Коммутационная аппаратура управления коллекторным двигателем сообщение

Обновлено: 02.07.2024

Коллекторный электродвигатель постоянного тока - вращающаяся электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором.

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:

Двигатель независимого возбуждения

Двигатель параллельного возбуждения

Двигатель последовательного возбуждения

Двигатель смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф ~ Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Рабочая характеристика двигателя последовательного возбуждения

Электромеханическая характеристика двигателя последовательного возбуждения

Важно: Недопустимо включать двигатели последовательного возбуждения в сеть в режиме холостого хода (без нагрузки на валу) или с нагрузкой менее 25% от номинальной, так как при малых нагрузках частота вращения якоря резко возрастает, достигая значений, при которых возможно механическое разрушение двигателя, поэтому в приводах с двигателями последовательного возбуждения недопустимо применять ременную передачу, при обрыве которой двигатель переходит в режим холостого хода. Исключение составляют двигатели последовательного возбуждения мощностью до 100—200 Вт, которые могут работать в режиме холостого хода, так как их мощность механических и магнитных потерь при больших частотах вращения соизмерима с номинальной мощностью двигателя.

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:
  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:
  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Механические характеристики коллекторных электродвигателей постоянного тока

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:


,

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

Особенности конструкции и принцип действия

Конструкция коллекторного двигателя

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными, благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Схема подключения коллекторного двигателя

Управление работой двигателя

Схема управления работой электродвигателя

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Принцип работы схемы управления коллекторным двигателем

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма,
  • искрение между и коллектором и щетками,
  • повышенный уровень шумов,
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Полезная модель относится к коллекторным электрическим двигателям постоянного тока, и может быть использовано для управления коммутацией коллекторных машин постоянного тока. Задача полезной модели упрощение схемы и алгоритма управления коммутацией без изменения конструкции электродвигателя, осуществление безыскровой коммутации в любых режимах работы тягового электродвигателя, у которого вопросы повышения коммутационной способности и надежности стоят наиболее остро. Поставленная задача решается тем, что в устройстве управления коммутацией коллекторного тягового электродвигателя с обмоткой дополнительных полюсов 3, содержащем датчик состояния коммутации и блок обработки 8, а также вспомогательный источник питания 6, связанный с блоком обработки 8, в качестве датчика состояния коммутации используется устройство контроля искрения 7 на основе измерительного трансформатора тока, включенного в цепь обмотки якоря 2, а также соединенного с входами блока обработки 8, вспомогательный источник питания 6 обмотки дополнительных полюсов связан с блоком обработки через фазочувствительное устройство управления 9, а обмотка дополнительных полюсов 3 включена последовательно в цепи обмотки якоря 2 электродвигателя 1. При этом, поскольку искрение и характер коммутации контролируется в любом режиме работы электродвигателя с помощью предлагаемого устройства, то в любом режиме работы с помощью отпитки-подпитки обмотки дополнительных полюсов будет осуществляться безыскровая коммутация в коллекторном узле электродвигателя без изменений его конструкции. Устройство существенно проще по сравнению с известными устройствами, в которых используется большое число датчиков, а также сложные схемы и алгоритмы обработки сигналов с этих датчиков.

Полезная модель относится к коллекторным электрическим двигателям постоянного тока, и может быть использовано для управления коммутацией коллекторных машин постоянного тока.

Известны устройства для контроля и улучшения коммутации коллекторных машин постоянного тока, в которых в качестве датчика коммутации используются: индукционные датчики, уложенные в открытые аксиальные пазы наконечников добавочных полюсов [Авторское свидетельство СССР 892587, Н02К 13/14]; датчик добавочного тока коммутации, выполненный в виде вспомогательной секции уложенной рядом с основной [Авторское свидетельство СССР 943995, Н02К 13/14]; датчики, регистрирующие световой эффект от искрения на основе фотоэлементов; датчики, содержащие дополнительную щетку вблизи сбегающего края одной из рабочих щеток [Авторское свидетельство СССР 970571, Н02К 13/14]. Перечисленные датчики предполагают либо изменение элементов конструкции машины, либо представляются недостаточно работоспособными для различных условий эксплуатации машины.

Известно устройство для улучшения коммутации по патенту РФ 2119224, в котором устройство формирования устройство формирования коммутирующего поля снабжено блоком синхронизации и блоком расчета, входы которого соединены с выходами датчиков частоты вращения якоря, тока якоря и тока возбуждения главных полюсов, а также с выходами блока синхронизации, вход которого соединен с выходом датчика наличия тока возбуждения главных полюсов. Выходы блока расчета соединены с сигнальными входами усилителей, подающих питание на обмотки возбуждения дополнительных полюсов. Недостатком такого устройства является наличие большого количества датчиков (частоты вращения якоря, тока якоря, тока возбуждения главных полюсов), а также сложность схемы контроля и управления коммутацией, сложность расчетов для подбора коэффициентов, зависящих от параметров независимых обмоток возбуждения дополнительных полюсов, а соответственно, и сложность схемы контроля и управления коммутацией.

Такими же недостатками обладает устройство формирования коммутирующего поля коллекторной электрической машины по патенту РФ 2251780. В этом устройстве, в схеме формирования коммутирующего поля коллекторной машины, содержащей главные полюсы, дополнительные полюсы, компенсационную обмотку и датчик тока якоря, для улучшения коммутации в любом динамическом режиме работы коллекторной электрической машины за счет формирования необходимого коммутирующего поля для паза, находящегося в зоне коммутации, блок управления выбирает необходимый закон для изменения задания для широтно-импульсных преобразователей, питающих дополнительные полюсы, обмотки которых выполнены на вынесенной магнитной системе, для чего в блоке управления обрабатываются сигналы с датчика тока якоря и датчика положения и скорости ротора, считанные для момента, когда в зоне коммутации находился предыдущий паз. Кроме того, недостатком является отсутствие данных об искрении.

Наиболее близким по техническому решению к заявляемому устройству управления коммутацией тягового коллекторного электродвигателя постоянного тока является выбранная в качестве прототипа электрическая машина постоянного тока с устройством улучшения коммутации по патенту РФ 2189101, содержащая главные полюсы, дополнительные полюсы, подключенные к выходу устройства питания, датчик радиосигналов, датчик тока якоря, датчик тока дополнительных полюсов, блок управления. Вышеупомянутая система улучшения коммутации управляет токами независимых обмоток дополнительных полюсов на основании значений тока якоря и сигнала с датчика контроля коммутации, выполненного в виде датчика радиосигналов, и подключенного через резонансный контур, затем через усилитель напряжения, затем через компаратор с регулируемым порогом к входу инкрементного счетчика, выход которого подключен к блоку управления, который рассчитывает и формирует задание на ЦАП, сигнал с выхода которого подключен к входу устройства питания.

По сравнению с заявляемым устройством, указанное устройство имеет следующие недостатки:

- наличие датчика радиосигналов вызывает высокий уровень помех, обработка сигнала с использованием резонансного контура ограничивает возможность оценки уровня искрения, которому соответствует спектр частот;

- сложность схемы управления питанием обмотки дополнительных полюсов, которая требует подключения датчиков тока якоря и тока возбуждения;

- схема предполагает наличие независимой обмотки дополнительных полюсов, тогда как в реальных электродвигателях, как правило, эта обмотка соединена последовательно с обмоткой якоря.

Задача полезной модели: упрощение схемы и алгоритма управления коммутацией без изменения конструкции электродвигателя, осуществление безыскровой коммутации в любых режимах работы тягового электродвигателя, у которого вопросы повышения коммутационной способности и надежности стоят наиболее остро.

Поставленная задача решается тем, что в устройстве управления коммутацией коллекторного тягового электродвигателя с дополнительными полюсами, содержащем датчик состояния коммутации и блок обработки, а также вспомогательный источник питания, связанный с блоком обработки, в качестве датчика состояния коммутации используется устройство контроля искрения на основе измерительного трансформатора тока, включенного в цепь обмотки якоря, а также соединенного с входами блока обработки, вспомогательный источник питания обмотки дополнительных полюсов связан с блоком обработки через фазочувствительное устройство управления, а обмотка дополнительных полюсов включена последовательно в цепи обмотки якоря электродвигателя.

Далее сущность полезной модели поясняется рисунком, на котором представлено: Тяговый электродвигатель постоянного тока 1, содержащий главные полюсы и дополнительные полюсы стандартного исполнения, состоит из обмотки якоря 2, обмотки дополнительных полюсов 3, включенной последовательно в цепи обмотки якоря 2, обмотки возбуждения 4, и подключен к источнику напряжения 5. Обмотка дополнительных полюсов 3 подключена к вспомогательному источнику питания 6. Устройство контроля искрения 7 подключено в цепь обмотки якоря 2. Устройство контроля искрения 7 коллекторных электрических машин постоянного тока с разрезными щетками, выполненное в виде трансформатора тока установленного на одном из щеткодержателей известно из описания к полезной модели 67284. Трансформатор содержит две первичные обмотки, включенные встречно, при этом выводные канатики разных частей разрезной щетки подключены к разным первичным обмоткам, а общая точка первичных обмоток соединена со щеткодержателем. Во вторичную обмотку трансформатора включено нагрузочное сопротивление, параллельно которому подключен регистрирующий прибор. При этом, измеряется дополнительный ток iK, возникающий при реверсировании направления тока через секцию в момент, когда эта секция накоротко замкнута обеими частями щетки. Повышенная чувствительность данного устройства индикации обусловлена тем, что с нагрузочного сопротивления вторичной обмотки снимается сигнал, пропорциональный удвоенному значению дополнительного тока ik, a так же фиксируется направление этого тока. При этом устраняется необходимость в дополнительных схемах, устраняющих помехи и повышающих чувствительность аппаратуры. Указанное устройство контроля искрения 7 не требует какого-либо изменения конструкции щеточно-коллекторного узла. Сигнал с устройства контроля искрения 7 поступает на блок обработки 8, блок обработки 8 связан с фазочувствительным устройством управления 9, которое, в свою очередь соединено с вспомогательным источником питания 6, подключенным к обмотке дополнительных полюсов 3.

Устройство работает следующим образом: Устройство контроля искрения 7 измеряет добавочный ток коммутации, действующее значение которого определяет балльность искрения, а среднее значение этого тока определяет характер коммутации (замедленная, ускоренная). Сигналы с устройства контроля искрения 7 обрабатываются в блоке обработки 8, где балльность искрения сравнивается с допустимой балльностью искрения для данного режима работы электродвигателя 1. В зависимости от результата сравнения вырабатывается сигнал подключения вспомогательного источника питания 6 обмотки дополнительных полюсов 3. В этом же блоке 8 по среднему значению измеренного устройством контроля искрения 7 поперечного тока щетки определяется характер коммутационного процесса в электродвигателе 1 и формируется сигнал на фазочувствительное устройство 9, которое изменяет полярность выходного тока вспомогательного источника питания 3 в зависимости от характера коммутационного процесса. При этом, при ускоренной коммутации фазочувствительным устройством управления 9 включается отпитка обмотки дополнительных полюсов 3, если на фазочувствительное устройство управления 9 поступает сигнал замедленной коммутации, то это устройство 9 включает подпитку обмотки дополнительных полюсов 3. При этом обмотка дополнительных полюсов 3 соединена последовательно с обмоткой якоря 2. Следует заметить, что вспомогательный источник питания 6 должен быть гальванически развязан с цепью питания обмотки якоря 2. Для этого в фазочувствительное устройство управления 9 включают понижающий трансформатор, гальванически изолирующий эти цепи питания.

При этом, поскольку искрение и характер коммутации контролируется в любом режиме работы электродвигателя с помощью предлагаемого устройства, то в любом режиме работы с помощью отпитки-подпитки обмотки дополнительных полюсов будет осуществляться безискровая коммутация в коллекторном узле электродвигателя без изменений его конструкции. Устройство существенно проще по сравнению с известными устройствами, в которых используется большое число датчиков, а также сложные схемы и алгоритмы обработки сигналов с этих датчиков.

Устройство управления коммутацией тягового коллекторного электродвигателя с дополнительными полюсами, содержащее датчик состояния коммутации и блок обработки, а также вспомогательный источник питания, связанный с блоком обработки, отличающееся тем, что в качестве датчика состояния коммутации используется устройство контроля искрения на основе измерительного трансформатора тока, включенного в цепь обмотки якоря, а также соединенного с входами блока обработки, вспомогательный источник питания обмотки дополнительных полюсов связан с блоком обработки через фазочувствительное устройство управления, а обмотка дополнительных полюсов включена последовательно в цепи обмотки якоря электродвигателя.

Широкая область применения моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.


Коллекторный двигатель — это устройство, которое вбирает в себя все плюсы машин постоянного тока, вследствие чего имеет схожие с ними параметры. Различаются такие машины лишь тем, что корпус неподвижной части устройства сделан из частных пластин динамной стали. Такая особенность нужна для сокращения расходов вихревых токов. Эффективная работа двигателя достигается путем последовательного подключения к сети 220в обмотки возбуждения конструкции.
Такие устройства называются универсальными за счет функционирования от обоих видов тока. Мотор содержит тахогенератор и электро-графитовых щеток, прижимающихся к коллектору. Ротор вращается из-за контакта в обмотке якоря и обмотки статора. Далее осуществляется подключение коллекторного механизма к источнику напряжения.
Принцип действия коллектора можно пронаблюдать в тривиальном эксперименте с вращением рамки, находящейся между магнитными полюсами. Протекающий ток заставляет рамку крутиться под влиянием динамических сил. Изменив направление тока в рамке, её направление останется прежним.
Момент максимума достигается если последовательно подключить обмотки статора, что влечет за собой увеличенные обороты холостого хода.

Схема подключения

Примитивная схема подключения содержит десяток контактов на планке их соединения. Через них ток идёт до нужной щетки и попадает на коллектор и обмотку якоря. Затем переходит на следующую щетку и попадает на нейтраль. Такая система обеспечивает однонаправленность момента, потому что соединение обмоток осуществляется последовательно и создает возможность для одновременного изменения магнитных полюсов.
Для изменения стороны вращения можно поменять расположение выходов обмоток. Напрямую включение машины производится исключительно в совокупности статора и ротора. Тогда включаются все мощности мотора, из-за этого использование устройства ограничивается до 15 секунд.

КД: виды, принцип работы, схемы


В быту используются двигатели с механическим способом изменения направления тока в секциях. Этот вид машин именуют коллекторными (далее КД).
Разберем данные типы конструкций, их процесс работы и особенности их структуры. Также разберем их плюсы и минусы, приведем сферы их применения.

Устройство

КД включает в себя ротор, статор, щетки и тахогенератор:

  1. Ротор — вращающийся элемент устройства.
  2. Щетки – основной элемент контактов, по которому подаётся напряжение.
  3. Статор — неподвижная часть машины, может состоять из одного или двух магнитов.
  4. Тахогенератор – это механизм, отслеживающий параметры вращения. Если равномерность вращения нарушается, прибор вводит корректировки в напряжение.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.
Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.
Классификация КД
Классификаций данных машин, как принято, существует две:

  1. Те, что работают за счет постоянного источника. Такие устройства обладают лучшим пусковым моментом, удобной настройкой частоты ротации и понятной структурой.
  2. Универсальные. Работают независимо от вида тока. Отличаются компактными габаритами, дешевизной и понятным управлением.

Первые, разделяются на две категории, определяющейся механизмом работы индуктора. Чаще всего расположены на постоянных магнитах, либо на особых электромагните. Благодаря магнитному потоку они образуют вращение. Существуют разные двигатели с катушками возбуждения, обычно они разнятся по видам обмоток. Существуют независимые, параллельные, последовательные и смешанные типы обмоток.
Рассмотрев виды, разберемся с каждым отдельно.

Универсальные КД

Ниже описана разбираемый нами тип. Такая конструкция типична для большинства машин этого вида.



Это устройство состоит из механического коммутатора, щеткодержателей, сердечника статора(состоит из листов, сделанных из динамной стали), обмоток статора(в индукторе) и вала якоря.
Для данных машин существует последовательное и параллельное возбуждение, но вторая версия на данный момент не выпускается, поэтому рассмотрим первую. Схема, использующая последовательный вариант КД описана далее.

В настоящее время производители практически отказались от КД и перешли на использование бесколлекторных машин. Раньше КД применялись для бытовых устройств, например, кухонных комбайнов, стиральных машин.
Далее рассмотрим машины, использующие постоянное напряжение.

КД с индуктором на постоянных магнитах


По своему устройству такие механизмы в отличие от предыдущих используют постоянные магниты.

Данный вид КД стал куда более популярным, чем остальные электромашины этого типа.
Такую разницу можно объяснить тем, что КД на постоянных магнитах обладает низкой стоимостью из-за простоты своего конструкции, также понятным и доступным управлением скорости вращения и возможностью изменить направление, достаточно только поменять полярность.
Существует прямая пропорция между мощностью двигателя и напряженностью поля, которую создают магниты. Вследствие чего вносятся некоторые ограничения в использовании данного типа машины.
В основном такие механизмы применяются в простых конструкциях, например, детских игрушках с маломощными приводами и в других оборудованиях такого типа.
К достоинствам относятся следующие характеристики:

  • большой момент силы на пониженной частоте ротаций;
  • скорость управления;
  • низкая стоимость.

К слабым местам относятся:

  • малые мощности;
  • со временем утрачиваются магнитные свойства.

Для исключения последнего недостатка в функции возбуждения применяются определенные обмотки. Рассмотрим такие КД.

Независимые катушки

  • увеличение продолжительности работы за счет удаления магнитов;
  • высокий момент силы на низкой частоте вращения;
  • доступное и динамичное управление.
  • цена выше, чем с постоянными магнитами;
  • большая вероятность поломки по причине уменьшения уровня тока ниже допустимого порога.

Однофазный асинхронный электродвигатель


Рассматривая асинхронный однофазный двигатель можно понять что это всего лишь замкнутый виток на роторе и катушка на статоре. Сперва можно подумать, что это устройства даже не должно заработать, поскольку ток в роторе отсутствует, то и магнитное поле не крутится. Но стоит только дать ротору энергию, допустим толкнуть, то механизм придет в действие. Вращение будет осуществляться в сторону толчка. Для пояснения принципа работы представим статичное переменное магнитное поле в качестве суммы двух полей, которые вращаются в разные стороны. Эти поля компенсируют друг друга до тех пор, пока ротор находится в статичном состоянии. Именно поэтому данный тип двигателя не может начать движение самостоятельно. В момент когда мы приводим ротор в движение вращение будет происходить навстречу друг другу. Можно сделать вывод, что машина функционирует в асинхронном режиме из-за разности скоростей векторов.
Как мы знаем, в двигателях с одной фазой поле вращающееся, а не пульсирующее, это вызвано количеством обмоток в статоре. В нем, помимо основной, присутствует вспомогательная обмотка, которая позволяет сдвинуть фазу индуктивности на 90 градусов. Этот самый пусковой элемент и придает ротору энергию для запуска устройства в конкретный момент.

Первая и вторая схемы используются во время запуска мотора, но не дольше трех секунд, и определены для подключения вспомогательной обмотки. В этом задействованы кнопка, которую нужно нажать и держать до тех пор пока мотор не придет в действие. Обмотку можно подсоединить двумя способами: используя конденсатор или посредством сопротивления. Второй случай используется реже, поскольку необходимо намотать обмотку бифилярным методом. Сопротивление будет увеличиваться за счет удлиненного провода, но индуктивность на катушке остается прежней. Третья схема наиболее распространена, в ней конденсатор подключен к сети питания в постоянном режиме во время работы двигателя, а не лишь в момент запуска. Необходимо измерить сопротивление каждой из обмоток по определенной схеме. Для начала нужно прозвонить обмотки по парам, после этого можно определить путь каждого провода и замерить нужные величины. Пусковая обмотка постоянно имеет большее сопротивление(30 Ом), чем рабочая( 8 — 12 Ом). Конденсатор подбирается исходя из потребление тока мотором, например если сила тока равна 1.4 А, то конденсатор нужен емкостью в 6 мкФ.
Преимущественно все они являются трехфазными моторами, но бывают и двухфазные, хотя это скорее редкость и исключение из правил. Данные двигатели обладают простой и понятной конструкцией, удобны в обслуживании и ремонте. Если возникают проблемы, то она кроется вероятнее всего в обычной смазке подшипников. Минусом таких моторов является громоздкость и тяжелый вес, хотя КПД у них как правило не большое. Эти двигатели преимущественно находятся в старых и дешевых стиральных машинах.

Конфигурация управления двигателем с Ардуино


Ардуино подключается к мотору постоянного тока при необходимости сборки машинки или другого устройства, требующего микроконтроллер Arduino. Есть несколько методов использования двигателя с Arduino: напрямую к плате, посредством полевого транзистора, также с помощью драйвера L298N. КД рассчитывается на различное напряжение питания. Допустим моторчик запускается от 3-5 Вольт, в таком случае можно подключать его непосредственно к плате Ардуино. Двигатели для машинок с блютуз регулированием, рассчитываются на 6 Вольт и больше, также с ними идут редукторы и колеса. Такими устройствами следует управлять через биполярный транзистор или через модуль L298N.

На схеме представлено как устроен мотор постоянного тока и принцип его функционирования. Можно понять, что для движения ротора мотора необходимо питание. Сменив полярность питания, ротор сменит сторону вращения. Модуль L298N помогает менять сторону вращения мотора, по этой причине его чаще всего используют в проектах связанных с таким двигателем.

Управление работой двигателя

Существует целое множество видов регулировки работы разных двигателей. Для контроля коллекторного мотора может использоваться симистор, встроенный в электронную схему регулировки. Он пропускает определенное напряжение для мотора и работает как ключ, который открывает затвор в случае приема конкретных импульсов.
Основываясь на двухполупериодном регулировании, реализуется функционирование симистора. Принцип заключается в фиксировании напряжения, пускаемом на мотор, который привязывается к сигналам. В результате чем чаще вращается якорь, тем больше напряжение на обмотках. Следующие пункты описывают реализацию управления коллекторным двигателем:

  • симистор принимает импульс от схемы,
  • статор запитывается электричеством, заставляя якорь двигателя вращаться,
  • за счет преобразования величин частот вращения в сигналы создается сеть с импульсами управления,
  • ротор крутится одинаково при всех нагрузках,
  • реле R1 и R позволяет достичь реверса

Плюсы и минусы представленных устройств

Плюсами подобных машин являются:

  • компактность,
  • способность работы на любых токах,
  • скорость и автономия от частот сети,
  • легкая настройка оборотов.

Минусом двигателей является щеточно-коллекторный вид, вызывающий:

  • высокая стоимость,
  • сложная конструкция устройства, не позволяющая самостоятельно её отремонтировать,
  • образование искр между элементами,
  • высокий показатель шума,
  • избыточность частей коллектора.

Типовые поломки

Даже в новых двигателях может случаться искрение щеточно-коллекторного механизма, что нуждается в особенном наблюдении. Износившиеся щетки необходимо заменять для избегания перегрева и деформирования коллектора. Замыкание обмоток якоря может привести к сильному снижению магнитного потока и увеличенному образованию искр в механизме двигателя.
Неисправности щеточного узла.
Одно из самых важных и слабых мест коллекторного двигателя — щетки. Чем больше щеток в механизме тем дольше длится его ремонт. Например, во время работы четырехщеточного коллектора они(щетки) стираются, а графитовая часть их конструкции садится на сам коллектор и других элементам механизма. Прижимные пружины могут оказаться в одном узле со щеткой и ее контактами, либо находятся в блоке держателя. С течением времени из-за стирания щеток эти пружины увеличиваются и ослабевают, следовательно, контакт становится хуже. Также к этому добавляется угольная пыль. Может случиться так, что пыль закроет щетку, а пружины не смогут протолкнуть ее через преграду. Щетка виснет, и двигатель прекращает работу. При небольшой тряске контакт попадает в нужное место, и мотор включается.
Правильная эксплуатация и мастерство специалиста, работающего с машиной, поможет не допустить ранней поломки двигателя.

Читайте также: