Индукционные токи в быту сообщение

Обновлено: 30.06.2024

Практическое применение закона электромагнитной индукции Фарадея

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным — индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь силовые магнитные линии поля постоянного магнита. Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет электромагнитной индукции никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Только через обмотку статора электродвигателя пропускают электрический ток. Он индуцирует магнитный поток, влияющий на магнитное поле ротора. В результате возникают силы, раскручивающие вал двигателя. Смотрите по этой теме - Принцип действия и устройство электродвигателя

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника — величину пропускаемой мощности, рабочий ток.

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются в схеме зажигания люминесцентных ламп.

Конструктивная особенность магнитопровода у дросселя — разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. Индукционные печи широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

Радиовещание


Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Магнитотерапия


В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Синхрофазотроны


В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Расходомеры - счётчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока



В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

Трансформаторы


Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

Работа всех электрических машин основывается на явлении электромагнитной индукции. Иногда трудно себе представить, как такие машины способны работать.. Например, трансформатор – преобразует электрическую энергию одной величины в другую, при этом его обмотки не связаны друг с другом, фактически по воздуху.

Асинхронные двигателя, их принцип действия также объясняет явление электромагнитной индукции. Какой силой обладает вращающийся ротор, какие механизмы он способен приводить в действие. Напомню, ротор так же ни с чем не связан, он свободно вращается на подшипниках вокруг своей оси. Но от куда берется эта сила? Давайте копнем глубже и рассмотрим детально явление электромагнитной индукции.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов.

Явление электромагнитной индукции

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Майкл Фарадей

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей.

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.


Опыты, выполненные этим учёным, выглядят следующим образом:

  1. Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.
  2. В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.
  3. Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

Опыты Фарадея

При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов.


Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения.

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

  • источником движения электронов является переменное магнитное поле;
  • его наличие можно обнаружить по производимому воздействию на электрические заряды;
  • это поле не является потенциальным;
  • силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.



Применение грузоподъемных и крупномасштабных электромагнитов

Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.


Настоящее чудо техники — японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться. Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.

где применяют электромагниты

Закон электромагнитной индукции Фарадея

Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

Закон индукции Фарадея

Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

Закон Фарадея

количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее:
скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.
Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере.

Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

Электромагниты в повседневной жизни

Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.

Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.

Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.

где применяют электромагниты в быту











Правило Ленца

Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

Правило Ленца

Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх.

Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

Что такое электромагнит?

Электромагнит можно рассматривать как временный магнит, который функционирует с потоком электричества, и его полярность может быть легко изменена путем изменения направления тока. Также сила электромагнита может быть изменена путем изменения величины тока, протекающего через него.

Сфера применения электромагнетизма необычайно широка. Например, магнитные выключатели являются предпочтительными в использовании тем, что они менее восприимчивы к изменениям температуры и способны поддерживать номинальный ток без ложного срабатывания.

где можно применять электромангиты

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике.

Самоиндукция

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка.


В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину.

Индуктивность

Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).

Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.

На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Здесь использовались такие обозначения:

  • W – энергия магнитного поля;
  • L – индуктивность;
  • I – сила тока.

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества.

Применение электромагнитной индукции

Далее будут приведены несколько наиболее известных примеров:

  • радиовещание невозможно без использования явления электромагнитной индукции;
  • в медицине магнитотерапия является одним из эффективных методов лечения;
  • при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;
  • счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;
  • для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;
  • в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.


Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Где можно применять электромагниты в медицине?

Магнитно-резонансные томографы (МРТ) также работают с помощью электромагнитов. Это специализированный медицинский метод для обследования внутренних органов человека, которые недоступны для непосредственного обследования. Наряду с основным используются дополнительные градиентные магниты.

электромагниты мрт

Где применяют электромагниты? Они присутствуют во всех видах электрических устройств, включая жесткие диски, колонки, двигатели, генераторы. Электромагниты используются повсеместно и, несмотря на свою незаметность, занимают важное место в жизни современного человека.

индуктивности

Катушка индуктивности — это часть техники в цепи, используемые для самых разных функциональных возможностей. Например, их используют:

  1. Для накопления энергии;
  2. Для колебания контуров;
  3. Для ограничения тока.

Из-за широкого применения данный элемент часто встречается как в устройствах малой, так и на устройствах большой мощности. Сегодня рассмотрим, где используют такие элементы и как они функционируют.

Принцип функционирования

индуктивности

Итак, данные элементы представляют собой устройства со спиральными обмотками из изолированных проводников. Такие устройства обладают повышенной индуктивностью, что является их преимуществом с учётом меньшей ёмкости.

Некоторые работают с сердечником, некоторые нет. Сердечник сильно повысит индуктивность элемента. Кроме того, степень индуктивности зависит от материалов, из которых создан сердечник в устройстве. Сердечники бывают сплошными и разомкнутые, во втором случае в них есть зазоры.

индуктивности

Подробнее рассмотрим принцип работы устройства. При повышении индукции ток всё меньше отстаёт от изменения напряжений. При этом в цепях переменного тока токовые фазы не отстают от фазы напряжения. На этом и основана работа элементы: энергия может накапливаться, а ток может задерживаться в цепях.

Это означает следующее: в случае разрыва цепей с повышенной индукцией напряжение станет повышенным, образуя электрическую дугу. Если конструкция включает в себя полупроводниковые ключи, их пробьёт.

Чтобы этого не произошло, необходимо задействовать снабберную цепь. Её создают из резисторов и конденсаторов, устанавливая параллельным способом с ключом.

Как различаются катушки индуктивности

устройство индуктивности

Данные элементы цепей обладают большим количеством видов и типов, которые зависят от способа и целей их использования. Иногда их разделяют по частотам. Среди них можно выделить следующие виды:

  1. Устройства низкой частоты. Используют как дроссели в люминесцентных лампочках, трансформаторы (при этом все обмотки можно считать индуктивными катушками), как фильтр от магнитных помех. Сердечник создаётся из электротехнических сталей, либо обычно делают шихтованные сердечники из листов (для цепей с переменным током).
  2. Устройства высокой частоты. Используются в приёмниках радио, для усиления сигнала связи, в качестве накопления и сглаживания дросселей в блоках питания, работающих импульсно. Сердечник в этом варианте сделан из феррита.

От параметров устройства индуктивности зависит его особенности конструкции.

индуктивности

Намотки выполняют как в один, так и в несколько слоёв, приматывают к виткам или с расстоянием друг от друга. При этом различается даже расстояние: в зависимости от длины различают постоянные и прогрессивные шаги витков. От выбора вида наматывания и конструкции зависит конечный размер катушки.

Вариометр — это катушка, где индуктивность является переменной, она устроена немного иначе стандартных катушек.

Встречаются разные решения этого вида катушки:

  1. Иногда сердечники в них являются подвижными;
  2. Несколько обмоток располагают на едином сердечнике в последовательном соединении, индукция изменяется в зависимости от их размещения;
  3. Виток можно раздвинуть или сузить, от плотности намотки зависит понижение и повышение индуктивности.

Ротор является движущейся частью катушек. Статор неподвижной частью. Способы намоток тоже могут являться классификацией для катушек. Например, намотки в две стороны могут устранять помехи в сетях. Намотки по одной стороне устраняют помехи дифференциала.

Зачем используют

Как мы уже отмечали в нашей статье, катушки имеют очень широкое применение в электрических приборах. Ниже более подробно расскажем, где и в каких устройствах их используют. Катушка как дроссель. Чаще всего ограничивают ток. Применяют в следующих цепях:

  1. В устройстве для разжигания и обеспечения питанием газоразрядной лампы.
  2. Как фильтры от различных помех. Может фильтровать как электромагнитные помехи, так и акустические помехи. Всё зависит от того, где именно и на каком устройстве задействована катушка. На рисунке ниже катушка задействована для входа блока питания компьютера.
  3. Как фильтр для частоты. В звуковых системах динамиков и другой акустической аппаратуре.

Как ограничитель токов при коротких замыканиях на линиях электропередач тоже используют катушки в виде ограничивающих ток реакторов. При этом дроссели должны обладать пониженным сопротивлением, чтобы уменьшать нагрев.

Встречаются катушки контурного типа. При этом их применяют в электрических цепях вместе с конденсаторами. Частоты резонансов подбираются по частотам приёма и передач.

Катушка индуктивности как вариометр. Такие устройства можно настраивать. Могут очень точно настроить частоту. Встречаются в контурах колебаний.

Соленоиды имеют широкое распространение. Они активируют замок в автомобиле, где штоки втягиваются, когда на элемент подаётся напряжение.

Они бывают звонками, или устройствами клапанов, магнитами на грузоподъёмных машинах на промышленных предприятиях.

В качестве электромагнитов такие катушки задействованы:

  1. В реле.
  2. В контакторах.
  3. В пускателях.

таблица индуктивности

Обычно в таких ситуациях их называют не соленоидами, а обычными катушками. Используются в качестве рамочной и кольцевой антенны. При этом они передают радиосигнал.

Применяют в машинах, в искателях металла и других устройствах, где передаются сигналы на дистанции.

Характеристика элементов

К исключительным параметрам данного устройства относят следующие:

  • Обладают высокой индуктивностью;
  • Подходят под разные силы тока, на что нужно обращать внимание при использовании в разных устройствах;
  • Потеря сопротивления в проводниках, сердечниках, иных элементах;
  • Высокая эффективность в использовании;
  • Ёмкость витков может быть паразитной;
  • Индуктивность и её изменения влияют на температурные коэффициенты устройства;
  • Значения добротности могут зависеть от температуры.

Маркирование элемента

Как и во всех маркировках, для них используют маркирование буквами и цветом. Маркировка буквами имеет несколько различий.

Маркирование цветом распознаётся как цвет на резисторах.

Это основные моменты, которые стоит знать об их функционировании и использовании. Если Вы хотите расширить знания и получить больше информации о работах катушек индуктивности, советуем посмотреть несколько видео от экспертов.

Читайте также: