Химия в биологии сообщение

Обновлено: 18.05.2024

Химическая биология – это научная дисциплина, которая объединяет химию и биологию, используя химию и химические методы для изучения биологических систем. Основное различие между химической биологией и биохимия В том, что химическая биология включает в себя добавление новых химических соединений в биологическую систему, в то время как биохимия – это изучение химических реакций, которые естественным образом происходят внутри организмов. Примеры исследований химической биологии включают контроль деление клеток и другие клетка деятельность, используя небольшие молекулы в качестве мишеней для лечения и манипулирования стволовыми клетками.

История химической биологии

Все эти исследования произошли до того, как химическая биология стала отдельной областью от химии и биологии, но она помогла обеспечить основу для появления этой области. Химическая биология стала восприниматься как отдельная область в 20-м веке – этот термин получил широкое распространение только в 1990-х годах – и исследователи иногда все еще не могут описать, что именно это такое. Он включает в себя широкий спектр тем исследований, таких как энзимология, лекарственная химия, структурная биология и протеомика (изучение белков). Это также вовлекает большое сотрудничество между учеными, которые специализируются на биологии или химии.

Различия между химической биологией и биохимией

Химическая биология добавляет химические соединения в биологические системы, чтобы увидеть, как эти химические вещества влияют на клетки и ткани. Химические биологи часто синтезируют и добавляют новые соединения в клетки. Целью исследований химической биологии является разработка методов, которые в конечном итоге могут быть применены к клеткам в живых организм, такие как варианты лечения рака и других заболеваний. Биохимия, с другой стороны, все о химических процессах, которые уже происходят естественным образом в клетке. Вместо того, чтобы добавлять химические соединения в клетки, чтобы увидеть эффект, биохимические исследователи изучают химические реакции, которые происходят в организмах, и молекулярный состав этих соединений. Биохимики также склонны изучать более крупные молекулы, такие как белки и нуклеиновые кислоты в то время как химические биологи изучают более мелкие молекулы.

Примеры исследований химической биологии

управление митоз или деление клеток, является одной из важных целей исследований химической биологии. Деление клеток играет важную роль в процессе роста и развития клеток, а неконтролируемое деление клеток является непосредственной причиной рака, поэтому оно крайне важно в исследованиях по лечению рака. Одним из примеров соединения, которое может быть важным для лечения рака, является Monastrol, который нарушает деление клеток, влияя на активность белка, который является частью митотического веретена. Митотический веретен разделяет хромосомы во время деления клеток.

Другой областью исследований в области клеточной биологии является использование малых молекул для нацеливания на рецепторы клеточная мембрана, Этот тип лечения успешно используется для лечения эпилепсии и для контроля мочевого пузыря и других гладких мышц. Ученые работают над повышением эффективности препаратов, которые в настоящее время используются для лечения пациентов. Кроме того, ведутся исследования таких молекул, как антиоксиданты, которые можно вводить в клетки, чтобы предотвратить повреждение от свободных радикалов.

Карьера химической биологии


Химическая биология фокусируется на исследованиях, поэтому высшее образование в науке является обязательным, и многие химические биологи имеют докторскую степень. Биологи-химики могут специализироваться в области биологии или химии в качестве студентов, а некоторые школы предлагают химическую биологию в качестве студентов. Некоторые люди, которые продолжают заниматься химической биологией, могут также специализироваться в области биохимии в качестве студента, но важно помнить, что химическая биология и биохимия – это разные области, и что может иметь больше смысла заниматься биологией или химией, чем биохимией в зависимости от того, что интересы человека.

После получения степени бакалавра человек может работать в лаборатории в качестве техника-исследователя, помогая в работе на стенде и проводя эксперименты, разработанные главным исследователем лаборатории. Некоторые люди продолжают получать степень магистра по химической биологии. Люди со степенями магистра могут стать научными сотрудниками и руководителями лабораторий, а также нести большую ответственность за повседневные лабораторные работы. Они также могут внести больший вклад в эксперименты, которые проводятся в лаборатории. Чтобы стать главным исследователем в лаборатории, человеку требуется докторская степень, и, вероятно, он будет занимать одну или несколько постдокторских должностей. Затем их можно нанять в качестве профессора, где они будут заниматься и преподаванием, и исследованием, или получить должность в медицинской лаборатории.

Химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Процесс взаимодействия химии и биологии значительно усилился в начале XIX века, когда в составе химии образовались две самостоятельные научные дисциплины - неорганическая и органическая химия. Применительно к вопросу взаимодействия химии и биологии наибольший интерес представляет органическая химия.

Лишь постепенное развитие науки XIX века, приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, среди них вопросы о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Действительно, если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между собой во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды.

Таким образом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений.

Поэтому химии среди наук, изучающих жизнь, принадлежит основная роль. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключалось в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов.

Конечно, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия - наука об обмене веществ и химических процессов в живых организмах;

биоорганическая химия - наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.

Научными достижениями этого процесса стало определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах); установление биологических путей и циклов биосинтеза этих продуктов, был реализован их искусственный синтез, открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов в энергетике процессов клетки и вообще живых организмов.

Сейчас для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. Об этом следует поговорить подробнее.

Еще в XIX веке ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. Появится новое управление химическими процессами, где начнут применяться принципы синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. Здесь и возникли основы эволюционной химии как новой науки, пролагающей пути принципиально новой химической технологии, способной стать аналогом живых систем.

Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, то есть на предбиологической стадии эволюции, в настоящее время подтверждается многими данными. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет образования новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в данных химических реакциях важное значение приобретают каталитические процессы.

Роль этих процессов усиливается по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые напрямую связывают химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Иными словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем. Здесь, однако, следует помнить, что переход к простейшим формам жизни предполагает также особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалов для образования биологических систем. Такие элементы в химии получили название органогенов.

В результате такого подхода появилась информация об отборе химических элементов и структур, который оказался подобен биологической эволюции. В настоящее время химической наукой открыто 110 химических элементов. Большинство из них попадает в живые организмы и участвует в их жизнедеятельности. Однако основу жизнедеятельности организмов обеспечивает только шесть химических элементов-органогенов. Это углерод, водород, кислород, азот, фосфор и сера. Их суммарная весовая доля в структуре живого организма составляет 97,4%. За ними по степени важности следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биологических систем. Это натрии, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель. Их весовая доля в организме составляет 1,6%. Кроме того есть еще 20 элементов, которые участвуют в построении и функционировании отдельных узко-специфичных биосистем и весовая доля которых составляет около 1%. Все остальные элементы в построении биосистем практически не участвуют.

Общая картина химического мира также весьма убедительно свидетельствует об отборе элементов. В настоящее время химической науке известно около 8 млн. химических соединений. Из них подавляющее большинство (96%) составляют органические соединения, которые образованы на основе все тех же 6 - 18 элементов. А из остальных 95 - 99 химических элементов природа создала всего лишь 300 тысяч неорганических соединений. Из органогенов на Земле наиболее распространены кислород и водород. Степень распространенности углерода, азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и в общем невелика - около 0,24 весовых процента. В космосе безраздельно господствуют только два элемента - водород и гелий, а остальные элементы можно рассматривать только как добавки к ним.

Такая резкая диспропорция между органическими и неорганическими соединениями, а также исключительно дифференцированный отбор минимума органогенов не могут быть объяснены различной распространенностью химических элементов в космосе и на Земле.

Это означает, что определяющими факторами в отборе химических элементов при формировании органических систем, а тем более биосистем выступают условия соответствия этих элементов определенным требованиям:

1. Способность образовывать прочные и, следовательно, энергоемкие химические связи.

2. Эти связи должны быть лабильны (то есть способны к образованию новых разнообразных связей).

Вот поэтому углерод и отобран из многих других элементов как органоген номер один. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовывать их единство, выступать в качестве носителя внутреннего противоречия.

О том, как происходит отбор структур, каков его механизм, сказать довольно трудно. Но этот процесс оставил нам своего рода музей. Подобно тому, как из всех химических элементов только 6 органогенов да 10 - 15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции шел тщательный отбор химических соединений.

Из миллионов органических соединений в построении живого участвуют лишь несколько сотен, из 100 известных аминокислот в состав белков входит только 20, лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Сегодня ясно, что в ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Есть уже и некоторые выводы:

1. На ранних этапах химической эволюции мира катализ вовсе отсутствует. Условия высоких температур (более 5000 К), электрических разрядов и радиации, с одной стороны, препятствуют образованию конденсированного состояния, а с другой -с лихвой перекрывают те порции энергии, которые необходимы для преодоления энергетических барьеров.

2. Первые проявления катализа начинаются при смягчении условий и образовании первичных твердых тел.

3. По мере того, как физические условия приближались к земным, роль катализатора возрастала. Но общее значение катализа вплоть до образования более или менее сложных органических молекул все еще не могло быть высоким.

4. Роль катализа в развитии химических систем после достижения стартового состояния, то есть известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой.

Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

Тем самым А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Сегодня уже совершенно ясны перспективы создания и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.

План семинарского занятия (2 часа)

1. Химия как наука. Структура химии.

2. Взаимосвязь химии и физики. Тепловой эффект химической реакции.

3. Проблема химического элемента. Реакционная способность вещества.

4. Структурная химия, ее современные задачи.

5. Учение о химическом процессе. Катализ.

6. Эволюционная химия. Связь химии и биологии. Теория А.П.Руденко.

Темы докладов и рефератов

1. Рассказ об открытии редких химических'элементов.

2. Новые материалы в химии и возможность их применения.

1. Будрейко Н.А. Философские вопросы химии. М., 1970.

2. Васильева Т. С/, Орлов В.В. Химическая форма материи. М., 1983.

3. Данцев А. А. Философия и химия. Ростов-на-Дону, 1991.

4. Кузнецов В.И. Диалектика развития химии. М., 1973.

5. Кузьменко Н.Е., Еремин В.В. Химия. Ответы на вопросы. М., 1997.

6. ПиментелДж., КунродДж. Возможности химии сегодня и завтра. М., 1992.

7. Помер 3. Химия на пути в третье тысячелетие. М., 1982.

8. Соловьев Ю.И. Эволюция основных теоретических проблем химии. М., 1971.

9. Соловьев Ю.И., Курашов В.И. Химия на перекрестке наук. М., 1989.

Общеизвестно, что химия и биология долгое время шли каж­дая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией про­изошло в результате создания А.М. Бутлеровым теория хими­ческого строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Поступательное развитие науки XIX в., приведшее к рас­крытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами прак­тические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере хи­мических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Если посмотреть на обмен веществ в организме с чисто хи­мической точки зрения, как это сделал А.И. Опарин, мы уви­дим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи ре­акций. И этот порядок закономерно направлен, к постоянно­му самосохранению и самовоспроизведению всей живой систе­мы в целом в данных условиях окружающей среды.

Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реа­гировать на изменения внешней среды, связаны с определен­ными комплексами химических превращений.

Значение химии среди наук, изучающих жизнь, исклю­чительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемогло­бина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена струк­тура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процес­сов, функций живого лежат химические механизмы. Все

функции и процессы, происходящие в живом организме, ока­зывается возможным изложить на языке химии, в виде кон­кретных химических процессов.

Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистиче­ским упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по срав­нению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, воз­никшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих жи­вые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиа­ционная биология.

Ныне для химии особенно важным становится примене­ние биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее со­вершенных механизмов и процессов. На этом пути есть уже определенные достижения.

Более столетия назад ученые поняли, что основой исклю­чительной эффективности биологических процессов являет­ся биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые дале­ко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойства­ми, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рам­ках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в не­органическом мире сталкиваются с серьезными ограничени­ями. Пока речь может идти только о моделировании некото­рых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а так­же частично-практического применения выделенных фермен­тов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермен­та, клетки и даже организма.

Теория саморазвития элементарных открытых каталитиче­ских систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах хи­мической эволюции, об отборе элементов и структур и их при­чинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой самораз­витие каталитических систем и, следовательно, эволюцио­нирующим веществом являются катализаторы. В ходе реак­ции происходит естественный отбор тех каталитических цен­тров, которые обладают наибольшей активностью. Самораз­витие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформи­руемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развива­ющиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и ору­дием отбора наиболее прогрессивных эволюционных измене­ний катализаторов.

Развивая эти взгляды, А.П. Руденко сформулировал ос­новной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых проис­ходит максимальное увеличение его абсолютной активности.

В настоящее время уже видны перспективы возникнове­ния и развития новой химии, на основе которой будут созда­ны малоотходные, безотходные и энергосберегающие промыш­ленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в буду­щем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химически­ми, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразовате­лей, использующих с большим КПД солнечный свет, превра­щая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производ­стве химики наметили рад перспективных путей.

Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объек­ты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

Второй путь заключается в моделировании биокатализа­торов. В настоящее время за счет искусственного отбора струк­тур удалось построить модели многих ферментов характери­зующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей просто­той строения.

Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта реша­ется чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь.

Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизо­ванных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорб­ции, которая и превращает их в гетерогенный катализатор и обес­печивает его стабильность и непрерывное действие.

Четвертый путь в развитии исследований, ориентиро­ванных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталити­ческого опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важней­шее место в создании химии будущего.

Заключение

Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, посто­янно развивающейся системой знаний, имеющей свое место в ряду других естественных наук.

Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движе­ния материи. Хотя структурно она пересекается в определен­ных областях и с физикой, и с биологией, и с другими есте­ственными науками, но сохраняет при этом свою специфику.

Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественно­научной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных со­единений. Этот комплекс принято характеризовать как хи­мическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации мате­рии. Для возникновения химической связи характерно зна­чительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвя­занных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолеку­лярных взаимодействий.

Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быст­рым развитием фундаментальных, комплексных и приклад­ных исследований, ускоренной разработкой новых материа­лов с заданными свойствами и новых процессов в области технологии производства и переработки веществ.

Литература

1. Большой энциклопедический словарь. Химия. М., 2001.

2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998.

3. Концепции современного естествознания. Под. ред. В.Н. Лавриненко, В.П. Ратникова. М., 1997.

4. Кузнецов В.И. Общая химия. Тенденции развития. М., 1989.

5. Кузнецов В.И., Идлис ГМ., Гутина В.Н. Естествознание. М., 1996.

6. Молин Ю.Н. О роли физики в химических исследования. Методологические и философские проблемы химии. Но­восибирск, 1981.

7. Химия//Химический энциклопедический словарь. М., 1983.

Эталон единицы силы электрического тока: Эталон – это средство измерения, обеспечивающее воспроизведение и хранение.


Этот видеоурок посвящён рассмотрению растительной и животной клетки, химическому составу клетки. В уроке приведена классификация веществ в клетке на органические и неорганические, показана их биологическая роль.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Химия и биология"

На уроках биологии мы часто сталкиваемся с химическими веществами и химическими реакциями. Например, клетка животных и растений имеет схожий химический состав. Так, в растительной и животной клетке содержатся такие неорганические вещества, как вода и минеральные соли, а также органические вещества: белки, жиры, углеводы и витамины.


Основная масса живой клетки приходится на воду. Вода в клетке играет большую роль: обеспечивает упругость клетки, доставляет клетке необходимые вещества, удаляет ненужные продукты распада, участвует в процессах превращения одних веществ в другие.

Химические явления, или химические реакции, – это превращения одних веществ в другие.

Например, химическим явлением является и всем известный процесс фотосинтеза, при котором на свету из углекислого газа и воды образуется глюкоза и кислород. Однако этот процесс невозможен без хлорофилла, который содержится в зелёных листьях растений.

Если зелёный листок поместить в пробирку, залить его спиртом, а затем нагреть пробирку на пламени спиртовки, то через некоторое время спирт окрашивается в изумрудно-зелёный цвет.


Для того, чтобы определить процентное содержание веществ в зелёном растении, можно провести следующий эксперимент. Взять 100 грамм петрушки, высушить её в течение 5–7 дней, из неё уйдёт вода. Массу воды, которая была в петрушке, можно узнать, если взвесить высушенное растение. Для этого следует из 100 грамм вычесть массу высушенной петрушки, получим 85 грамм. Сухой остаток нужно прокалить в муфельной печи. При этом из сухого вещества уйдут органические вещества. Если взвесить остаток после прокаливания, то он составит 3 грамма. Это масса негорючих минеральных солей. Значит, в петрушке было 12 грамм органических веществ и 3 грамма неорганических.


Кроме воды, в растениях есть и органические вещества, такие как жиры. Жиры делят на жидкие и твёрдые. Жидкие жиры – это растительные жиры, а твёрдые жиры – это животные жиры.

Жидкий жир называют ещё растительным маслом. Масло может быть подсолнечным, оливковым, кукурузным, льняным и другим.


Сливочное масло также состоит их жиров, но животного происхождения. Сливочное масло получают из коровьего молока. К жирам животного происхождения относят свиное сало, говяжий, бараний жир и другое.


Жиры входят в состав любых живых организмов. Они дают организмам энергию, выполняют роль резервного запаса энергии.

Доказать наличие жиров в растениях очень просто. Для этого следует положить на лист белой бумаги семечку подсолнечника и раздавить её. На бумаге образуется жирное пятно.

Особую группу растительных масел занимают эфирные масла. Именно они придают такой неповторимый запах цветам, ягодам, фруктам и плодам.

Доказать наличие эфирных масел в растении очень просто. Если согнуть корочку апельсина и выдавить небольшое количество эфирного масла на пламя спиртовки, то наблюдается небольшой фейерверк. На самом деле эфирные масла – это горючие органические вещества.


Кроме жиров, в состав растений входят ещё и углеводы. К углеводам относят глюкозу, или виноградный сахар, фруктозу, или фруктовый сахар, сахарозу, которую называют в быту просто сахаром, а также лактозу, которая придаёт сладкий вкус молоку животных. Все эти углеводы хорошо растворимы в воде. Однако в природе встречается углевод, который не растворим в воде. Это целлюлоза. Крахмал также является углеводом, который не растворяется в воде, а набухает.

Доказать наличие крахмала в продуктах питания можно при помощи следующего эксперимента. Из муки и небольшого количества воды можно сделать тесто. Следует поместить кусочек теста в марлю и промыть в стакане воды. Вода в стакане становится мутной, если в неё добавить несколько капель йодной настойки, то появляется сине-фиолетовое окрашивание, так как в муке содержится крахмал.


К органическим веществам, которые содержатся в живых организмах, относятся и белки. Белки – это особая группа веществ, которая играет важную роль в живых организмах. Так, они участвуют в построении клеток и тканей, являются гормонами, ферментами, выполняют защитные функции и ряд других функций.

Поэтому для нормального существования живого организма требуются углеводы, жиры и белки, вода и минеральные соли.

Есть ещё одна очень важная группа веществ – это витамины. Впервые предположение о существовании витаминов высказал врач-педиатр Н. И. Лунин в 1880 году.


Всем вам известен такой витамин, как витамин С, или аскорбиновая кислота. Этим витамином богаты фрукты и овощи. Витамин С можно также обнаружить с помощью настойки йода.

Если взять таблетку аскорбиновой кислоты и растворить её в воде, а затем добавить несколько капель йодной настойки, то наблюдается обесцвечивание йода, так как аскорбиновая кислота обесцвечивает йод.


Обзор

Кукурбитурил по форме напоминает тыкву (семейство Cucurbitaceae)

Автор
Редакторы


Спонсор конкурса — дальновидная компания Thermo Fisher Scientific.

Научный поиск и взаимодействие

Получается, что такие специфические свойства живого, как рост, размножение, подвижность, возбудимость и способность реагировать на изменения внешней среды связаны с комплексом химических превращений, протекающих в живой клетке. Поэтому химия играет особую роль среди наук, изучающих жизнь. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения , определена структура нуклеиновых кислот и т.д. Главная мысль заключается в том, что в основе всех биологических процессов лежит именно химия.

В мире создано множество научных центров, ведущих исследования в области физико-химической биологии. Странами-лидерами в этой области являются США, Великобритания, Франция, Германия, Швеция, Дания, Россия и другие. В нашей стране научные центры расположены в Москве и Подмосковье (Пущино, Обнинск, Черноголовка), Санкт-Петербурге, Новосибирске, Красноярске, Владивостоке и других городах.

О молекуле кукурбитуриле

Кукурбитурилы по внешнему виду напоминают бочку

Рисунок 1. Кукурбитурилы по внешнему виду напоминают бочку

Химические комплексы в воображении химиков

Почему же так важно помещать одни молекулы внутрь других? Дело все в том, что такие соединения могут использоваться для моделирования разнообразных биохимических процессов, таких как:

Но что же нужно сделать, чтобы одна молекула зашла в другую? Для этого пришлось разработать специальные методы получения таких комплексов (рис. 3). В случае прямого метода синтеза ученые исходят из кукурбит[n]урилов и комплексов металлов с полиаминными лигандами. Этот метод работает для комплексов рутения и золота. Соединение рутения с этилендиамином в кукурбитуриле напоминает бабочку в клетке (рис. 2а), а золота с диэтилентриамином — веер, удобно расположенный в шкатулке (рис. 2б).

Специальные методики, разработанные для получения соединений включения

Рисунок 3. Специальные методики, разработанные для получения соединений включения.

Молекулы кукурбитурила в кристаллической структуре

Наши соединения обладают важным свойством: они растворимы в воде. Именно это делает их перспективными с точки зрения изучения поведения в растворах, а также доставки нерастворимых молекул в нужную точку организма. Соединения никеля и кобальта с цикленом были приготовлены по той же методике, заключающейся во взаимодействии комплекса металла с предварительно включенным в полость большой молекулы лигандом. Здесь комплексы никеля и кобальта подобны шляпке в коробочке (рис. 2в).

Биология и химия неразрывно связаны друг с другом, и их связь определяет изрядную часть научного прогресса. Переплетение методов обеих наук обоюдно обогащает их. Даже на примере одной молекулы становится очевидным, что научный прорыв невозможен без сотрудничества различных дисциплин.

Читайте также: