первая проблема для любого исследователя, решившего изучить червоточину – это найти ее. В то время как, согласно работе Эйнштейна, кротовые норы могут существовать, в реальности не найдено ни одной. В конце концов, может оказаться и так, что существование червоточен запрещено каким-то более глубоким физическим процессом, которому подчиняется Вселенная, но мы этого пока не обнаружили.


Возможно внеземные цивилизации вовсю бороздят вселенную

Но это не значит, что ученые не работают над этим. Несмотря на отсутствие реальных кротовых нор для изучения, исследователи могут моделировать и проверять уравнения Эйнштейна. Так, NASA официально проводило исследования червоточин на протяжении десятилетий, и только в 2019 году команда агентства описала, каким может быть это путешествие.

Эта работа касалось одной из самых популярных концепций червоточин, причем черные дыры служили в качестве входного отверстия. Но черные дыры, как известно, опасны и могут поглотить любого, кто подойдет слишком близко. Оказывается, однако, что некоторые черные дыры могут позволить объектам проходить через них относительно легко. Это позволило бы путешественнику исследовать пространство за ее пределами и, таким образом, устранить одно из самых больших препятствий для входа в такую червоточину. Но опять же, это только в том случае, если кротовые норы существуют.

Поэтому, пока мы не найдем настоящую червоточину для изучения или не поймем, что они не могут помочь нам исследовать Вселенную, придется все делать по старинке: отправляя ракеты в дальний путь, а наши умы – в воображаемые приключения.

Иллюстрация “внутримировой” черной дыры

Кротовая нора или червоточина — это гипотетическая топологическая особенность пространства-времени, представляющая собой “туннель” в пространстве в каждый момент времени (пространственно-временной туннель). Тем самым кротовая нора позволяет перемещаться в пространстве и времени. Области, которые связывает кротовая нора, могут представлять собой области единого пространства или быть полностью разъединенными. Во втором случае кротовая нора является единственным связующим звеном двух областей. Первый вид кротовых нор часто называют “внутримировыми”, а второй вид “межмировыми“.

Гипотетические частицы Тахионы

Как известно Общая теория относительности (ОТО) запрещает перемещение во Вселенной со скоростью превышающей скорость света. С другой стороны ОТО допускает существование пространственно-временных туннелей, но при этом необходимо, чтобы туннель был заполнен экзотической материей с отрицательной плотностью энергии, создающей сильное гравитационное отталкивание и препятствующей схлопыванию туннеля.

Материалы по теме


К подобным частицам экзотической материи чаще всего относят тахионы. Тахионы – это гипотетические частицы, которые движутся быстрее скорости света. Для того чтобы такие частицы не нарушали ОТО предполагается, что масса тахионов является отрицательной.

В настоящее время нет достоверных экспериментальных подтверждений существования тахионов в лабораторных экспериментах или астрономических наблюдениях. Физики могут похвастаться лишь “псевдоотрицательной“ массой электронов и атомов, которые получают при высокой плотности электрических полей, особой поляризации лазерных лучей или сверхнизких температурах. В последнем случае эксперименты проводились с конденсатом Бозе – Эйнштейна, агрегатным состоянием вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях, и квантовые эффекты начинают проявляться на макроскопическом уровне. За получение конденсата Бозе-Эйншейна в 2001 году была вручена Нобелевская премия по физике.

Конденсат Бозе-Эйншейна

Впрочем, ряд специалистов предполагают, что тахионами могут являться нейтрино. Эти элементарные частицы обладают ненулевой массой, что было доказано с помощью обнаружения нейтринных осцилляций. Последнее открытие даже удостоилось Нобелевской премии по физике за 2015 год. С другой стороны точное значение массы нейтрино до сих пор определить не удалось. Ряд экспериментов по измерению скорости нейтрино показали, что их скорость может незначительно превышать скорость света. Эти данные постоянно подвергаются сомнению, но в 2014 году вышла новая работа по этому поводу.

Теория струн

Фундаментальная структура Вселенной по теории струн

Фундаментальная структура Вселенной по теории струн

Параллельно некоторые теоретики предполагают, что в ранней Вселенной могли сформироваться особые образования (космические струны) с отрицательной массой. Длина реликтовых космических струн может достигать как минимум несколько десятков парсек при толщине меньше диаметра атома при средней плотности 10 22 грамм на см 3 . Существует несколько работ о том, что подобные образования наблюдались в событиях гравитационного линзирования света далеких квазаров. В целом же теория струн в настоящее время является наиболее вероятным кандидатом на “теорию всего“ или единую теорию поля, которая объединяет теорию относительности и квантовую теорию поля. Согласно ей все элементарные частицы представляют собой колеблющиеся нити энергии длиной около 10 -33 метра, что сравнимо с планковской длиной (минимальным возможным размером объекта во Вселенной).

