Сочинение на тему тепловой двигатель

Обновлено: 30.06.2024

2.2 Устройство и разновидности двигателей внутреннего сгорания.

4. Список литературы.

Внутренней энергией обладают все тела – земля, камни, облака. Однако извлечь их внутреннюю энергию довольно трудно, а порой и невозможно. Наиболее легко на нужды человека может быть использована внутренняя энергия лишь некоторых, образно говоря, "горючих" и "горячих" тел. К ним относятся: нефть, уголь, горячие источники вблизи вулканов, теплые морские течения и т.п. Рассмотрим один из примеров использования превращения внутренней энергии названных тел в механическую энергию.

Я поставил перед собой задачу изучить историю создания и развитие двигателей внутреннего сгорания. Подробнее изучить строение и разновидности двигателей внутреннего сгорания. Рассмотреть принцип работы двигателей внутреннего сгорания.

Актуальность данной темы заключается в том, что двигатели внутреннего сгорания играют важную роль в жизни человечества.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно: они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Несмотря на то, что двигатели внутреннего сгорания являются весьма несовершенным типом тепловых машин (низкий КПД, громкий шум, токсичные выбросы, меньший ресурс) благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) двигатели внутреннего сгорания очень широко распространены, например на транспорте.

История создания и развития.

Двигатель внутреннего сгорания(двс) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.

Создали двигатель внутреннего сгорания в середине 19 века, когда на транспорте безраздельно царствовала паровая машина. В то время для освещения улиц стали применять светильный газ. Свойство нового топлива натолкнула изобретателей на мысль, что поршень в цилиндре может перемещать не пар, а газовая смесь. На вопрос о том, как воспламенить эту смесь помогло ответить ещё одно техническое достижение – индукционная катушка получения электрической искры.

Первый практически пригодный газовый Д. в. с. был сконструирован французским механиком Этьеном Ленуаром (1822-1900) в 1860 г. КПД этого двигателя составляло всего 3,3%. В 1876 немецкий изобретатель Николаус Август Отто (1815-1891) построил более совершенный 4-тактный газовый Д. в. с. По сравнению с паромашинной установкой Д. в. с. принципиально более прост, т. к. устранено одно звено энергетического преобразования - парокотельный агрегат. Это усовершенствование обусловило большую компактность Д. в. с., меньшую массу на единицу мощности, более высокую экономичность, но для него потребовалось топливо лучшего качества (газ, нефть).

Разновидности и строение двигателей внутреннего сгорания.


По методу осуществления газообмена ДВС подразделяются на двухтактные и четырёхтактные. Рабочий цикл четырехтактного двигателя совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала. Первый такт – впуск. Второй такт – сжатие. Третий такт – рабочий ход. Четвертый такт – выпуск.

Рабочий цикл двухтактного карбюраторного Двигателя внутреннего сгорания осуществляется за два хода поршня или за один оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам четырёхтактного Двигателя внутреннего сгорания. При равных условиях двухтактный двигатель должен быть в два раза более мощным, чем четырёхтактный, т. к. рабочий ход в двухтактном двигателе происходит в два раза чаще, однако на практике мощность двухтактного карбюраторного Двигателя внутреннего сгорания часто не только не превышает мощность четырёхтактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже. Это обусловлено тем, что значительную часть хода (20%-35%) поршень совершает при открытых клапанах, когда давление в цилиндре невелико и двигатель практически не производит работы.

По типу и способу воспламенения горючей смеси различают дизельные и карбюраторные двигатели. Дизельные двигатели работают на воспламенении топлива в воздушной среде. Горючая смесь воспламеняется за счет повышения температуры воздуха при сжатии в цилиндрах и распыления топлива форсунками. Дизели также способны развивать большую мощность. Кроме того, КПД дизелей достигает 35-40 % , что заметно выше, чем КПД карбюраторных двигателей: 25-30 %.

В карбюраторных двигателях горючую смесь приготавливают в карбюраторе и воспламеняют ее в цилиндрах электрической искрой. Примером карбюраторного Двигателя внутреннего сгорания может служить двигатель ГАЗ-21 "Волга" . Это четырёхцилиндровый четырёхтактный двигатель, развивающий мощность 55 кВт (75 л.с.) при 4000 об/мин

По способу образования горючей смеси используют двигатели с внутренним и внешним смесеобразованием. Внутреннее смесеобразование осуществляется в дизелях, воздух всасывается отдельно и насыщается распыленным дизельным топливом внутри цилиндров перед воспламенением.

Внешнее смесеобразование применяют при бензиновом и газовом топливах. Всасываемый двигателем воздух смешивается с бензином или газом в карбюраторе или смесителе до попадания горючей смеси в цилиндры.

По способу охлаждения известны двигатели с жидкостным и воздушным охлаждением.

Двигатели с жидкостным охлаждением обеспечивают более равномерный режим работы при колебании температуры наружного воздуха и их предпочитают на многих базовых машинах. В качестве охлаждающей жидкости применяют воду или антифризовые жидкости, которые замерзают при более низких температурах (до минус 40 о С).

Двигатели с воздушным охлаждением обдуваются потоком воздуха, нагнетаемого вентилятором в обребренные поверхности цилиндров.

Основным преимуществом Двигателей внутреннего сгорания, так же как и др. тепловых двигателей (например, реактивных двигателей), перед двигателями гидравлическими и электрическими является независимость от постоянных источников энергии (водных ресурсов, электростанций и т. п.), в связи с чем установки, оборудованные Двигателями внутреннего сгорания, могут свободно перемещаться и располагаться в любом месте. Это обусловило широкое применение Двигателей внутреннего сгорания на транспортных средствах (автомобилях, строительно-дорожных машинах, самоходной военной технике и т. п.).

Основные составные ДВС.

Двигатели внутреннего сгорания представляют собой сложный агрегат, включающий ряд узлов и систем.

Остов двигателя - группа неподвижных деталей, являющихся базой для всех остальных механизмов и систем. К остову относятся блок-картер, головка (головки) цилиндров, крышки подшипников коленчатого вала, передняя и задняя крышки блок-картера, а также масляный поддон и ряд мелких деталей.

Механизм движения - группа движущихся деталей, воспринимающих давление газов в цилиндрах и преобразующих это давление в крутящий момент на коленчатом валу двигателя. Механизм движения включает в себя поршневую группу (поршни, шатуны, коленчатый вал и маховик).

Механизм газораспределения служит для своевременного впуска горючей смеси в цилиндры и выпуска отработавших газов. Эти функции выполняют кулачковый (распределительный) вал, приводимый в движение от коленчатого вала, а также толкатели, штанги и коромысла, открывающие клапаны. Клапаны закрываются клапанными пружинами.

Система смазки - система агрегатов и каналов, подводящих смазку к трущимся поверхностям. Масло, находящееся в масляном поддоне, подаётся насосом в фильтр грубой очистки и далее через главный масляный канал в блок-картере под давлением поступает к подшипникам коленчатого и кулачкового валов, к шестерням и деталям механизма газораспределения. Смазка цилиндров, толкателей и других деталей производится масляным туманом, образующимся при разбрызгивании масла, вытекающего из зазоров в подшипниках вращающихся деталей.

Система питания осуществляет приготовление горючей смеси из топлива и воздуха в пропорции, соответствующей режиму работы, и в количестве, зависящем от мощности двигателя. Система состоит из топливного бака, топливоподкачивающего насоса, топливного фильтра, трубопроводов и карбюратора, являющегося основным узлом системы.

Система зажигания служит для образования в камере сгорания искры, воспламеняющей рабочую смесь. В систему зажигания входят источники тока - генератор и аккумулятор, а также прерыватель, от которого зависит момент подачи искры. В то время, когда Двигатели внутреннего сгорания не имели электрического зажигания, применялись запальные калоризаторы.

Система пуска состоит из электрического стартёра, шестерён передачи от стартёра к маховику, источника тока (аккумулятора) и элементов дистанционного управления.

Система впуска и выпуска состоит из трубопроводов, воздушного фильтра на впуске и глушителя шума на выпуске.

Такт – это процесс, происходящий в цилиндре за один ход поршня.

Ход поршня S - путь, проходимый поршнем от одной мертвой точки до другой.

Мертвыми точками называются крайние верхнее и нижнее положения поршня, где его скорость равна нулю. Верхняя мертвая точка сокращенно обозначается в.м.т., нижняя мертвая точка – н.м.т.

Рабочий объем цилиндра Vр - объем, освобождаемый поршнем при движении от в.м.т. до н.м.т.

Литраж – рабочий объем всех цилиндров двигателя.

Объем камеры сгорания Vc - объем, образующийся над поршнем, когда последний находится в в.м.т.

Полный объем цилиндра Vп - это его рабочий объем плюс объем камеры сгорания.

Индикаторная мощность – мощность, развиваемая расширяющимися газами при сгорании топлива в цилиндрах двигателя (без учета потерь).

Эффективная мощность – мощность, получаемая на маховике коленчатого вала. Она на 10 – 15% меньше индикаторной из-за потерь на трение в двигателе и приведение в движение его вспомогательных механизмов и приборов.

Литровой мощностью называется эффективная наибольшая мощность, получаемая с одного литра рабочего объема (литража) цилиндрического двигателя.

Принцип работы ДВС.

Рабочий цикл четырехтактного двигателя совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала.

Первый такт – впуск. При движении поршня от в.м.т. (вниз) вследствие увеличения объема в цилиндре создается разрежение, под действием которого из карбюратора через открывающийся впускной клапан в цилиндр поступает горючая смесь (паров бензина с воздухом). В цилиндре горючая смесь смешивается с оставшимися в нем от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь.

Второй такт – сжатие. Поршень движется вверх, при этом оба клапана закрыты. Так как объем в цилиндре уменьшается, то происходит сжатие рабочей смеси. Смесь сжимается, температура смеси в конце сжатия составляет 200-400°C.

Третий такт – рабочий ход. В конце такта сжатия рабочая смесь воспламеняется электрической искрой и быстро сгорает (за 0,001 – 0,002 с ). При этом происходит выделение большого количества тепла и газы, расширяясь, создают сильное давление на поршень, перемещая его вниз. Сила давления газов от поршня передается через поршневой палец и шатун на коленчатый вал, создавая на нем определенный крутящий момент. Таким образом, во время рабочего хода происходит преобразование тепловой энергии в механическую работу.

Четвертый такт – выпуск. После совершения полезной работы поршень движется вверх и выталкивает отработавшие газы наружу через открывающийся выпускной клапан.

Из рабочего цикла двигателя видно, что полезная работа совершается только в течение рабочего хода, а остальные три такта являются вспомогательными. Для равномерности вращения коленчатого вала на его конце устанавливают маховик, обладающий значительной массой. Маховик получает энергию при рабочем ходе, и часть ее отдает на совершение вспомогательных тактов.

Рабочий цикл двухтактного карбюраторного Двигателя внутреннего сгорания осуществляется за два хода поршня или за один оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам четырёхтактного.

Сжатие — первый такт. При движении поршня вверх он перекрывает продувочное 1 и выпускное 3 окна и сжи­мает ранее поступившую в цилиндр топливовоздушную смесь. Одновременно с этим в кривошипной камере 6 создается разрежение, и в нее через открывшееся впуск­ное окно 5 поступает свежий заряд топливовоздушной смеси, приготовленной в карбюраторе 4.

Рабочий ход, выпуск и впуск — второй такт. Когда поршень, идущий вверх, не доходит до в. м. т. на 25. 27° (по углу поворота коленчатого вала), в свече 2 проскакивает искра, которая воспламеняет топливо. Горение топлива продолжается до прихода поршня в в.м.т. После этого нагретые газы, расширяясь, толкают поршень вниз и тем самым совершают рабочий ход (см. рис 2, б). Топливовоздушная смесь, находящаяся в это время в кривошипной камере 6, сжимается.

В конце рабочего хода поршень вначале открывает выпускное окно 3, через которое выходят отработавшие газы, затем продувочное окно 1 (рис 2, в), через которое из кривошипной камеры в цилиндр поступает свежий заряд топливовоздушной смеси. В дальнейшем все эти процессы повторяются в такой же последовательности.



В этой исследовательской работе я изучил историю создания и развития, строение, разновидности и принцип работы двигателей внутреннего сгорания и получил дополнительные знания по этой теме.

В дальнейшем , используя теоретические знания, создать работающую модель двигателя внутреннего сгорания.

Список литературы .

1. К.С. Шестопалов Устройство, техническое обслуживание легкового автомобиля. Учебное пособие. Москва. Издательство ДОСААФ. 1990.

2. Двигатели внутреннего сгорания, т. 1-3, Москва.. 1957.

3. Двигатели внутреннего сгорания, Москва. 1968.

4. Физика 8 класс, Москва. Издательство Дрофа. 2002.

5. Большая энциклопедия Кирилла и Мефодия 2001 (2 cd).

6. Большой справочник школьника 5-11 классы. Москва. Издательство Дрофа. 2001.

Идея создания аналога теплового двигателя зародилась ещё давным-давно. Чего стоит легенда об Архимеде, якобы построившем пушку, которая делала выстрелы при помощи пара. Однако, согласно официальной версии, изобретение первого теплового двигателя случилось в 17 веке, а впоследствии он был усовершенствован.

В это время Дени Папен (французский изобретатель) сконструировал машину, в общих чертах напоминавшую нынешние двигатели внутреннего сгорания. Его современник, английский изобретатель с именем Томас Севери создал паровой насос для того, чтобы откачивать воду. Другой английский изобретатель, по имени Томас Ньюкомен, также сконструировал паровую машину, способную откачивать воду, но в его разработках, хотя и очень умелых, явно перекликались идеи двух предыдущих изобретателей. Работая, в свою очередь, над усовершенствованием технологии Ньюкомена, Джеймс Уатт разработал новую модель двигателя. Универсальный паровой двигатель же был сконструирован спустя примерно 50 лет Иваном Ползуновым, гениальным русским изобретателем.

Какие существуют тепловые двигатели

  • Паровая машина – является одним из двигателей внешнего сгорания. Она преобразует энергию, которая вырабатывается с помощью пара, в механическую работу.
  • Двигатель внутреннего сгорания – в данном случае химическая энергия вырабатывается из топлива. Затем она становится механической работой.
  • Газовая турбина - является одним из двигателей непрерывного действия. Его механизм таков: он преобразует энергию нагретого сжатого газа. Она также становится механической работой.
  • Паровая турбина – это по сути, серия дисков, которые вращаются и которые закрепляются на одной оси и несколько неподвижных дисков, которые закрепляются на основании, называющемся статором.

Реактивный двигатель – преобразует одну энергию в другую (исходную в кинетическую энергию струи рабочего тела), тем самым создавая нужную силу тяги. Подразделяются такие двигатели на два подвида: Один подвид – воздушно - реактивное. Второй подвид – ракетные двигатели.

Вариант №2

В давние времена люди пытались использовать энергию топлива и это все для того чтобы вырабатывалась механическая энергия. А спустя некоторое время появились первые тепловые двигатели. Постепенно его преобразовывали и пытались сделать что-то новое. При помощи такого двигателя сначала получается газ, а потом и пар. Сначала они проходят и проделывают очень много работы, а потом происходит процесс охлаждения.

Немного попозже люди научились вырабатывать энергию. И делали они это при помощи разных способов. И это были ветровые мельницы.
Если рассматривать тепловые двигатели, то к ним можно отнести не только паровую машину, но еще и двигатель внутреннего сгорания, а также паровую или газовую турбину. Данные тепловые двигатели обычно заправляются при помощи жидкого или твердого топлива, а также при помощи солнечной или атомной энергии.

На сегодняшний день существует огромное количество разных автомобилей. И они работают обычно на тепловом двигателе. Кроме этого они работают на жидком топливе. Двигатель может выдержать всего четыре года. Также на двигателе имеется четыре такта. Именно поэтому он и называется четырехтактным. А вот для того чтобы увеличить мощность двигателя нужно поставить туда либо четыре цилиндра, а в некоторых случаях устанавливается восемь цилиндров. А вот более мощные двигатели обычно устанавливаются либо на теплоходах или тепловозах.
Кроме этого на сегодняшний день активно применяются и тепловые двигатели. Обычно туда заливается пар или газ, а потом нагревается до высокой температуры. Потом газ начинает вращаться, и при этом здесь совсем не нужен поршень. Также здесь совсем не нужен ни шатун, ни коленчатый вал.

А вот для того чтобы увеличить мощность требуется всего лишь специальные диски. И каждый из них должен был прикреплен к общему валу. Обычно данные турбины можно применять на тепловых электростанциях или на кораблях.

Также к тепловым двигателям относятся воздушно-реактивный двигатель. Он работает при помощи окисления горючего вещества, и потом он превращается в кислород. Они бывают бескомпрессорными (двигатель, который работает без помощи каких-либо компрессоров) и компрессорными (они работают при помощи газовой турбины или поршня).

Кроме этого установлено и отрицательное влияние тепловой машины на окружающую среду и в этом воздействуют некоторые факторы. Когда топливо сжигается, то выделяется кислород, а это значит, что в окружающей среде кислород наоборот уменьшается. Также когда топливо сжигается, то атмосфера загрязняется.

И нужно обязательно сказать о том, что в атмосферу выделяется огромное количество азота, а также серы. А ведь это все очень пагубно влияют на человека.

Также вредные вещества выбрасывает и автомобиль. А вот для того чтобы этого не происходило можно заменить бензиновый двигатель на обычное топливо. Самое главное чтобы в топливо не добавлялся свинец.

Имеются еще и паросиловые станции. Работают они при помощи пара. Обычно это паровой пар. Конечно, имеются еще и другие машины, которые работают при помощи ртути.

8, 10 класс окружающий мир

Тепловые двигатели

Поскольку территория России огромна и на всей ее протяженности постоянно возникают всевозможные катаклизмы природного и техногенного характеров, горят леса, разливаются реки, гибнут люди, все это требует принятия и предотвращения определенной

Эрнест Сетон - Томпсон (урожденный Эрнест Эван Томпсон) - известный канадский и американский писатель- анималист, художник и по совместительству один из основателей скаутского движения.

Планета Сириус является самой большой планетой созвездия Большого пса. Название в переводе с греческого языка означает – яркий, блестящий. Планету Сириус очень легко найти через созвездие Ориона.

Влияние тепловых двигателей

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.

Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.

Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.

В-третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу два-три тонн свинца.

Кроме того, при сжигании топлива в тепловых двигателях расходуется атмосферный кислород (в наиболее развитых странах тепловые двигатели уже сегодня потребляют больше кислорода, чем вырабатывается всеми растениями, растущими в этих странах) и образуется много вредных веществ, загрязняющих атмосферу.

Тепловые машины не только сжигают кислород, но и выбрасывают в атмосферу эквивалентные количества оксида углерода (углекислого газа). Сгорание топлива в топках промышленных предприятий и тепловых электростанций почти никогда не бывает полным, поэтому происходит загрязнение воздуха золой, хлопьями сажи. Во всем мире обычные энергетические установки выбрасывают в атмосферу ежегодно более 200 млн. т золы и более 60 млн. т оксида серы.

Токсичными выбросами двигателей внутреннего сгорания (ДВС) являются отработавшие и картерные газы, пары топлива из карбюратора и топливного бака. Основная доля токсичных примесей поступает в атмосферу с отработавшими газами ДВС. С картерными газами и парами топлива в атмосферу поступает приблизительно 45 % углеводородов от их общего выброса.

Кроме промышленности, воздух загрязняют и различные виды транспорта, прежде всего автомобильный. Жители больших городов задыхаются от выхлопных газов автомобильных двигателей.

Тепловые машины широко используют на производстве и в быту. По железнодорожным магистралям водят составы мощные тепловозы, по водным путям – теплоходы. Миллионы автомобилей с двигателями внутреннего сгорания перевозят грузы и пассажиров. Поршневыми, турбовинтовыми и турбореактивными двигателями снабжены самолеты и вертолеты. С помощью ракетных двигателей осуществляются запуски искусственных спутников, космических кораблей и станций. Двигатели внутреннего сгорания являются основой механизации производственных процессов в сельском хозяйстве. Их устанавливают на тракторах, комбайнах, самоходных шасси, насосных станциях.

Автомобиль вчера, сегодня, завтра. Каждый день с ним или вокруг него что-нибудь происходит. Слушайте, смотрите – и мир моторов вам станет ближе.
Существуют два вида двигателей внутреннего сгорания (ДВС) – карбюраторный и дизельный.
В 1898 году немецкий инженер Дизель изобрел двигатель, в котором топливо сгорало внутри цилиндра. Этот двигатель стали называть двигателем внутреннего сгорания, а чтобы этот двигатель отличить от карбюраторного двигателя внутреннего сгорания, его стали называть дизелем, в честь инженера-изобретателя Дизеля. Этот двигатель устанавливают на автомашинах (грузовых и легковых) , на сельскохозяйственной технике, на большинстве военных машин, на тепловозах, теплоходах.
Дизельный двигатель имеет ряд преимуществ перед карбюраторным двигателем.
1.более высокий КПД (коэффициент полезного действия) , а значит, этот двигатель более мощный;
2.работает на более дешевом топливе – солярке, поэтому более экономичный.
Недостатки двигателя: его выхлопные газы содержат больше сажи, более ядовиты, т. е. более токсичны.
Сегодня невозможно представить себе человечество без автомобиля. Но велик и вред, который приносит автотранспорт. Возникла ситуация, когда человек должен бороться против автомобиля – за автомобиль. В связи с использованием тепловых двигателей
перед человечеством стоят экологические проблемы:
- загрязнение воздушного бассейна,
- загрязнение водоёмов,
- загрязнение почв,
- шумовое загрязнение.
Есть возможность решить эти проблемы, для этого необходимо:
- установить очистные фильтры;
-использовать: другие виды топлива, электромобили.
Запасы топлива ограничены, поэтому экономия его – актуальная государственная задача. Расход топлива в значительной мере зависит от технической исправности автомобиля и правильности регулировки его узлов и агрегатов. Тщательный контроль за техническим состоянием даёт 10-15% экономию топлива. У автомобилей после капитального ремонта, возрастает расход топлива на 15-20%. Центральной фигурой в деле экономии топлива является водитель.
Велики потери топлива при хранении и заправке, за счёт проливов, утечек, испарения. При этом происходит загрязнение атмосферы, почв. Там, где хранится горючее, не должно быть сквозняков; заливать бензином канистры или цистерны лучше полностью, под “горло”, чтобы площадь поверхности бензина была минимальной, это уменьшит его потери на испарение.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Действительно ли история тепловых двигателей — это история прогресса?

Тепловые двигатели чрезвычайно важны для жизни человека, технологии, энергии и транспорта. Изобретение парового двигателя имело большое значение для перехода к механическому производству и позволило создать пароход (1807 г.) и паровоз (1814 г.). Изобретение паровой турбины позволило значительно увеличить мощность электростанций. Сегодня паровая турбина является важнейшим первичным двигателем на тепловых и атомных электростанциях.

Изобретение двигателя внутреннего сгорания оживило автомобильную и авиационную промышленность.

Тепловой двигатель — это устройство, которое может преобразовывать вырабатываемое тепло в механическую работу. Механическая работа в тепловых двигателях осуществляется расширением определенного вещества, так называемого рабочего тела. В качестве рабочих органов обычно используются газообразные вещества (пары бензина, воздуха, воды). Рабочий орган получает (или дает) тепловую энергию при теплообмене с органами, обладающими большим внутренним запасом энергии.

Однократное преобразование тепла в работу не интересует техника. Действительно существующие тепловые двигатели (паровые двигатели, двигатели внутреннего сгорания и т.д.) работают циклически. Процесс теплообмена и преобразования полученного количества тепла в работу повторяется периодически. Для этого рабочий орган должен выполнять круговой процесс или термодинамический цикл, в котором исходное состояние периодически восстанавливается.

Работа А, выполняемая рабочим органом за цикл, равна количеству тепла Q, получаемого за цикл. Отношение работы A к количеству тепла Q1, которое рабочий получает от нагревателя во время цикла, называется нагревательной машиной/эффективностью η.

Этот эолипир представлял собой полую сферу, которая могла быть вынуждена вращаться под ним огнем. Для этого в вертикальной плоскости была предусмотрена сфера с двумя диаметрально противоположными, изогнутыми, выступающими трубками, а под ней был помещен сосуд, частично заполненный водой. Когда под сосудом возник пожар, в нем кипела вода, и выпущенный пар проникал по паровым трубам во внутреннюю полость сферы и выходил из нее по изогнутым трубам, вызывая вращение сферы.

По сути, эолипир — это не более чем паровая турбина. Конечно, эолипир не подходит под определение теплового двигателя, потому что он ничего не приводит в движение, это просто красивая игрушка, но в нем тепло естественным образом преобразуется в механическую работу, а идея использования энергии пара при ускорении и подаче сопел в кольцевом направлении была впоследствии использована для создания паровых турбин.

В шестидесятых годах XVIII века. Век — замечательный человек, сформировавшийся в дикой природе Алтая. Изобретатель и конструктор, технолог и машиностроитель, проектировщик лесопильных и горно-металлургических предприятий, специалист по рудам и строительным материалам, опытный шахтер и металлург, механик и математик, физик и метеоролог, мастер тонких экспериментов и умелый приборостроитель, преподаватель и график — таков был этот выдающийся представитель российского технического мышления — И.И.Ползунов.

20 мая 1765 года уже были закончены сто десять частей завода, не считая котла с арматурой и налоговой ставкой. Отдельные части весили более ста семидесяти пуделей. Наибольший диаметр котла составлял 3,5 метра. Высота паровых цилиндров составляла 2,8 метра. В конце 1765 года было завершено строительство гусеничной тепловой станции. На берегу рабочего пруда находилось машиностроительное предприятие высотой более 18 метров.

В условиях феодального крепостничества паровая машина И. И. Ползунова, конечно, не могла быть универсально циркулирующей. Однако использование отдельных двигателей и в любом случае использование уже построенного двигателя было возможным и разумным. Это поняли ведущие российские личности. A. И. Порошин, который уже был старше и на пенсии, настаивал на продолжении дела Ползунова в 1767 году. Однако он не был поддержан ни кабинетом министров, отвечающим за Алтай, ни Академией наук. Определенную роль сыграл тот факт, что Паллас и Фалк увидели эту машину в природе и впервые описали ее в прессе, все перекрутилось, вплоть до имени создателя новой машины. Старт Паллас и Фалк завершил Ирман и Меллер и физически уничтожил машину Crawler.

Уатт Джеймс (19.1.1736, Гринок, Шотландия — 19.8.1819, Хитфилд, Англия), английский изобретатель, создатель универсального парового двигателя, член Лондонского королевского общества (1785). С 1757 года он работал механиком в Университете Глазго, где познакомился со свойствами пара, а сам с большой точностью исследовал зависимость температуры насыщенного пара от давления с помощью котла Д. Папена. В 1765 г. У. построил экспериментальную машину с цилиндром диаметром 16 см, а в 1768 г. — первый большой паровой двигатель.

В 1774 г. паровой двигатель был закончен, дальнейшие испытания показали, что этот двигатель более чем в два раза эффективнее лучших машин Newcomen. В 1782 году он получил английский патент на паровой двигатель с расширением. В. ввел первую единицу мощности — лошадиную силу (позже его имя было изменено на другую единицу мощности — ватт). Благодаря своей эффективности паровой двигатель U. получил широкое распространение и сыграл важную роль в переходе к машинному производству.

Карно (Никола Леонар) Сади (1796-1832), французский физик и инженер, один из основоположников термодинамики. Работа Карнота стала фактически первым серьезным теоретическим исследованием принципов термических машин. Хотя он воспользовался идеей, уже отвергнутой многими физиками в то время, что приток тепла вызывает нагрев материи, а отток — ее охлаждение, ему удалось обнаружить ряд определений, которые играют решающую роль в работе этих машин.

Попытки Carno связать эффективность (действенность) отопительной машины (что также является ее термином) непосредственно с температурой отопления и холодильника потерпели неудачу по той простой причине, что в то время не была известна абсолютная шкала температур.

Но он многое понял. Например, он подробно проанализировал, выгоднее ли использовать водяной пар или воздух в качестве рабочего материала в тепловой машине, доказал, что теоретически максимально возможная эффективность не зависит от конструкции тепловой машины, а определяется только температурой отопления и холодильника, и установил много других важных моментов.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия сжигания топлива в рабочей камере преобразуется в механическую работу.

Первый практически полезный постоянный ток газа был построен французским механиком Э. Ленуаром (1860). В 1876 году немецкий изобретатель Н. Отто построил более совершенный 4-тактный газовый D.V.s. По сравнению с паровым двигателем D.V.s. он принципиально проще, так как исключается одно звено в процессе преобразования энергии — паровая котельная установка. Это улучшение привело к большей компактности D.V.S., меньшей массе на привод и более высокому КПД, но при этом потребовало более качественного топлива (газа, масла).

В зависимости от вида топлива Д. В. С. делятся на жидкотопливные и газовые двигатели. По способу заполнения цилиндра свежим зарядом — для 4-х и 2-х тактных двигателей. По способу приготовления горючей смеси топлива и воздуха — для двигателей с наружной и внутренней смесью. Двигатели с внешней смесью включают в себя карбюраторные двигатели, в которых в карбюраторе образуется горючая смесь жидкого топлива и воздуха, и газовые смеси, в которых в смесителе образуется горючая смесь газа и воздуха. В ДВС с внешним перемешиванием рабочая смесь в цилиндре воспламеняется электрической искрой. В двигателях с внутренним перемешиванием (дизельные двигатели) топливо саморазжигается при впрыске в сжатый воздух, нагретый до высокой температуры.

Максимальная эффективная эффективность самого передового Ц.К.Е. составляет около 44%.

Основным преимуществом Д.В.С., как и других тепловых двигателей (например, реактивных), перед гидравлическими и электрическими двигателями, является независимость от постоянных источников энергии (водных ресурсов, электростанций и т.д.), в этом контексте заводы, оборудованные Д.В.С., могут свободно передвигаться и оседать где угодно. Это привело к широкому применению Д.В.С. на транспортных средствах (автомобилях, сельскохозяйственных и дорожно-строительных машинах, самоходной военной технике и т.д.).

Тепловые двигатели

Черепанов, русский изобретатель, крепостной заводчик Демидов: отец Ефим Алексеевич (1774-1842) и сын Мирон Ефимович (1803-49). Они построили первый в России паровоз.

В 1869 году братья Пьер и Эрнест Мишо создали первый мотоцикл во Франции. Это был мотоцикл с маленьким одноцилиндровым паровым двигателем. Блок двигателя был соединен с блоком на заднем колесе гибким кожаным ремнем.

АВТОМОБИЛЬНОЕ (от авто… и лат. мобильное — мобильное, легко передвигаемое), транспортное безрелезовая машина в основном на колесном приводе, приводимом в движение собственным двигателем (внутреннее сгорание, электрическое или паровое). Первый паровоз был построен в 1769-70 гг. Ж. Куно (Франция), с двигателем внутреннего сгорания Г. Даймлера, К. Бенца (Германия) 1885-86 г.г. Различают легковые автомобили (легковые и автобусные), грузовые автомобили, специальные автомобили (пожарные, санитарные и т.д.) и гоночные автомобили. Скорость движения легковых автомобилей до 300 км/ч, гоночных автомобилей до 1020 км/ч (1993 г.), грузоподъемность грузовых автомобилей до 180 тонн.

Создателем первого автомобиля является немецкий инженер Карл Бенц. Однако есть и более ранние модели самоходных машин, такие как подъемник улиток Demetrius от Фалерского, который был создан около 2000 лет назад.

В 1885 году Бенц построил трехколесный автомобиль с двигателем внутреннего сгорания собственной конструкции, но не выезжал за пределы завода. Когда 29 января 1886 года он подал заявку на патент на VRS 37435 для самоходного экипажа как такового, появилась возможность провести публичную демонстрацию своего изобретения. Отправка состоялась 3 июля 1886 года.

Механик-самоучка Иван Кулибин (1735-1818) родился в Нижнем Новгороде в 1735 году как сын семьи мелкого купца муки. Его отец был старообрядцем, который воспитывал сына по строгим правилам и приучал его к труду. После того, как он начал учебу, Иван не мог остановиться и приступить к ней, так как у него не было другой возможности самостоятельно изучать науки с помощью книг, в том числе и трудов Михаила Ломоносова.

Среди тепловых двигателей победителями стали паровые двигатели. Только они до сих пор служат на тепловых и атомных электростанциях и мощных кораблях!

Экологические проблемы тепловых двигателей

ЭКОЛОГИЧЕСКИЙ КРИСИС, нарушение связей в экосистеме или необратимые события в биосфере, вызванные антропогенной деятельностью, угрожающей существованию человека как вида. Неблагоприятная экологическая ситуация, экологическая катастрофа и экологическая катастрофа отличаются по степени угрозы природной жизни людей и развитию общества.

Загрязнение тепловыми двигателями:

  1. Химический.
  2. Радиоактивный.
  3. Тепловой.

КПД тепловых двигателей Заключение

Сжигание топлива сопровождается выбросом в атмосферу углекислого газа, азота, серы и других соединений.

Меры по предотвращению загрязнения:

  1. сокращение вредных выбросов.
  2. контроль выхлопных газов, модификация фильтров.
  3. сравнение эффективности и экологических показателей различных видов топлива, переход транспорта на газовое топливо

Перспективы использования электродвигателей, пневмоавтомобилей, автомобилей на солнечных батареях.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: