Как получить ток в домашних условиях сообщение

Обновлено: 02.07.2024

Электричество есть везде, взять его, вот наша задача. Наука до конца не определилась с этим понятием, однако это не мешает учёным и практикам извлекать энергию из различных компонентов среды и трансформировать её в другие виды энергий, получая блага в виде тепла и света. Ниже я расскажу о способах получить электричество из земли своими руками.

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Вашему вниманию предлагаются интересные решения для слаботочных подручных электроприборов — фонариков, зарядных устройств, зажигалок. В статье приведены подробные фотографии и видеоинструкции, как собрать оригинальные источники электричества из подручных средств своими руками.

Лайфхак. Электричество своими руками

Ни для кого не секрет, что энергия буквально окружает нас и её носителями могут быть не только ценные полезные ископаемые — нефть, газ, уголь, но и металлы, углеводы, объекты, движущиеся в силу естественных причин. Рассмотрим подробнее, как же из подручных средств можно извлечь электрическую энергию.

В этом разделе мы наглядно продемонстрируем возможность извлекать электричество при помощи химической и электролитической реакции.

Угольные батареи из алюминиевых банок

Обычные угольные батарейки можно сделать своими руками. Для этого нам понадобится:

  1. Две жестяные банки из-под напитков по 0,5 л.
  2. Два графитовых стержня Ø 15–20 мм длиной по высоте банки + 20–30 мм.
  3. Обычный уголь или зола.
  4. Парафин или воск.
  5. Несколько медных проводов, нож.

Способ предусматривает воссоздание в увеличенном виде миниатюрных батареек для бытовых приборов.

  1. Вырезать верха банок, оставляя борта.
  2. Установить на дно пенопласт толщиной 30 мм.
  3. Установить стержни внутрь банок, притопив их в пенопласт.
  4. Засыпать пазухи углём. До края банки должно остаться 10–15 мм.
  5. Залить пазухи подсоленной водой (1 ст. ложка на 1 литр).
  6. Залить растопленным парафином или воском свободное место в банке (до верха).

Каждая из банок будет идентична по энергоёмкости одной пальчиковой батарейке 1,5 В. Их можно соединять последовательно, подзаряжать и использовать в бытовых приборах — часах, приёмнике, светодиодных светильниках.

Батарейки из жестяных банок — пошаговое видео

Электричество из окисления

Белки, жиры и углеводы — источники энергии для организма человека. Она извлекается благодаря реакциям, проходящим в желудке и кишечнике. А именно — при воздействии желудочной кислоты на углевод высвобождается энергия, заключённая в нём. Что если попробовать заменить желудочную кислоту на более привычную — уксусную?

Для опыта нам понадобится:

  1. Сахар-рафинад — 2 куска.
  2. Анодированные саморезы 15 мм — 2 шт. (омеднённые и оцинкованные).
  3. Диодная лампочка на 1,5 В с проводами.
  1. Просверливаем (не до конца!) отверстия в сахаре.
  2. Аккуратно, чтобы не раздавить рафинад, вкручиваем саморезы.
  3. Подсоединяем проводки лампочки к головкам саморезов.
  4. Смачиваем рафинад уксусом.

Видео, как извлечь электричество из сахара

Разумеется, дело тут не в сахаре, а в химическом процессе окисления меди и цинка. Рафинад является только средством для удержания кислоты. В точке контакта окисляемых поверхностей и кислоты происходит электрохимическая реакция с выделением небольшого количества энергии. Теоретически рафинад можно заменить на плотную губку, но саморезы со временем полностью окислятся и придут в негодность.

Более наглядно и точно этот эффект описан в аналогичном опыте с лимонами.

Электричество из лимона — видеоурок

И совсем народный способ с применением картофеля.

Видео — как извлечь ток из картошки

Аварийный источник энергии

Описанный выше принцип можно использовать для создания зарядного устройства из подручных средств. Для этого понадобятся простые детали, которые можно обнаружить в остатках материала на выброс после ремонта.

Для создания источника энергии понадобится:

  1. П-образные оцинкованные подвесы для гипсокартона (толщина значения не имеет) — 10 шт.
  2. Тонкая медная проволока — 15 м.
  3. Тонкая х/б ткань — несколько лоскутов, в крайнем случае — туалетная бумага.
  4. Нитки.
  5. Вода, соль.

Лайфхак. Электричество своими руками

Ход работы (для одного элемента питания):

1. Обернуть пластины материей (или бумагой) в 2 слоя.

2. Намотать проволоку поверх материи (не густо, материя должна просматриваться).

3. От каждого элемента выпустить медный проводок.

4. Обернуть элемент материей ещё раз и зафиксировать нитками.

Лайфхак. Электричество своими руками

5. Смочить подсоленной водой материю и поддерживать в мокром состоянии.

Один элемент выдаёт примерно 0,33 В. Для горения светодиода достаточно 5-ти элементов, для подзарядки телефона 13–14 шт.

Лайфхак. Электричество своими руками

Электричество будет вырабатываться, пока идёт реакция окисления, т.е. пока между разными металлами есть электролит (подсоленная вода). Если элемент высох, достаточно его смочить, и реакция возобновится, пока соляной раствор не разъест цинковое покрытие. В идеале лучше использовать полностью цинковые пластины.

Отдельные детали и соль можно взять с собой в поход или держать уже готовые элементы вместе со свечой на случай отключения электричества. При наступлении темноты останется только соединить их вместе и смочить.

Пневматическая зажигалка

Для работы понадобится:

  1. Стержень круглого сечения, возможно из мягкого металла (медь, алюминий) Ø 30 мм и длиной 200 мм.
  2. Стержень стальной Ø 10 мм и длиной 200 мм.
  3. Резиновые кольца из сантехнического набора.
  4. Х/б ткань, фольга.
  5. Доступ к токарному станку.
  1. Высверлить толстый стержень под диаметр тонкого + 1 мм (цилиндр).
  2. На тонком стержне (поршень) сделать канавки для компрессионных колец.
  3. Высверлить углубление на конце поршня.
  4. Установить резиновые кольца в канавки.
  5. Ткань завернуть в фольгу и прожечь на огне (трут).

Для того чтобы использовать зажигалку, нужно в углубление поршня уложить трут и вставить его в цилиндр. Затем резко приложить усилие вдоль оси поршня и извлечь его из цилиндра. Трут на конце будет тлеть и из него можно раздуть пламя. Именно этот эффект использован в дизельных двигателях.

Пневматическая зажигалка в действии на видео

Примеры, описанные выше, может быть и не имеют высокой практической ценности, но наглядно демонстрируют возможности получения альтернативной энергии для решения ежедневных задач. В следующих статьях мы рассмотрим другие способы реализации природной и магнитной энергии.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Научно – практическая конференция

Научно-исследовательская работа по теме:

Работа ученика 3А класса

Руководитель: Савкина Е.М.

Обоснование выбора темы. 4 стр.

Результат исследовательской работы………………………………………….12стр.

Дальнейшее развитие проекта……………………………………………………..13стр.

Данная работа представляет собой исследование в области получения электричества при химических реакциях.

В 1800 году Алессандро Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и показал, что по проволоке протекает электрический ток.

http://electronictriz.ru/Chapters/electroen.files/image007.jpg

В 1803 году русский физик Василий Петров создал самый мощный в мире вольтов столб, составленный из 4 200 медных и цинковых кругов и развивающий напряжение до 2 500 вольт. С помощью этого прибора ему удалось открыть такое важное явление, как электрическая дуга, применяемая в электросварке; а в Российской армии стал применяться электрический запал пороха и взрывчатки. В природе электрической дугой является молния во время грозы.

Вот уже более двух столетий идёт развитие гальванических элементов, их чаще называют батарейками. Сейчас широко распространены следующие гальванические элементы: солевые, щелочные, никелевые и литиевые.

Достоинства гальванических элементов: малый размер, большая электрическая ёмкость, относительная дешевизна.

Недостатки гальванических элементов: отсутствие возможности перезаряда, после разряда гальванический элемент становится бесполезным.

Обоснование выбора темы

Актуальность моей работы заключается в том, чтобы находить интересное и необычное рядом, в доступных для наблюдения и изучения предметах, а электричество очень важно для современного человека.

Гипотеза моего исследования:

Изучив состав гальванических элементов разного типа, я предположил, что из подручных материалов можно попробовать изготовить солевой элемент.

Цель моего исследования: Получить химический источник напряжения и запитать от него светодиод красного цвета.

Предмет исследования : химический источник напряжения.

Объект исследования : электрическая энергия.

узнать, что такое электрическая энергия, как её получают и как измеряют ее количество;

изготовить из подручных материалов электрическую батарейку и превратить электрическую энергию в видимый свет;

сделать вывод по полученным результатам;

Методы исследования:

Анализ научной литературы и газетных статей.

Использование Интернета в поиске информации.

План работы:

С помощью взрослых найти информацию о гальванических элементах:

Какими бывают гальванические элементы

Выбрать материалы, из которых можно изготовить гальванический элемент.

Подобрать дома доступные материалы и оборудование.

Познакомиться и использовать необходимые меры безопасности и защиты при проведении эксперимента.

Изготовить гальванический элемент и превратить электрическую энергию в видимый свет.

Проанализировать полученные результаты.

Выступление с презентацией.

Приложения : презентация.

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Если сказать проще, это обыкновенная батарейка.

На картинке мы видим три батарейки у которых разное напряжение (1,5 вольта, 3 вольта и 9 вольт) кроме того мы знаем что в электрической розетке напряжение 220 вольт. Мне стало интересно, что же такое напряжение, от чего оно зависит и как его измерить.

Электричество

На уроках окружающего мира мы изучали, что вещества состоят из молекул, а молекулы из атомов. Но оказывается, что атомы это далеко не самые мелкие частицы. В состав атома входят электроны, которые при определенных условиях и создают электрическое напряжение. Я выяснил, что скопление большого количества электронов в электроде образуют электрическое напряжение, чем больше скапливается электронов, тем больше получается напряжение. Для измерения напряжения существуют специальные приборы – вольтметры. Если в одном электроде электронов больше чем в другом, значит, между электродами существует напряжение и если соединить такие электроды проводником, то по проводнику электроны начнут перетекать так, чтобы в обоих электродах их стало поровну. Движение электронов в проводнике называют электрическим током.

Но как же заставить электроны перейти с одного электрода на другой, если они хотят, чтобы в обоих электродах их было всегда поровну. Как раз эту задачу выполняет химическая реакция.

Теперь изучив теоретический материал можно переходить к практической части проекта.

Для изготовления солевой батарейки нужны следующие вещества: цинк и медь из которых состоят сами электроды и раствор соли, в котором будет проходить реакция. Именно из за соли батарейка называется соляной.

С медью все оказалось просто она входит состав некоторых монет. У меня как раз оказалось несколько старинных пятикопеечных монет. Соль есть на любой кухне. А вот цинк найти не получилось. И мы решили его заменить на алюминиевую фольгу, которая используется в упаковках для продуктов, например шоколада или на монетку, в которой содержится никель. Кроме того мы поэкспериментируем с концентрацией соли, ведь у нас дома есть прибор с помощью которого можно измерять напряжение.

С одним электродом мы уже определились (это 5 копеек) проведем эксперимент по выбору второго электрода.

Это будут: монета с никелем (2 рубля), фольга от шоколада и фольга от упаковки чая (у неё с одной стороны фольга, а с другой бумага)

DSCF2355.jpg

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 61 человек(а).

Генерирование собственного электричества – лучшее, что вы можете сделать в борьбе за энергонезависимость. Это электричество вы можете использовать чтобы открывать ворота или гараж, включать наружное освещение, продавать в сеть и уменьшить свои расходы, заряжать автомобиль или даже полностью отключиться от общей сети. В этой статье описаны несколько отличных идей как этого добиться.

Изображение с названием Make Your Own Electricity Step 1

  • Панели должны быть направлены на юг к солнечному свету (на север в южном полушарии, вверх вблизи экватора). Угол наклона следует установить в зависимости от широты, на которой вы находитесь. Вы можете использовать панели в районах, которые солнечны большую часть года, а также в условиях сплошной облачности.
  • Фиксированные опоры можно устанавливать на отдельной структуре (в которой можно разместить аккумуляторы и контроллер заряда) или на существующей крыше. Их просто установить и обслуживать, если они расположены у земли и у них нет движущихся частей. Следящие опоры поворачиваются вслед за солнцем и более эффективны, но могут стоить дороже, чем просто добавить еще пару панелей на фиксированных опорах, чтобы компенсировать разницу. Это хитроумные механические приспособления, которые легко сломать и у них есть движущие части, которые изнашиваются со временем.
  • Только потому, что заявленная мощность солнечной панели 100 Ватт, это не означает, что она способна вырабатывать ее все время. Мощность будет определена тем как вы установите панель, погодой, или тем что сейчас зима и солнце не поднимается высоко надо горизонтом.

Изображение с названием Make Your Own Electricity Step 2

Начните с малого. Купите одну или две солнечные панели для начала. Их можно устанавливать поэтапно, так что вам не надо с самого начала тратить огромные суммы. Большинство систем для крыш могут быть расширены – вам надо обратить на это внимание при покупке. Купите систему, которая может расти вместе с вашими потребностями.

Изображение с названием Make Your Own Electricity Step 3

  • Постарайтесь составить бюджет расходов, связанных с поддержанием работоспособности системы в течение длительного периода времени. Вам следует избегать ситуаций, которые оставят вас без средств посреди проекта.

Изображение с названием Make Your Own Electricity Step 4

  • Свяжитесь с вашей энергопоставляющей компанией и спросите о системах, которые можно подключать в общую сеть. Возможно, они смогут предоставить льготы и подскажут, кого следует нанять, чтобы разместить ваш надежный источник электричества.

Изображение с названием Make Your Own Electricity Step 5

  • Вы можете использовать самодельную ветряную турбину, сделанную из старого автомобильного генератора при помощи чертежей доступных в Сети. Хоть это и не рекомендуется делать новичкам, но достижение приемлемых результатов возможно. Существуют недорогие готовые решения.
  • У ветровой энергии, однако, есть несколько недостатков. Возможно, вам придется установить турбины слишком высоко, чтобы они работали эффективно, и ваши соседи посчитают их неприятной частью пейзажа. Птицы могут их совсем не замечать ….. до момента, когда будет слишком поздно.
  • Для ветровой энергии нужен более-менее постоянный ветер. Открытые, пустые пространства подходят лучше всего, потому что на них находится минимальное количество препятствий для ветра. Ветровая энергия часто эффективна при использовании в качестве дополнения к системам солнечной и гидро энергии.

Изображение с названием Make Your Own Electricity Step 6

Изучите гидроэлектрические минигенераторы. Существуют различные виды технических решений от самодельного пропеллера, подсоединенного к автомобильному генератору, до запутанных инженерных систем повышенной надежности. Если у вас есть выход к воде, это может стать эффективным и автономным решением.

Изображение с названием Make Your Own Electricity Step 7

Попробуйте комбинированную систему. Вы всегда можете объединить любые из этих систем, чтобы получать энергию круглый год и в достаточном количестве для вашего дома.