Теория единого поля предполагает, что в пространственно-временных измерениях существуют ячейки с минимальной длиной и временем. Минимальная длина должна быть равна планковской длине (примерно 1,6·10 −35 метров).

Комплексное n-мерное пространство Калаби-Яу

Комплексное n-мерное пространство Калаби-Яу

В то же время наблюдения удаленных гамма-всплесков говорят о том, что если зернистость пространства существует, то размер этих зерен не больше 10 −48 метров. Кроме того БАК не смог подтвердить некоторые следствия теории струн, что стало серьезным аргументом ошибочности этой фундаментальной теории современной физики.

Квантовая запутанность

Потенциально большим значением на пути к созданию единой теории поля и пространственно-временных туннелей является обнаружение в 2014 году теоретической связи между квантовой запутанностью и кротовыми норами. В новой теоретической работе было показано, что создание пространственно-временного туннеля возможно не только между двумя массивными черными дырами, но и между двумя квантово запутанными кварками.

Квантовая запутанность

Квантовая запутанность – это явление в квантовой механике, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Такая взаимозависимость сохраняется, даже если эти объекты разнесены в пространстве за пределы любых известных взаимодействий. Измерение параметра одной частицы приводит к мгновенному (выше скорости света) прекращению запутанного состояния другой, что находится в логическом противоречии с принципом локальности (при этом теория относительности не нарушается и информация не передаётся).

Перспективы гравитационно-волновой и нейтринной астрономии

Теоретическая модель рождения нашей Вселенной

Теоретическая модель рождения нашей Вселенной

Наибольшими перспективами в изучении свойств материи на самом микроскопическом и высокоэнергетическом уровне для лучшего понимания квантовой гравитации обладает гравитационно-волновая и нейтринная астрономия за счет того что она изучает волны и частицы с наибольшей проникающей способностью. Так если микроволновое реликтовое излучение Вселенной образовалось через 380 тысяч лет после Большого взрыва, то реликтовые нейтрино в первые несколько секунд, а реликтовые гравитационные волны всего через 10 -32 секунд! Кроме того большими перспективами обладают регистрации подобных излучений и частиц с горизонта событий черных дыр или у катастрофических событий (слияния нейтронных звезд и черных дыр, коллапсов массивных звезд).

Материалы по теме


С другой стороны активно развиваются традиционные астрометрические обсерватории, которые сейчас охватывают весь электромагнитный спектр. Подобные обсерватории могут обнаружить неожиданные объекты или явления в ранней Вселенной (первые межзвездные облака, звезды и галактики), в случаях гравитационного линзирования или во время наблюдений экстремальных объектов (черных дыр и нейтронных звезд). Астрономия продолжает являться наиболее эффективным направлением современной физики, так как способна изучать материю в экстремальных условиях, которые не доступны в земных лабораториях и ускорителях. В частности, существующие астрономические наблюдения в электромагнитном диапазоне привели к открытию загадочной темной материи и энергии, которые на данный момент не способна описать Стандартная модель (современная физическая теория, описывающая электромагнитное, слабое и сильное взаимодействие всех известных элементарных частиц). Другими примерами важности астрономических наблюдений в истории физики являются открытия аномального движения Меркурия, астрометрического смещения света звезд рядом с диском Солнца, а так же двойных нейтронных звезд. Эти открытия стали мотивом для создания и проверки теории относительности, а так же позволили предсказать существование гравитационных волн.

Кадр из фильма “Интерстеллар”

Кадр из фильма “Интерстеллар”

Пространственно-временные туннели или кротовые норы являются в научной фантастике самым популярным способом перемещения к другим звездам. Можно назвать наиболее популярные фильмы на эту тему: “Интерстеллар” (2014), “Контакт” (1997), “Сквозь горизонт” (1997), франшиза “Звездные войны” (1977-2017 годы). Первым начал широко использовать термины “черная дыра” и “кротовая дыра” американский физик Джон Уилер (1911-2008 годы). Советско-российский радиоастроном Николай Кардашев первым выдвинул идею, что черные дыры в центрах галактик являются входами в кротовые норы.

Читайте также: