Эхолокация в живой природе сообщение

Обновлено: 02.07.2024

О голосах птиц, животных говорить не приходится: каждый человек слышал их много раз, иногда с наслаждением, иногда с тревогой. В работе орнитолога и зоолога XIII века Ф. Гогенштауфена уже содержались интересные сведения о строении слуховой системы некоторых пернатых. Укажем лишь, что сейчас птичьи голоса иногда используются в практических целях. Так, чтобы предотвратить столкновение птиц с самолетами (для которых такие столкновения могут оказаться губительными), транслируют через мощный репродуктор записи криков ужаса самих птиц, и эти крики отпугивают пернатых от трассы самолета. Известен опыт воспроизведения записей тех же птичьих голосов для того, чтобы отгонять полчища насекомых от посевов или садов.

Совсем другое дело - голоса обитателей моря. Конечно, замечание древнеримского писателя Элиана о возможности их звукового общения было забыто, и даже великий акванавт Жак-Ив Кусто, до времени не интересовавшийся подводной акустикой, назвал одну из своих первых книг о глубинах океана "Миром безмолвия" (впоследствии он, правда, пользовался уже определением "Мир без солнца"). Чувствительные гидрофоны, совершенная звукоанализирующая аппаратура позволили в наше время морским биоакустикам в короткий срок ликвидировать отставание от их коллег, занимающихся акустикой воздушной и наземной фауны.

Теперь и вопрос начинают ставить по-иному: а много ли вообще есть представителей подводной фауны, не прибегающих к звуковой связи, ведь звук распространяется в воде значительно лучше, чем электромагнитные волны . Изучены характер и назначение издаваемых подводными живыми существами звуковых сигналов. Они в общем-то имеют такое же происхождение и назначение, как и у наземных живых существ: это сигналы призыва, агрессии ("боевой клич"), оборонительные. В период нереста звуковая активность рыб возрастает - pppa.ru. Азовский бычок, например, исполняет целые нерестовые песни. Нерестовые звуки напоминают кваканье, верещание, скрип, они активизируют самок, которые начинают двигаться в сторону источника звука. У амфибий идентифицирован такой сложный сигнал, как сигнал самки, отметавшей икру и предупреждающей самца о том, чтобы он не тратил напрасно, по выражению биологов, "репродуктивный потенциал". Как видим, звуковое общение в данном случае содействует реализации мудрого закона природы о сохранении каждого биологического вида.

Определенную биологическую информацию несут звуки движения некоторых рыб; при питании возникают подводные звуки, связанные с захватом и перетиранием пищи. В РФ выпущены обширные атласы звуков, издаваемых различными обитателями подводного мира.

Исследователям понадобилось достаточно длительное время, чтобы определить характер и расположение слухового органа (или группы органов) у рыб. Рецепторы звука, как правило, находятся в голове рыбы, но у некоторых рыб (например, трески) слуховое восприятие возможно с помощью так называемой боковой линии тела. Как похожи разработанные человеком еще в 30-е годы прошлого столетия системы шумопеленгаторных приемников по бортам корабля на боковую рецепторную линию рыб!

Обнаружены два типа слуховых аппаратов: аппараты, не имеющие связи с плавательным пузырем, и аппараты, в составе которых есть плавательный пузырь. Пузырь действует подобно резонатору, и у рыб со слуховым аппаратом второго типа слух более чувствителен.

Чувствительность слуха у человека на различных частотах определяется достаточно просто. Интенсивность звука данной частоты медленно увеличивают. При определенной интенсивности человек говорит: "слышу". Пороговая чувствительность слуха на этой частоте определена. А как подаст рыба сигнал о том, что она слышит данный звук? Американские ученые, изучая подводный звук, определяли момент начала восприятия звука акулой по реакции ее сердечной мышцы. Максимальной была чувствительность слуха акулы в области частот 20-160 герц, причем интересно, что слуховые пороги по звуковому давлению, колебательному смещению и колебательной скорости частиц среды у акулы менялись в значительно большей степени, чем у человека.

У тюленей выявлены не только высокая способность к звукоимитации, но и музыкальный слух. Группе подопытных тюленей спели часть народной песни жителей Гебридских островов. Один из тюленей чистым контральто повторил мелодию.

Изучению живых звуков моря в значительной мере содействовало широкое распространение различных подводных аппаратов. В нашей стране начало было положено подводной лодкой "Северянка", отслужившей свой воинский срок и переоборудованной затем для глубоководных исследований. Велико было удивление экипажа лодки, когда, попав в стаю сельди, он обнаружил, что эта небольшая рыба может издавать довольно интенсивные звуки высокого регистра! Новые подводные аппараты - буксируемые, автономные - погружаются на глубины, недоступные подводной лодке прошлого поколения. И здесь гидронавтам открываются, среди прочих, и новые акустические феномены.

Говоря о звуках обитателей моря, мы до сих пор имели в виду прежде всего практическую цель - возможность их обнаружения и отлова. Но есть еще один аспект, связанный уже не с практикой, а скорее с психологией. Представим себе на мгновение лес без птичьего пения. Трудно, тоскливо человеку в таком мертвом лесу. Можно понять, почему свободные от вахты подводники во время длительных автономных плаваний без выхода на поверхность вдруг сгрудятся у рубки гидроакустика, попросят его дать хоть немного послушать, что делается за бортом. Крикам косаток моряки радуются так же, как они радовались бы птичьим песням в лесу, в поле, в саду. И чем ближе будет человек к веку гидрокосмоса, чем более глубокие горизонты моря он будет обживать, тем больше будет ценить звуки морских обитателей, нарушающие зловещую тишину черных морских пучин.

Теперь впору поговорить и о более сложных звуковых сигналах в животном мире, сигналах, связанных с приемом отраженного эха. Здесь орнитологи и зоологи, исследующие надводную фауну, опередили, в силу естественных причин, морских биоакустиков. Уже достаточно давно было показано, что летучие мыши пользуются эхолокационным аппаратом для поиска пищи в вечернее время. Позже были установлены количественные характеристики локационных сигналов различных семейств летучих мышей - подковоносов, ушанов, длиннокрылое, нетопырей, трубконосов. У последних частота заполнения сигналов наибольшая, она достигает 160 килогерц, то есть почти в десять раз превышает верхнюю граничную частоту области слышимости человеческого уха. При этой частоте длина звуковой волны в воздухе не превышает 2 миллиметров, поэтому летучая мышь способна обнаруживать насекомых совсем малых размеров.

Восхищаясь изощренным аппаратом активной звуколокации, энтомологи долгое время не обращали внимания на то, что тела бабочек, на которых охотятся летучие мыши, покрыты волосами. Оказалось, что этот волосяной покров в определенной степени поглощает высокочастотные ультразвуковые сигналы охотящихся летучих мышей, и последним труднее обнаружить свою добычу. Дальше - больше. Совсем недавно обнаружили, что существуют виды бабочек, которые могут испускать сигналы той же частоты, что и ведущие поиск летучие мыши. Своими помехами бабочки сбивают преследователей с курса. Как не вспомнить системы активных помех радио- и гидролокационным станциям. Человек был уверен в своем приоритете в области активной радио- и гидролокационной защиты самолетов и кораблей, но природа в лице маленьких бабочек опередила его!

Некоторые другие птицы - стрижи-саланганы, таинственные гуахаро (южноамериканский козодой) также обладают способностью к эхолокации. Их эхолокационный аппарат не столь совершенен, как у летучей мыши, но все же позволяет им ориентироваться в пространстве. Для стрижей это важно ввиду большой скорости полета, а для гуахаро, обитающего в пещерах, - из-за трудности перемещения в вечной темноте.

И, наконец, дельфины. С точки зрения "живой эхолокации" это, несомненно, венец природы. Они способны "автоматически" уменьшать продолжительность сигналов (посылок) и интервалы между сигналами при приближении к цели, что содействует точному наведению на нее. Жировая подушка и выемка соответствующей формы в передней части головы образуют линзу - концентратор излучаемой звуковой энергии, причем сектор, в котором излучаются и принимаются звуковые сигналы, может меняться - pppa.ru. Частотная модуляция сигнала позволяет дельфину "отстроиться от помех" и облегчает распознавание особенностей отражающего объекта. Дельфины могут с помощью эхолокации оценивать форму отражающего тела, его размеры (с точностью до нескольких миллиметров), степень отражения звука от него. Их локатор - многоцелевой, то есть если в локационном поле дельфина находится несколько отражающих объектов, то все они фиксируются. Некоторые исследователи приписывают дельфину способность сканирования пространства звуковым пучком, то есть как бы построчного считывания эхолокационной картины на довольно далеком расстоянии впереди.

Еще несколько десятилетий назад биоакустика представляла собой как бы архипелаг отдельных островков знаний. Сейчас она развилась в сложную, технически вооруженную область биологии и бионики. Дальнейшее изучение голосов птиц, животных, рыб укрепит в человеке уважение к "малым сим", будет содействовать сохранению мира живой природы.

Содержание

История

Открытие эхолокации связано с именем итальянского естествоиспытателя Ладзаро Спалланцани. Он обратил внимание на то, что летучие мыши свободно летают в абсолютно тёмной комнате (где оказываются беспомощными даже совы), не задевая предметов. В своём опыте он ослепил несколько животных, однако и после этого они летали наравне со зрячими. Коллега Спалланцани Ж. Жюрин провёл другой опыт, в котором залепил воском уши летучих мышей, — и зверьки натыкались на все предметы. Отсюда учёные сделали вывод, что летучие мыши ориентируются по слуху. Однако эта идея была высмеяна современниками, поскольку ничего большего сказать было нельзя — короткие ультразвуковые сигналы в то время ещё было невозможно зафиксировать [1] .

Впервые идея об активной звуковой локации у летучих мышей была высказана в 1912 году Х. Максимом. Он предполагал, что летучие мыши создают низкочастотные эхолокационные сигналы взмахами крыльев с частотой 15 Гц [1] .

Об ультразвуке догадался в 1920 году англичанин Х. Хартридж, воспроизводивший опыты Спалланцани. Подтверждение этому нашлось в 1938 году благодаря биоакустику Д. Гриффину и физику Г. Пирсу. Гриффин предложил название эхолокация (по аналогии с радиолокацией) для именования способа ориентации летучих мышей при помощи ультразвука [1] .

Эхолокация у животных

Животные используют эхолокацию для ориентации в пространстве и для определения местоположения объектов вокруг, в основном при помощи высокочастотных звуковых сигналов. Наиболее развита у летучих мышей и дельфинов, также её используют землеройки, ряд видов ластоногих (тюлени), птиц (гуахаро, саланганы и др.).

Происхождение эхолокации у животных остаётся неясным; вероятно, она возникла как замена зрению у тех, кто обитает в темноте пещер или глубин океана. Вместо световой волны для локации стала использоваться звуковая [1] .

Данный способ ориентации в пространстве позволяет животным обнаруживать объекты, распознавать их и даже охотиться в условиях полного отсутствия света, в пещерах и на значительной глубине.

Среди членистоногих эхолокация обнаружена только у ночных бабочек совок. [2]

Техническое обеспечение эхолокации



Эхолокация может быть основана на отражении сигналов различной частоты — радиоволн, ультразвука и звука. Первые эхолокационные системы направляли сигнал в определённую точку пространства и по задержке ответа определяли её удалённость при известной скорости перемещения данного сигнала в данной среде и способности препятствия, до которого измеряется расстояние, отражать данный вид сигнала. Обследование участка дна таким образом при помощи звука занимало значительное время.

Сейчас используются различные технические решения с одновременным использованием сигналов различной частоты, которые позволяют существенно ускорить процесс эхолокации.

Что такое эхолокация? Определение и примеры

Навык в основном предназначен для животных, ведущих ночной образ жизни, глубоко роющих норы или живущих в глубинах океанов. Поскольку они живут или охотятся в районах с минимальным освещением или полной темнотой, они стали меньше полагаться на зрение, вместо этого они используют звук для создания мысленного образа своего окружения. Мозг животных, который эволюционировал, чтобы понимать эти эхо, улавливает определенные звуковые характеристики, такие как высота звука, громкость и направление, чтобы ориентироваться в окружающей среде или находить добычу.

Следуя аналогичной концепции, некоторые слепые люди смогли приучить себя использовать эхолокацию, щелкая языком.

Как работает эхолокация?

Чтобы использовать эхолокацию, животное сначала должно создать какой-то звуковой импульс. Обычно звуки состоят из высоких или ультразвуковых писков или щелчков. Затем они прислушиваются к эхо излучаемых звуковых волн, отражающихся от объектов в их среде.

Летучие мыши и другие животные, использующие эхолокацию, специально настроены на свойства этого эха. Если звук возвращается быстро, животное знает, что объект находится ближе; если звук более сильный, оно знает, что объект больше. Даже высота эха помогает животному составлять карту своего окружения. Объект, движущийся по направлению к нему, создает более высокий тон, а объекты, движущиеся в противоположном направлении, приводят к более низкому возвращающемуся эхо.

Исследования сигналов эхолокации обнаружили генетическое сходство между видами, которые используют эхолокацию. В частности, косатки и летучие мыши, имеют общие специфические изменения в наборе из 18 генов, связанных с развитием ганглиев улитки (группа нейронных клеток, ответственных за передачу информации от уха в мозг) (1).

Эхолокация теперь предназначена не только для природы. Современные технологии позаимствовали концепцию таких систем, как гидролокатор, используемый для навигации подводных лодок, и ультразвук, используемый в медицине для отображения изображений тела.

Эхолокация животных

Исследования социальной коммуникации летучих мышей показывают, что летучие мыши используют эхолокацию, чтобы реагировать на определенные социальные ситуации, а также различать пол или индивида. Дикие летучие мыши-самцы иногда различают приближающихся летучих мышей исключительно на основании их эхолокационных сигналов, производя агрессивные вокализации в отношении других самцов и ухаживания после того, как услышали эхолокационные призывы самок (2).

Зубатые киты, такие как дельфины и кашалоты, используют эхолокацию, чтобы перемещаться по темным мутным водам глубоко под поверхностью океана. Эхолоцирующие дельфины и киты испускают ультразвуковые щелчки через носовые ходы, посылая звуки в морскую среду, чтобы определять местонахождение и различать объекты на близком или дальнем расстоянии.

Эхолокация человека

Это вспыхивает. Вы действительно получаете непрерывное видение, как если бы вы использовали вспышки, чтобы осветить затемненную сцену. Это приобретает четкость и фокусировку с каждой вспышкой, что-то вроде трехмерной нечеткой геометрии. Это в 3D, это имеет трехмерную перспективу, и это ощущение пространства и пространственных отношений. У вас есть глубина структуры, у вас есть позиция и размер. У вас также есть довольно сильное чувство плотности и текстуры, которые, если хотите, похожи на вспышки гидролокатора.

Что такое эхолокация и где ее применяют?

Нередко мы слышим о каких-то новых или уже привычных изобретениях, которые были созданы величайшими умами человечества, и начинаем восхищаться, каким невероятным образом им удалось совершить действительно стоящее открытие. Практически всегда мы основываемся именно на силах природы и на законах физики, это открытие для многих. В обычных и вполне обыденных явлениях окружающей действительности скрывается невероятный источник знаний и идей, которые можно применять ежедневно для улучшения качества жизни человека. Например, связь звука и эхолокации доказала, что даже без зрения можно жить полноценно.

эхолокация звук

Что такое эхолокация?

Смотрите видео о том, что такое эхо и эхолокация.

Принцип работы

На самом деле здесь все очень просто и разобраться со сложными на первый взгляд нюансами действительно не составит даже незнающему человеку никакого труда.

Например, в пустом помещении очень хорошее эхо лишь потому, что отталкиваться там особо не от чего, поэтому волны просто возвращаются назад. А в плотно обставленной комнате все наоборот – объектов настолько много, что волну буквально бросает от одного угла помещения к другому. Можно сравнить эхолокацию с частотой.

эхолокация частота

Для эхолокации важен период, когда волна отправилась в свободное путешествие, но еще не вернулась. Чем дольше возвращение сигнала, тем дальше расстояние до предмета. Данное правило применяется в эхолокации очень часто.

Эхолокация у животных

Другие примеры животных-эхолокаторов:

  • дельфины;
  • землеройки;
  • акулы;
  • киты.

На примере их жизнедеятельности можно догадаться или предположить, где применяется эхолокация.

Эхолокация и её применение

Самый интересный для мужской половины населения вопрос касается применения эхолокации в технике. В особенности это довольно-таки актуальный вопрос для любителей охоты и рыбалки. Недаром практически каждый рыбак-любитель буквально мечтает о таком нужном и полезном приборе, как эхолот. С его помощью всегда можно следить за тем, что творится на дне и делать процесс ловли рыбы в разы эффективнее и, безусловно, приятнее. Кто не хочет вернуться к семье с хорошим уловом?

Применяется эхолокация в военном деле, в промышленности, в технике. Приборов, позволяющих производить какие-либо манипуляции с использованием данного физического явления, очень много, и каждый из них помогает людям особых профессий трудиться производительнее и эффективнее.

эхолокация где применяется

Где используется эхолокация?

Самые основные отрасли и отделы ее применения уже были рассмотрены в предыдущем пункте, поэтому сейчас лучше поговорить чуть более конкретно и разобрать специальные устройства, используемые во всевозможных областях человеческой деятельности.

  1. Эхолот – самый популярный прибор из всех представленных, часто приобретается рыболовами для изучения дон водоемов, а в частности рельефов, что помогает избежать неприятных ситуаций в процессе рыбной ловли.
  2. Гидролокатор – устройство, которое применяют для непосредственного обнаружения предметов под толщей воды.
  3. Ультрасонограф – при его помощи врачи имеют возможность рассмотреть внутренние органы пациента и их состояние.
  4. Толщинометр – применяется в промышленности для определения толщины покрытий.
  5. Дефектоскоп – аналогично с толщинометром используется в промышленности для того, чтобы выявить дефекты производства.

Как вы считаете, технология эхолокации изучена уже полностью и все из нее уже выжато? Может быть это еще перспективная сфера? Оставьте свое мнение в комментариях! А также смотрите видео о том, как работает эхолокатор.

Читайте также: