Физика в жизни человека сообщение

Обновлено: 05.07.2024

  • Участник:Федаева Анна Владимировна
  • Руководитель:Гусарова Ирина Викторовна

1)Выяснить, как физика влияет на жизнь человека и сможет ли современный человек прожить без её применения;

2) Показать необходимость физических знаний для повседневной жизни и познания самого себя;

3) Проанализировать, насколько человек интересуется физикой в 21 веке.

Введение

Человека, как высшую ценность нашей цивилизации, изучает ряд научных дисциплин: биология, антропология, психология и другие. Однако создание целостного представления о феномене человека невозможно без физики. Физика является лидером современного естествознания и фундаментом научно-технического прогресса, а оснований для этого достаточно. Физика в большей мере, чем любая из естественных наук, расширила границы человеческого познания. Физика дала в руки человека наиболее мощные источники энергии, чем резко увеличила власть человека над природой. Физика является сейчас теоретическим фундаментом большинства основных направлений технического прогресса и областей практического использования технических знаний. Физика, ее явления и законы действуют в мире живой и неживой природы, что имеет весьма важное значение для жизни и деятельности человеческого организма и создания естественных оптимальных условий существования человека на Земле. Человек – элемент физического мира природы. На него, как и на все объекты природы, распространяются законы физики, например, законы Ньютона, закон сохранения и превращения энергии и другие. Поэтому, на мой взгляд, затронутая тема является чрезвычайно актуальной для современного человека.

Обоснование выбора проекта: мы каждый день, не замечая этого, соприкасаемся с физикой. Мне стало интересно, а, как и где мы соприкасаемся с физикой в быту или на улице.

Цели и задачи моей работы:

  1. Выяснить, как физика влияет на жизнь человека и сможет ли современный человек прожить без её применения.
  2. Показать необходимость физических знаний для повседневной жизни и познания самого себя
  3. Проанализировать, насколько человек интересуется физикой в 21веке.

Центростремительная сила

Вот мальчик вращает камень на веревке. Он крутит этот камень все быстрее, пока веревка не оборвется. Тогда камень полетит куда-то в сторону. Какая же сила разорвала веревку? Ведь она удерживала камень, вес которого, конечно, не менялся. На веревку действует центробежная сила, отвечали ученые еще до Ньютона.

Еще задолго до Ньютона ученые выяснили, для того, чтобы тело вращалось, на него должна действовать сила. Но особенно хорошо это видно из законов Ньютона. Ньютон был первым ученым, кто систематизировал научные открытия. Он установил причину вращательного движения планет вокруг Солнца. Силой, вызывающей это движение, оказалась сила тяготения.

Раз камень движется по окружности, значит, на него действует сила, изменяющая его движение. Ведь по инерции камень должен двигаться прямолинейно. Эту важную часть первого закона движения иногда забывают.

Движение по инерции всегда прямолинейно. И камень, оборвавший веревку, также полетит по прямой линии. Сила, исправляющая путь камня, действует на него все время, пока он вращается. Эта постоянная сила называется центростремительной слой. Приложена она к камню.

Но тогда, по третьему закону Ньютона, должна появиться сила, действующая со стороны камня на веревку и равная центростремительной. Эта сила и называется центробежной. Чем быстрее вращается камень, тем большая сила должна действовать на него со стороны веревки. Ну и, конечно, тем сильнее камень будет тянуть — рвать веревку. Наконец ее запаса прочности может не хватить, веревка разорвется, а камень полетит по инерции теперь уже прямолинейно. Так как он сохраняет свою скорость, то может улететь очень далеко.

Проявление и применение

Если у вас есть зонтик, та вы можете перевернуть его острым концом в пол и положите в него, например кусочек бумаги или газеты. Затем сильно раскрутите зонтик.

Вы удивитесь, но зонтик выкинет ваш бумажный снаряд, перемещая его от центра к раю обода, а затее и вовсе наружу. То же самое произойдет, если вы положите предмет потяжелее, например детский мячик.

Рычаг

Доменико Фетти. Задумавшийся Архимед. 1620 г. Уже в V тысячелетии до н. э. в Месопотамии использовали принцип рычага для создания равновесных весов. Древние механики заметили, что, если установить точку опоры ровно под серединой качающейся дощечки, а на ее края положить грузы, вниз опустится тот край, на котором лежит более тяжелый груз. Если же грузы будут одинаковы по весу, дощечка примет горизонтальное положение. Таким образом, опытным путем было обнаружено, что рычаг придет в равновесие, если к равным его плечам приложить равные усилия. А что, если сместить точку опоры, сделав одно плечо более длинным, а другое коротким? Именно так и происходит, если длинную палку подсунуть под тяжелый камень. Точкой опоры становится земля, камень давит на короткое плечо рычага, а человек на длинное. И вот чудеса! тяжеленный камень, который невозможно оторвать от земли руками, поднимается. Значит, чтобы привести в равновесие рычаг с разными плечами, нужно приложить к его краям разные усилия: большее усилие к короткому плечу, меньшее к длинному. Этот принцип был использован древними римлянами для создания другого измерительного прибора безмена. В отличие от равновесных весов, плечи безмена были разной длины, причем одно из них могло удлиняться. Чем более тяжелый груз нужно было взвесить, тем длиннее делали раздвижное плечо, на которое подвешивалась гиря. Конечно, измерение веса было лишь частным случаем использования рычага. Куда более важными стали механизмы, облегчающие труд и дающие возможность выполнять такие действия, для которых физической силы человека явно недостаточно. Знаменитые египетские пирамиды и по сей день остаются самыми грандиозными сооружениями на Земле. До сих пор некоторые ученые выражают сомнение в том, что древним египтянам было под силу возвести их самостоятельно. Пирамиды строили из блоков весом около 2,5 т, которые требовалось не только перемещать по земле, но и поднимать наверх.

Статическое электричество

Если же рассматривать данный эффект с физической стороны, то это явление характеризуется потерей предметом внутреннего баланса, который вызван утратой (или приобретением) одного из электронов. Проще говоря – это самопроизвольно образующийся электрический заряд, возникающий из-за трения поверхностей друг о друга.

Причиной этому служит соприкосновение двух различных веществ самого диэлектрика. Атомы одного вещества отрывают электроны другого. После их разъединения каждое из тел сохраняет свой разряд, но при этом разность потенциалов растёт

Применение статического электричества в быту

Электричество может быть вашим хорошим помощником. Но для этого следует досконально знать его особенности и умело использовать их в нужном направлении. В технике применяют различные способы, которые основываются на следующих особенностях. Когда маленькие твёрдые либо жидкие частицы веществ попадают под воздействие электрического поля, то они притягивают ионы и электроны. Происходит накапливание заряда. Их движение продолжается уже под воздействием электрического поля. В зависимости от того, какое использовать оборудование, можно при помощи этого поля осуществлять различное управление движением данных частиц. Всё зависит от процесса. Такая технология стала часто применяться в народном хозяйстве.

Покраска

Окрашиваемые детали, которые перемещаются на контейнере, например, детали машины, заряжают положительно, а частицы краски – отрицательно. Это способствует быстрому их стремлению к деталям. В результате такого технологического процесса формируется очень тонкий, равномерный и достаточно плотный слой краски на поверхности предмета.

Частицы, которые были разогнаны электрическим полем, с большим усилием ударяются о поверхность изделия. Благодаря этому достигается высокая насыщенность красочного слоя. При этом расход самой краски существенно уменьшается. Она остаётся только на самом изделии.

Электрокопчение

Создание ворса

Для того чтобы в электрическом поле образовался ворсяной слой на любом виде материала, его заземляют, а на поверхность наносят слой клея. Потом сквозь специальную заряженную сетку из металла, которая располагается над данной плоскостью, начинают пропускать ворсинки. Они очень быстро ориентируются в данном электрическом поле, что способствует их равномерному распределению. Ворсинки опускаются на клей чётко перпендикулярно плоскости материала. При помощи такой уникальной технологии удаётся получить различные покрытия, схожие с замшей или даже бархатом. Такая методика позволяет получить различные разноцветные рисунки. Для этого используют ворс разной окраски и специальные шаблоны, помогающие создать определенный узор. Во время самого процесса их прикладывают поочерёдно на отдельные участки самой детали. Таким способом очень легко получить разноцветные ковры.

Сбор пыли

В чистоте воздуха нуждается не только сам человек, но ещё и очень точные технологические процессы. Из-за наличия большого количества пыли всё оборудование приходит в негодность раньше своего срока. Например, засоряется система охлаждения. Улетающая пыль с газами – это очень ценный материал. Обусловлено это тем, что очистка различных промышленных газов сегодня крайне необходима. Сейчас данную проблему очень легко решает электрическое поле. Как это работает? Внутри трубы из металла находится специальная проволока, играющая роль первого электрода. Вторым электродом служат её стенки. Благодаря электрическому полю, газ в нём начинает ионизироваться. Ионы, заряженные отрицательно, начинают присоединяться к частицам дыма, который поступает вместе с самим газом. Таким образом, происходит их заряд. Поле способствует их движению и оседанию на стенках трубы. После очищения газ движется на выход. На крупномасштабных ТЭС удаётся уловить 99 процентов золы, которая содержится в выходящих газах.

Смешивание

Благодаря отрицательному либо положительному заряду мелких частиц, получается их соединение. Частички при этом распределены очень равномерно. К примеру, при производстве хлеба не нужно совершать трудоёмкие механические процессы, чтобы замесить тесто. Крупинки муки, которые предварительно заряжают положительным зарядом, поступают при помощи воздуха в специально предназначенную камеру. Там происходит их взаимодействие с водными каплями, заряженными отрицательно и уже содержащими дрожжи. Они притягиваются. В результате получается однородное тесто.

Заключение

При изучении физики в школе надо больше внимания уделять вопросам практического применения физических знаний в быту. В школе следует знакомить учащихся с физическими явлениями, лежащими в основе работы бытовых приборов. Особое внимание надо уделять вопросам возможного негативного воздействия бытовых приборов на организм человека. На уроках физики учащихся надо учить пользоваться инструкциями к электроприборам. Перед тем, как позволить ребёнку пользоваться бытовым электроприбором, взрослые должны убедиться в том, что ребёнок твёрдо усвоил правила безопасности при обращении с ним. Для того чтобы избежать большинство неприятных бытовых ситуаций нам необходимы физические знания!

Физика наука точная и сложная. Поэтому возникает вопрос, есть ли кому в 21 веке продвигаться в этой науке дальше, изучать её более глубже и уделять особое внимание?

Думаю что скамья запасных еще не опустела, есть множество ВУЗов с факультетами изучающими этот предмет, а значит и людей которые занимаются данной наукой, конечно не каждому хочется связать свою жизнь именно с физикой, но при получении образования или уже выбора профессии физика может являться весомым фактором, которая определит кем тебе быть в дальнейшем. Ведь физика – одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке.

Ты когда-нибудь задумывался, насколько на Земле, в нашей Солнечной системе, Галактике и мире вообще все взаимосвязано и взаимодействует? Какая наука занимается исследованием этих взаимосвязей, явлений природы, движения и взаимного влияния одних тел на другие? Эта наука — физика!

Помогает строить дома

строительство дома

Знание законов физики помогает создать такой проект здания, благодаря которому оно будет надежно стоять на земле и не падать. Знание природных явлений позволяет выбрать строительные материалы, которые наименее подвержены пагубному воздействию тепла, света и воды. Изучение вибрации помогает создавать специальные конструкции, которые в состоянии противостоять таким природным катаклизмам, как землетрясения и ураганы.

Помогает перемещаться

движется поезд

Благодаря знанию физических законов стало возможным не только перемещение на различных видах транспорта, но и постоянное увеличение их скорости и повышение безопасности. Создавая скоростные спортивные машины или сверхскоростные пассажирские экспрессы, инженеры максимально учитывают все физические явления и силы взаимодействия между объектами.

Помогает общаться

общение по телефону

Физика помогает нам общаться друг с другом. Телевидение, телефоны, компьютеры и Интернет были бы просто невозможны без знания физических явлений. Если бы не физика, нам бы до сих пор пришлось писать письма на бумаге и отправлять их наземной почтой, при этом подолгу дожидаясь ответа.

Помогает следить за состоянием здоровья

ренген

Физика внесла огромный вклад в развитие медицины. Благодаря открытию рентгеновских лучей появилась возможность выявления различных заболеваний внутренних органов человека и обнаружения переломов костей.

Измерение давления крови, ультразвуковые исследования, электрокардиограмма, лечение электрическими токами и магнитными полями, использование лазеров и оптических приборов — вот далеко не полный список применения величайших достижений физики в медицине.

На самом деле переоценить важность физики в повседневной жизни практически невозможно. Ведь физика везде: начиная с жилища и телефона и заканчивая реактивными лайнерами и полетами в космос. Вещи, которые нас окружают, — компьютеры, автомобили, бытовая техника, Интернет — настолько прочно вошли в нашу жизнь, что мы не обращаем на них никакого внимания. А все-таки следует помнить, что все блага цивилизации стали возможными благодаря научным открытиям, в том числе и в области физики.

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!


Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.


Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?


Мы уже писали, что в каждом гуманитарии может обнаружиться и технарь, но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, - механику.

Движение, скорость, ускорение.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.


Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.


Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Сила тяготения, импульс и другие полезности.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.


Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?


Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?


Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




Физика человека


Автор работы награжден дипломом победителя II степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Физика – одна из основных наук о природе.

На уроках физики мы часто рассматриваем физические явления и законы, в основном связанные с неживой природой, а о живой говорим мало. Но живая природа тоже уникальна, и здесь действуют все законы физики.

Насекомые передвигаются, скользя по глади воды, и не тонут, так как их вес не преодолевает силу поверхностного натяжения воды. Многие перелетные птицы во время длительных путешествий выстраиваются в клин, чтобы уменьшить силу трения о воздух и силу сопротивления.

А что уж говорить о самом человеке? Он – часть природы. В нем самом и в его действиях много физический явлений.

Я решил подтвердить гипотезу о том, что на организм человека действует большое количество сил, как внешних, так и внутренних.

Цель работы: научиться применять законы физики для объяснения законов и процессов, протекающих в организме человека, и исследовать свои физические характеристики.

- осуществить подбор и анализ материала, отвечающего на вопрос: какие физические явления и процессы играют важную роль в жизни человека;

- опираясь на знания, полученные в этом учебном году, провести ряд опытов, раскрывающих физические характеристики моего организма;

- сделать выводы по полученным результатам.

- теоретический (сбор и изучение материала в различных источниках: литература, Интернет-ресурс);

- эмпирический (измерения, расчет физических данных).

Предмет исследования:физические характеристики организма человека.

Объект исследования: мой организм.

Практическая значимость работы заключается в том, что знание личных физических характеристик имеет значение для определения резерва физического здоровья человека. Также не менее важно знать, какие физические законы объясняют процессы, протекающие в организме.

Результаты моей работы актуальны и представляют интерес для людей, которые интересуются физикой, и стремятся познать себя, свой организм, своё тело с точки зрения физики.

1. Физика человека

2. Рассмотрим основные процессы жизнедеятельности человека и попробуем объяснить их с точки зрения физики.

1.1. Силы, действующие на человека

Если рассматривать человека как объект изучения физики, то можно увидеть, что многие привычные нам действия подчиняются ее законам.

Любое движение, упражнение, положение тела осуществляется при взаимодействии сил, оказывающих действие на тело человека. Эти силы подразделяют на внешние и внутренние.

Внешние – это силы, действующие на человека извне, при взаимодействии его с внешними телами (земля, гимнастические снаряды, любые предметы). Наибольшее значение для движений человека имеют сила тяжести, сила реакции опоры и сила сопро­тивления среды. Спортсмены, выполняя упражнения со штангой, учитывают силу тяжести, направленную вниз. Если бы не существовало трения, человек не мог бы ходить и бегать: нога, которой произво­дится отталкивание, скользила бы назад, и перемещение тела было бы невозможно (нечто подобное наблюдается при ходьбе по сколь­зкому льду). Сила сопротивления среды действует на тело человека при его движениях в воздушной или водной среде. Уменьшают тормозящее влияние среды принимая наиболее выгодную (обтекаемую) форму тела.

Внутренние силы возникают внутри тела человека при взаи­модействии частей тела. Основная активная внутренняя сила — сила сокра­щения мышц.

Если силы, действующие на тело, уравновешены, то оно на­ходится в покое; если же их равнодействующая не равна нулю, то тело перемещается в направлении этой равнодействующей.

Каж­дая из сил может быть движущей или тормозящей. Например, сила тяжести при движении вниз является движущей силой, а при дви­жении вверх — тормозящей. Сила попутного ветра, например, при ходьбе — движущая сила, а сила встречного вет­ра — тормозящая.

Для человека также характерна инерция. Ее типичным случаем являются прыжки. В начале прыжка тело человека находится под действием силы, развиваемой мышцами ног. Пока они не отрываются от поверхности земли. После этого никакого двигательного усилия уже не нужно. Тело движется вперед, преодолевая сопротивление воздуха и силу тяжести, исключительно вследствие инерции.

Человек может развивать большую силу, если будет двигаться с ускорением. Следовательно, чем лучше разогнаться, тем дальше будет прыжок.

На примере человека можно проследить все виды деформации.

Деформацию сжатия испытывают позвоночный столб, нижние конечности, покровы ступней; растяжения – верхние конечности, связки, сухожилия; изгиба – позвоночник, кости таза; кручения – шея при повороте головы, туловище в пояснице при повороте, кисти рук при вращении и др. (Приложение 1).

Деформация характерна и для мышц человека. Мышечная ткань обладает свойством растягиваться и сокращаться, ей присущи эластичность и упругость. В теле человека насчитывается около 600 мышц.

Центр тяжести существует у любого тела (Приложение 2).

Почему человек, несущий груз на спине, наклоняется вперед? Груз изменяет положение центра тяжести, и человек, находящийся в неустойчивом положении наклоняется, чтобы вертикаль, проходящая через центр тяжести, прошла через центр опоры.

Почему трудно стоять на одной ноге? Площадь опоры мала. Поэтому человеку, стоящему на одной ноге, трудно удержать равновесие.

Почему при ходьбе люди размахивают руками? Когда человек перемещает ногу вперед, вперед смещается и центр тяжести. Чтобы сохранить первоначальное положение центра тяжести, руку отводят назад, такое чередование повторяется при каждом шаге.

1.4. Рычаги в теле человека

В скелете человека все кости, имеющие некоторую свободу движения, являются рычагами. Например, кости конечностей, нижняя челюсть, череп, фаланги пальцев.

Рука представляет собой совершенный рычаг, точка опоры которого находится в локтевом суставе (Приложение 3). Под действием силы рычаг – рука поднимает груз, находящийся на ладони. Чтобы удержать груз, необходимо усилие мышцы, в десять раз превышающую величину груз.

Почему вытянутой рукой нельзя удержать такой же груз, как согнутой? Если вы подняли гирю в несколько килограммов и держите её на весу, то с точки зрения механики мы совершили работу только при поднятии груза, но держать гирю на весу не легче, чем поднять её вверх, хотя работа равна нулю. Это объясняется тем, что мышцы, приводящие в движении руки или ноги, способны к быстрым сокращениям, но каждое сокращение длится малое время. Сокращение мышцы вызывается сигналом, поступающим к ней по нервам головного мозга. Если длительное время держать груз на весу, такие сигналы непрерывно друг за другом поступают к мышце. Когда приходит очередной сигнал, мышца сокращается, но тут же сама по себе расслабляется до получения следующего сигнала. В результате груз, который мы держим, испытывает малые колебания вверх и вниз. Рука дрожит, что особенно заметно, если гирю держать достаточно долго. Скелетные мышцы не способны удерживать груз в строго определенном положении. При периодическом поднятии груза на малые расстояния работа будет совершаться. Поэтому рука устает, не только когда мы поднимаем груз, но и когда держим его на весу.

Одни из самых сильных мышц у человека те, что расположены по обе стороны рта и отвечают за сжатие челюстей. Они способны развивать усилие до 700 H. Согласно исследованиям у плачущего человека задействованы 43 мышцы лица, в то время как у смеющегося всего 17. Таким образом смеяться энергетически выгодно.

Строение и форма мышц зависит от той работы, которую приходится им чаще всего выполнять. Сила, развиваемая мышцей, является геометрической суммой сил отдельных волокон. Поэтому, чем толще мышца, тем она сильнее,  например, икроножная мышца. Она может поднять груз массой до 130 кг.

Если бы все мышцы человека напрягались, они бы вызвали силу давления, примерно равную 250 кН.

1.5. Движение крови

Сосуды пронизывают все участки нашего тела (Приложение 4). Кровь течет по ветвям артерий до капилляров. Их общая длина около 100 тыс. км.

Сердце – это насос, нагнетающий кровь в артериальную систему. Оно работает в импульсном режиме. Во время каждого импульса, длящегося примерно 0,25 с, сердце выталкивает в аорту около 0,1 л крови. Удивительный двигатель в среднем за сутки сокращается 100 тыс. раз и перекачивает при этом 10 тыс. литров крови. Вследствие насосной функции сердца в сосудах создается постоянное давление крови. Кровь течет по ним из области высокого давления в область низкого.

Пища, находясь в полости рта человека, проталкивается в глотку, а затем к пищеводу мышечными сокращениями языка. Затем происходит сокращение мышц пищевода, и пища проходит в желудок. Роль смазки в данном процессе играет слюна. Она обволакивает пищу, тем самым уменьшая силу трения, возникающую при ее движении по пищеводу.

А как мы пьем? При питье мы расширяем грудную клетку, под давлением наружного воздуха жидкость устремляется в то пространство, где давление меньше, и таким образом проникает в наш рот. Итак, строго говоря, мы пьем не только ртом, но и легкими.

1.7. Диффузия в организме человека. Дыхание

В процессе всасывания пищи большую роль играет диффузия - взаимное проникновение молекул одного вещества в другое.

Наибольшее всасывание происходит в тонких кишках, стенки которых приспособлены для этого. Площадь внутренней поверхности кишечника человека равна 0,65 м 2 . Она покрыта ворсинками - микроскопическими образованиями слизистой оболочки высотой 0,2 – 1 мм, за счет чего площадь реальной поверхности кишечника достигает 4 – 5 м 2 , то есть в 2-3 раза больше площади поверхности всего тела.

Дыхание – это перенос кислорода из окружающей среды внутрь организма сквозь его покровы, тоже является примером диффузии. В дыхании у человека принимает участие вся поверхность тела. Особенно интенсивно дышит кожа на груди, спине и животе.

Однако, во всем дыхательном процессе участие кожи ничтожно по сравнению с лёгкими. При вдохе объем грудной клетки и легких увеличивается, при этом в них понижается давление, и воздух через нос и горло входит в легочные пузырьки. При выдохе объем грудной клетки и легких уменьшается. Давление в легочных пузырьках увеличивается, и воздух с избыточным содержанием углекислого газа выходит из легких наружу.

Сколько воздуха мы вдыхаем?

При каждом вдохе человек вводит в свои легкие около поллитра воздуха. В минуту мы делаем в среднем 18 вдыханий. Значит, за одну минуту в нашем теле успевает побывать 9 литров воздуха. Это составляет в час 540 л. За сутки человек вдыхает около 12 кубометров воздуха. Но, если принять в расчет, что вдыхаемый воздух состоит на 4/5 из бесполезного для дыхания азота (Приложение 5), то оказывается, что наше тело потребляет кислорода около 8 кг, то есть примерно столько же по весу, сколько и пищи (твердой и жидкой).

2. Исследовательская часть: определение физических показателей моего организма

Для расчета физических показателей моего организма с помощью напольных весов и ростомера я измерил свои рост и вес:

- мой рост – 171 см

- масса тела – 47 кг.

2.1. Определение объема тела

Объем тела я определял двумя способами:

1) по объему вытесненной воды.

Для этого в ванну была налита вода и отмечен ее уровень. Затем я полностью погрузился в воду и отметил новый уровень. После этого емкостью известного объема (банкой) долил воду до отмеченного второй раз уровня. Объем долитой воды равен объему моего тела.

Читайте также: