Краткое сообщение об объектах информатика

Обновлено: 05.07.2024

ИНФОРМАТИКА – техническая наука, систематизирующая приемы создания, хранения, обработки и передачи информации средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

В англоязычных странах применяют термин computer science – компьютерная наука.

Теоретической основой информатики является группа фундаментальных наук таких как: теория информации, теория алгоритмов, математическая логика, теория формальных языков и грамматик, комбинаторный анализ и т.д. Кроме них информатика включает такие разделы, как архитектура ЭВМ, операционные системы, теория баз данных, технология программирования и многие другие. Важным в определении информатики как науки является то, что с одной стороны, она занимается изучением устройств и принципов действия средств вычислительной техники, а с другой – систематизацией приемов и методов работы с программами, управляющими этой техникой.

Информационная технология – это совокупность конкретных технических и программных средств, с помощью которых выполняются разнообразные операции по обработке информации во всех сферах нашей жизни и деятельности. Иногда информационную технологию называют компьютерной технологией или прикладной информатикой.

Информация аналоговая и цифровая.

Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.

В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.

Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло – это энергетические сигналы, а вкус и запах – это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков – это информация аналоговая. Если же разным цветам дать номера, а разным звукам – ноты, то аналоговую информацию можно превратить в цифровую.

Музыка, когда ее слушают, несет аналоговую информацию, но если записать ее нотами, она становится цифровой.

Разница между аналоговой информацией и цифровой, прежде всего, в том, что аналоговая информация непрерывна, а цифровая дискретна.

К цифровым устройствам относятся персональные компьютеры – они работают с информацией, представленной в цифровой форме, цифровыми являются и музыкальные проигрыватели лазерных компакт дисков.

Кодирование информации.

Кодирование информации – это процесс формирования определенного представления информации.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Единицы измерения информации. Бит. Байт.

Бит – наименьшая единица представления информации. Байт – наименьшая единица обработки и передачи информации.

Единица измерения информации называется бит (bit) – сокращение от английских слов binary digit, что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено – не намагничено, есть отверстие – нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое – цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (2 8 ). Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 2\up1210 байт = 1024 байта;

1 Мбайт (один мегабайт) = 2\up1210 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 2\up1210 Мбайт = 1024 Мбайта.

Например, книга содержит 100 страниц; на каждой странице – 35 строк, в каждой строке – 50 символов. Объем информации, содержащийся в книге, рассчитывается следующим образом:

1750 × 100 = 175 000 байт.

175 000 / 1024 = 170,8984 Кбайт.

170,8984 / 1024 = 0,166893 Мбайт.

Файл. Форматы файлов.

Файл – наименьшая единица хранения информации, содержащая последовательность байтов и имеющая уникальное имя.

Основное назначение файлов – хранить информацию. Они предназначены также для передачи данных от программы к программе и от системы к системе. Другими словами, файл – это хранилище стабильных и мобильных данных. Но, файл – это нечто большее, чем просто хранилище данных. Обычно файл имеет имя, атрибуты, время модификации и время создания.

Файловая структура представляет собой систему хранения файлов на запоминающем устройстве, например, на диске. Файлы организованы в каталоги (иногда называемые директориями или папками). Любой каталог может содержать произвольное число подкаталогов, в каждом из которых могут храниться файлы и другие каталоги.

Способ, которым данные организованы в байты, называется форматом файла.

Для того чтобы прочесть файл, например, электронной таблицы, нужно знать, каким образом байты представляют числа (формулы, текст) в каждой ячейке; чтобы прочесть файл текстового редактора, надо знать, какие байты представляют символы, а какие шрифты или поля, а также другую информацию.

Все файлы условно можно разделить на две части – текстовые и двоичные.

Такие языки, как китайский, содержат значительно больше 256 символов, поэтому для кодирования каждого из них используют несколько байтов. Для экономии места зачастую применяется следующий прием: некоторые символы кодируются с помощью одного байта, в то время как для других используются два или более байтов. Одной из попыток обобщения такого подхода является стандарт Unicode, в котором для кодирования символов используется диапазон чисел от нуля до 65 536. Такой широкий диапазон позволяет представлять в численном виде символы языка любого уголка планеты.

Но чисто текстовые файлы встречаются все реже. Документы часто содержат рисунки и диаграммы, используются различные шрифты. В результате появляются форматы, представляющие собой различные комбинации текстовых, графических и других форм данных.

Двоичные файлы, в отличие от текстовых, не так просто просмотреть, и в них, обычно, нет знакомых слов – лишь множество непонятных символов. Эти файлы не предназначены непосредственно для чтения человеком. Примерами двоичных файлов являются исполняемые программы и файлы с графическими изображениями.

Примеры двоичного кодирования информации.

Среди всего разнообразия информации, обрабатываемой на компьютере, значительную часть составляют числовая, текстовая, графическая и аудиоинформация. Познакомимся с некоторыми способами кодирования этих типов информации в ЭВМ.

Кодирование чисел.

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера области памяти, используемой для размещения чисел. В k-разрядной ячейке может храниться 2 k различных значений целых чисел.

Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, нужно:

1) перевести число N в двоичную систему счисления;

2) полученный результат дополнить слева незначащими нулями до k разрядов.

Например, для получения внутреннего представления целого числа 1607 в 2-х байтовой ячейке число переводится в двоичную систему: 160710 = 110010001112. Внутреннее представление этого числа в ячейке имеет вид: 0000 0110 0100 0111.

Для записи внутреннего представления целого отрицательного числа (–N) нужно:

1) получить внутреннее представление положительного числа N;

2) получить обратный код этого числа, заменяя 0 на 1 и 1 на 0;

3) полученному числу прибавить 1 к полученному числу.

Внутреннее представление целого отрицательного числа –1607. С использованием результата предыдущего примера и записывается внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Обратный код получается инвертированием: 1111 1001 1011 1000. Добавляется единица: 1111 1001 1011 1001 – это и есть внутреннее двоичное представление числа –1607.

Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p, которую называют порядком: R = m * n p .

Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства:

12,345 = 0,0012345 × 10 4 = 1234,5 × 10 -2 = 0,12345 × 10 2

Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию:

0,1p Ј m 8 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.

Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является уже упоминавшаяся таблица кодировки ASCII.

Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.

Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов.

Кодирование графической информации.

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информации о его цвете.

Для черно-белого изображения (без полутонов) пиксел может принимать только два значения: белый и черный (светится – не светится), а для его кодирования достаточно одного бита памяти: 1 – белый, 0 – черный.

Пиксел на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксел недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксел, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 – черный, 10 – зеленый, 01 – красный, 11 – коричневый.

На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов – красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:

R R
G G
B B
цвет цвет
0 1
0 0
0 0
черный красный
0 1
0 0
1 1
синий розовый
0 1
1 1
0 0
зеленый коричневый
0 1
1 1
1 1
голубой белый

Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов – К и количество битов для их кодировки – N связаны между собой простой формулой: 2 N = К.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пикселы которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука.

Из физики известно, что звук – это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Компьютер – универсальная информационная машина.

Одно из основных назначений компьютера – обработка и хранение информации. С появлением ЭВМ стало возможным оперировать немыслимыми ранее объемами информации. В электронную форму переводят библиотеки, содержащие научную и художественную литературы. Старые фото- и кино-архивы обретают новую жизнь в цифровой форме.

Как звали математика, который в 19 лет решил задачу, не поддававшуюся усилиям лучших геометров со времен Евклида?

Информационный объект – обобщающее понятие, описывающее различные виды объектов; это предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств.

Простые информационные объекты: звук, изображение, текст, число. Комплексные (структурированные) информационные объекты: элемент, база данных, таблица, гипертекст, гипермедиа.

Информация содержится везде. Дерево содержит собственную генетическую информацию, и только благодаря этой информации от семечка берёзы вырастает только берёза. Для деревьев источником информации является воздух, именно по уровню состояния воздуха дерево может определить время распускания почек. Перелетные птицы знают свой маршрут перелёта, и каждая стая идёт только своим заданным в генах маршрутом.

Стремление зафиксировать, сохранить надолго свое восприятие информации было всегда свойственно человеку. Мозг человека хранит множество информации, и использует для хранения ее свои способы, основа которых — двоичный код, как и у компьютеров. Человек всегда стремился иметь возможность поделиться своей информацией с другими людьми и найти надежные средства для ее передачи и долговременного хранения. Для этого в настоящее время изобретено множество способов хранения информации на внешних (относительно мозга человека) носителях и ее передачи на огромные расстояния.

Основные виды информации по ее форме представления, способам ее кодирования и хранения:

· графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей;

· звуковая — мир вокруг нас полон звуков, и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г.

Разновидностью звуковой информации является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение ее аналогично графической информации;

· текстовая— способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв (алфавиты) для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

· числовая— количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для ее отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др.

Для передачи информации на большие расстояния первоначально использовались кодированные световые сигналы, с изобретением электричества — передача закодированного определенным образом сигнала по проводам, позднее — с использованием радиоволн.

Создатель общей теории информации и основоположник цифровой связи Клод Шеннон впервые обосновал возможность применения двоичного кода для передачи информации.

С появлением компьютеров (или, как их вначале называли в нашей стране, ЭВМ — электронные вычислительные машины) вначале появилось средство для обработки числовой информации. Однако в дальнейшем, особенно после широкого распространения персональных компьютеров (ПК), компьютеры стали использоваться для хранения, обработки, передачи и поиска текстовой, числовой, изобразительной, звуковой и видеоинформации. С момента появления первых персональных компьютеров (80-е годы XX века) — до 80 % их рабочего времени посвящено работе с текстовой информацией.

Хранение информации при использовании компьютеров осуществляется на магнитных дисках или лентах, на лазерных дисках (CD и DVD), специальных устройствах энергонезависимой памяти (флэш-память и пр.). Эти методы постоянно совершенствуются, изобретаются новые устройства и носители информации.

Особым видом информации в настоящее время можно считать информацию, представленную в глобальной сети Интернет. Здесь используются особые приемы хранения, обработки, поиска и передачи распределенной информации больших объемов и особые способы работы с различными видами информации.

С помощью компьютера возможно создание, обработка и хранение информационных объектов любых видов, для чего служат специальные программы.

Информационный объект:

· обладает определенными потребительскими качествами (т.е. он нужен пользователю);

· допускает хранение на цифровых носителях в виде самостоятельной информационной единицы (файла, папки, архива);

· допускает выполнение над ним определенных действий путем использования аппаратных и программных средств компьютера.

В таблице приведены основные виды программ и соответствующие информационные объекты, которые с их помощью создаются и обрабатываются.

Оборудование и материалы: дидактический материал, демонстрационный экран, мультимедиапроектор, компьютеры, учебники.

Тип урока: объяснение нового материала.

Организационная форма урока: эвристическая беседа, самостоятельная работа на компьютерах.

  1. объяснять смысл понятий “объект”, “имя объекта”, “характеристики объекта”;
  2. приводить примеры объектов-предметов, объектов-явлений, объектов-процессов;
  3. описывать характеристики объектов в конкретной ситуации.

I. Организационный момент. (1 мин)

II. Подготовка учащихся к усвоению нового материала (3 мин)

III. Усвоение новых знаний (12 мин)

IV. Первичное закрепление материала. Практическое задание. (10 мин)

VI. Домашнее задание (2 мин)

VII. Вопросы учеников. (5 мин)

VIII. Итог урока. (2 мин)

1. Организационный момент

Приветствие. Проверка готовности учащихся к уроку, организация внимания. На правой половине доски выписана трехуровневая задача урока. На левой половине доски выписаны основные понятия, изучаемые на данном уроке. Ученики приветствуют учителя и демонстрируют готовность к уроку.

2. Актуализация знаний

Учитель. На прошлом уроке мы попытались ответить на вопросы: что является предметом изучения информатики? Можно ли рассматривать информатику в отрыве от других наук?

Ученики пытаются сформулировать ответ:

– Среди ученых нет единого мнения о предмете изучения информатики. Очевидно только, что информатика неразрывно связана практически с любой областью человеческой деятельности, а следовательно, со всеми школьными предметами.

Учитель. Любая наука имеет свою терминологию, которую необходимо знать для успешного изучения данной науки. Скажите, пожалуйста, какие математические, термины вам уже знакомы?

– Уравнение, точка, множество, функция и т. д.

Учитель. Предмет “Информатика” также имеет свою терминологию. Как правило, это неопределяемые понятия, которые объясняются с точки зрения современного состояния информатики. Сегодня мы познакомимся с некоторыми из них.

Работаем с левой, а затем с правой стороной доски.

Ученики знакомятся с основными понятиями и задачей урока. Учитель отвечает на вопросы (если они появятся).

3. Усвоение новых знаний

Учитель. Рассмотрим все возможные представления об объекте как понятии.

В мире, в котором мы живем, нас окружает множество объектов. В философии объектом называют любую вещь, предмет, т.е. материализованную часть внешнего мира. Он может быть представлен в виде данных.

В информатике объектом является либо любой адресуемый элемент, который предоставляет определенный сервис, либо предмет, система, процесс, явление, событие, факт, которым мы дали имя с целью их анализа.

В учебном процессе, когда внимание учеников должно быть направлено на изучение окружающей действительности понятие “объект” выступает в ином ракурсе.

Объект – это предмет, явление, процесс, отношение, на что обращена наша познавательная деятельность. Характеризуется целостностью, состоянием, поведением, идентичностью.

Каждый предмет имеет форму и состоит из того или иного вещества (материала). Это материальные объекты.

Посмотрите вокруг, и вы увидите многочисленные примеры одушевленных и неодушевленных предметов. Это представители живой природы – люди, животные, растения и т.д. Большим разнообразием отличаются изделия, созданные руками человека: компьютер, книга и др.

Перечисленные объекты материальны и имеют форму. Можно привести примеры объектов, которые не имеют определенной формы: снег, песок, вода и пр.

Нематериальным объектом является также и то, что создается в результате умственной деятельности человека: стихи, музыкальные произведения, сочинения и т.д.

Ученики слушают объяснение учителя и записывают определения в тетрадь.

Учитель. Приведем примеры объектов-предметов (а также любых живых существ).

Ученики называют: стол, окно, карандаш, собака, кошка и т.д. Это оказалось очень просто!

Учитель. Приведем примеры объектов-явлений.

Ученики называют : дождь, снег, вулкан, гроза, осень.

Учитель. Приведем примеры объектов-процессов.

Ученики называют : учеба, выборы, суд, поездка, каникулы.

Дети приводят примеры, каждый свои, не повторяясь и не перебивая друг друга.

Учитель. Каждый объект обязательно как-то называется. Имя – это основная характеристика, которая позволяет отличить один объект от другого.

Как правило, в обыденной жизни используется общее имя, обозначающее объекты с похожими характеристиками: комната, собака, песня.

Многим объектам, чтобы конкретизировать их, дают имя собственное. Так, собственными имена есть у многих географических объектов: город Москва, гора Арарат, река Волга.

А если имя объекта вам незнакомо? Тогда понадобятся дополнительные характеристики, которые позволят отличить данный объект от других, например форма, цвет, область использования, назначение и т.д. Чем более точно и подробно составлено описание объекта, тем легче его узнать.

4. Первичное закрепление материала

Далее учитель предлагает детям поработать на компьютере: заполнить таблицу. Образец таблицы представлен ученикам на демонстрационном экране с помощью компьютера и мультимедиапроектора.

Практическое задание. Самостоятельно заполните таблицу в программе Microsoft Word.

Имя объекта Краткое описание (характеристики объекта)
Стол Горизонтальная поверхность на опоре, предназначенная для работы на ней
Книга
Дождь
Урок
Выборы президента

Затем учитель и ученики совместно разбирают выполненное задание. Далее они переходят к следующей таблице, расширяющей понятие “объект”.

Учитель. Любой признак или свойство можно рассматривать как объект. Надо только этому признаку или свойству дать имя. Таблица представлена ученикам на демонстрационном экране с помощью мультимедиапроектора.

Объект (его имя) Характеристики объекта (их имена, значения)
Глаза Миндалевидные, голубые
Отрезок 4 см
Туфли Черные (словесная характеристика), 37-го размера (числовая характеристика)

По образцу самостоятельно написать характеристики для двух объектов по своему выбору в программе Microsoft Word.

Происходит активное обсуждение некоторых вопросов в форме беседы.

Вопросы для закрепления новой темы на уроке:

1. Дайте имена объектам .

а) выросшим на яблоне;

б) посещающим детский сад;

в) посещающим лицей;

г) проживающим в Москве;

д) продающимся в “Детском мире”:

е) находящимся в библиотеке;

ж) работающим на тракторе;

з) преподающим в школе.

2. К какой части речи относится понятие “объект”?

3. Какие объекты можно выделить в:

а) одноголосной мелодии;

б) трехголосной мелодии;

г) фрагменте стихотворения “Глядя на луч пурпурного заката, стояли мы на берегах Невы…”?

4. Можно ли число характеризовать какой-либо величиной?

5. Можно ли прямую на плоскости характеризовать какой-либо величиной?

Если ученики затрудняются ответить на некоторые вопросы, учитель пытается с помощью наводящих вопросов натолкнуть их на правильный ответ.

6. Домашнее задание

1.Знать, что такое “объект”, “имя объекта”, “характеристики объекта”.

2. Приводить примеры объектов.

3. Назвать характеристики следующих объектов; шар, поезд, река, ядерный взрыв. Представить информацию в виде таблицы в тетради.

7. Вопросы учеников

Ответы на вопросы учащихся.

Подведение итога урока. Выставление оценок.

На уроке мы узнали, что же такое объект, имя объекта, характеристики объекта; обсудили характеристики объектов, приводили примеры объектов-предметов, объектов-явлений, объектов-процессов.

Что за наука – информатика?
Существует три основных события в жизни человечества – переход от обычного собирательства ягод и охоты к самостоятельному выращиванию растений и приручению животных, промышленная революция с ее автоматизацией производства и информационная революция. Возглавляет последнюю именно информатика. Так что это за наука?

Что такое информатика?

Разделы информатики

Существует три основных вида информатики. Они различаются своими задачами и подходом к решению различных проблем. Часто эта дисциплина тесно связана с другими базовыми точными науками, например, физикой или математикой. Последняя играет главную роль в понимании и развитии информатики.
Теоретическая составляющая науки представляет собой в основном теорию алгоритмов, которая решает вопрос, что в принципе может быть автоматизировано, как и какие для этого понадобятся ресурсы. Занимается она более абстрактными, далекими от практического применения, математическими вычислениями. Также в этот раздел входят формальные языки, теория автоматов, вычислимости и так далее.
Прикладная информатика решет более конкретные задачи. Она пытается на практике реализовать наработки теоретиков. Например, ученные этого направления разрабатывают искусственный интеллект, непосредственно сами компьютеры, с помощью которых будут обрабатываться данные, проводят анализ их эффективности, строят математические модели и прочее.
Естественная информатика решает другие задачи – она работает не с искусственным разумом или теоретическими алгоритмами, а с тем, что уже существует в природе, например, человеческий или крысиный мозг, ДНК живых организмов.
Информатика – одна из самых перспективных наук для человечества, поэтому все больше молодежи выбирает именно эту отрасль для обучения.

Читайте также: