Зона термического влияния реферат

Обновлено: 05.07.2024

Зона термического влияния (ЗТВ) — это область вокруг сварного шва. В процессе сварки эта область подвергается различным термическим напряжениям, которые вызывают структурные изменения в сплаве. Под воздействием тепла в HAZ образуются внутренние напряжения и трещины. Прочность соединения уменьшается. Хотя металл в HAZ не плавится полностью, он нагревается до критической температуры. Структура и физические свойства сплава изменяются в зоне нагрева. Это влияет на прочность сварного соединения.

В зоне термического влияния свойства металла изменяются. Они определяются циклом термопластики, в зависимости от того, где она нагревается. Размер зерна формируется под воздействием температуры. Чем дольше сплав нагревается до температуры перехода, тем крупнее становятся зерна. Изменится ударная прочность и пластичность. Это основные физические свойства металлических изделий.
Как изменяется ширина зоны термического влияния при увеличении скорости сварки?

Чем быстрее нагревается и остывает заготовка, тем меньше сила тока. Чем меньше ток, тем меньше температурный эффект и тем меньше PFL.

Из чего состоит зона термического влияния

Зона термического влияния делится в зависимости от степени воздействия высокой температуры на металл на участки: участок неполного плавления, участок перегрева, участок нормализации, участок неполной кристаллизации, участок рекристаллизации и участок силикатизации. Участок неполного проплавления — это участок перехода от металла шва к основному металлу. Эта область нагрета выше точки плавления и находится в твердо-жидком состоянии.

Это область, где кристаллы металла шва сплавляются с основным металлом, и качество сварного соединения во многом зависит от свойств этой области. Для дуговых сварных соединений эта зона составляет 0,1 -0,5 мм. Перегретая зона — это зона перегретого основного металла (1 1 00-1 500 °C) с крупнозернистой структурой. Эта область характеризуется снижением таких физических свойств, как пластичность и ударная прочность.

В соединениях с высоким содержанием углерода в этой зоне могут образовываться упрочняющие структуры. Размер этой зоны может достигать 3-4 мм. Чтобы минимизировать этот размер, необходимо увеличить скорость сварки или выполнить сварку за несколько проходов. В зоне нормализации основной металл нагревается до температуры от 930 до 1 1 00°C. Металл нагревается до этой температуры в течение короткого времени и в процессе рекристаллизации образует мелкозернистую структуру металла.

Механические свойства поперечного сечения увеличиваются по сравнению с состоянием до сварки. Длина поперечного сечения варьируется от 0,2 до 4-5 мм. Эта зона характеризуется неполным изменением структуры металла. Вокруг зерен феррита на этом участке находятся мелкие зерна феррита и перлита, которые образовались во время рекристаллизации. Как следует из названия, металл в этой области не полностью рекристаллизовался.

Размер этой зоны составляет от 0,1 до 0,5 мм в зависимости от процедуры и типа сварки. Рекристаллизация — это область металла, нагретого до 450-72 0°C. Эту область можно наблюдать при сварке пластически деформируемых сталей (сварка проката). В этой области восстанавливаются зерна, разрушенные во время деформации. Размер этого участка колеблется от 0,1 до 1 ,5 мм. Окончательная сине-голубая часть имеет температуру между 2 00 и 450 °C.

Здесь можно увидеть синее обесцвечивание. В этом участке не происходит структурных изменений, но характерно снижение пластической деформации.

Чем опасна зона термического влияния

В зоне термического влияния на металле шва и в зоне термического влияния могут образовываться хрупкие межкристаллитные трещины. Они возникают в твердо-жидком состоянии в конечной фазе первичной кристаллизации, а также в твердом состоянии при высоких температурах во время преимущественного развития межкристаллитной деформации.
Наличие температурно-временного интервала хрупкости является первой причиной горячего растрескивания.

Интервал охрупчивания, вызванный температурой, обусловлен образованием жидких и полужидких промежуточных слоев, которые нарушают металлическую непрерывность сварного шва. Эти слои образуются в присутствии легкоплавких, сульфидных соединений (сульфидов) FeS с температурой плавления 1 1 89 °C и NiS с температурой плавления 81 0 °C. На пике развития сварочного напряжения происходит сдвиг металла вдоль этих жидких прослоек, который перерастает в хрупкие трещины.

Проведен микроскопический анализ сварного соединения углеродистой стали. Исследования проводились на образцах малоуглеродистой стали. Изучены зоны сварного соединения. Определена марка стали. Приведены фотографии основного металла, металла шва и участков зоны термического влияния. Проведенная работа позволяет вести дальнейшие исследования по изучению участков зоны термического влияния, что позволит оценить их влияние на механические свойства сварного соединения в целом.

Актуальной задачей на сегодняшний день является необходимость получения сварных конструкций с требуемыми механическими свойствами. Это становится возможным при получении определенной микроструктуры сварного шва, что зависит от различных параметров сварки. Предметом наших исследований являлся сварной шов конструкций из углеродистых сталей. Для того чтобы выявить склонность металла и зоны термического влияния к образованию трещин и разрушению сварных конструкций надо исследовать микроструктуру сварного соединения,на которую могут оказывать влияние различные факторы. Мы будем исследовать влияние скорости охлаждения на структуру и зону термического влияния различных сталей при сварке. Для начала нужно исследовать и изучить микроструктуру сварного соединения низкоуглеродистой стали, что мы и сделали в данной работе.

Соединение, выполненное сваркой плавлением (малоуглеродистой, низколегированной) стали, состоит из следующих зон: металл шва 1; зона сплавления 2; зона термического влияния 3 и основной металл 4 (рис. 1).


Рис.1. Строение сварного соединения

Металл шва– сплав, образованный расплавленным основным и наплавленным металлами или только переплавленным основным металлом.

Зона сплавления– зона, где находятся частично оплавленные зерна металла на границе основного металла и металла шва. Эта зона нагрева ниже температуры плавления. Нерасплавленные зерна в этой зоне разъединяются жидкими прослойками, связанными с жидким металлом сварочной ванны, в эти прослойки имеют возможность проникать элементы, введенные в ванну с дополнительным металлом или сварочными материалами. Поэтому химический состав этой зоны отличен от химического состава основного металла.

Зона термического влияния– участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева или пластической деформации при сварке, наплавке или резке.

Основной металл– металл подвергающихся сварке соединяемых частей, чаще это малоуглеродистая сталь после прокатки.

Мы изучали структуру сварного соединения при помощи микроанализа. Микроскопический метод исследования металлов и сплавов (микроанализ), изучает структуру металлов и сплавов с помощью металлографического микроскопа. Для этого были приготовлены шлифы – образцы изучаемого металла со специально подготовленной плоской (шлифованной, полированной) поверхностью. Структура металлов сплавов, наблюдаемая при помощи микроскопа, называется микроструктурой. Специально приготовленные для проведения микроанализа образцы называются микрошлифами.

Приготовление микрошлифа состоит в вырезании образца, шлифовке и полировке его поверхности, выбранной для исследования, и последующего травления. На всех стадиях приготовления шлифа необходимо следить за тем, чтобы образец не перегревался, иначе это может повлечь за собой изменения в структуре.

Образец шлифовали вручную, начиная со шлифовальной шкурки с крупным зерном, с последующим переходом к шкуркам с более мелким зерном. При переходе к меньшему номеру зернистости очищали образец от абразиваи меняли направление шлифовки на 90°. После завершения шлифования образец тщательно промывали водой для полного удаления абразива. Затем полировали образец на полировальных станках для удаления рисок шлифования. Вращающийся диск станка был обтянут сукном, в качестве абразива использовали оксид хрома. Поверхность полированного шлифа – зеркальная (отсутствуют риски, царапины). Далее шлиф промывают водой и просушивают прикладыванием фильтровальной бумаги к полированной поверхности.

Под микроскопом изучают сначала шлиф до травления, затем – после травления. На нетравленой поверхности металла непосредственно после полировки можно обнаружить на общем светлом поле отдельные темные или серые точки, линии и пятна, которые могут представлять собой как не устраненные полировкой дефекты поверхности образца (раковины, поры, микротрещины, следы обработки – риски шлифования), так и неметаллические включения (оксиды, сульфиды, силикаты).

Для выявления полной картины микроструктуры металла образец подвергают травлению. Перед травлением поверхность микрошлифа обезжиривается спиртом, а затем погружается в травитель. Травителем в данном случае являлся 5%-ный раствор азотной кислоты в этиловом спирте. При травлении реактив взаимодействует с различными участками поверхности микрошлифа неодинаково, что приводит к разной степени их травимости и образованию микрорельефа поверхности. Более протравившиеся фазы и зерна выглядят более темными в отличие от светлых, непротравившихся. Для проведения микроанализа мы использовали металлографические микроскопы, вертикальный МИМ-7 и горизонтальный МИМ-8, которые позволяют рассматривать структуру в отраженном свете.

Структура сварного шва определяется условиями охлаждения, влияющими на процессы кристаллизации и на диффузионные процессы. Участок наплавленного металла (шва) имеет столбчатое строение (рис.2), т.к. процесс кристаллизации в металле шва имеет направленность: кристаллы растут в направлении, обратном отводу тепла, вглубь жидкой ванны, и металл приобретает столбчатую структуру. Кристаллит состоит из отдельных дендритов, имеющих общую направленность, которые иногда могут иметь и различную разветвленность. Группа дендритов, имеющая четкую границу, составляет столбчатый кристаллит. В корне шва, ближе к переходной зоне, составляющие столбчатый кристаллит дендриты разветвлены минимально. Сталь малоуглеродистая, микроструктура: феррит и небольшое количество перлита.

Структура литого металла с грубым столбчатым строением характерна для однослойных швов. Если шов выполнен в несколько проходов, то наложение каждого последующего шва оказывает тепловое влияние на нижний шов. В результате структура нижележащего шва становится мелкозернистой. Верхний шов при этом сохраняет литую структуру.



Рис.2. Металл шва

Зона термического влияния (ЗТВ)– это область сварного соединения, в которой происходят изменение структуры и свойств металла под действием выделяемого источником нагрева тепла. В ЗТВ для свариваемых сталей (малоуглеродистые, низколегированные) можно выделить шесть основных участков: неполного расплавления, перегрева, перекристаллизации, неполной перекристаллизации, рекристаллизации и участок перехода от ЗТВ к основному металлу. Зона термического влияния – это весьма неоднородная область сварного соединения, структура и свойства которого определяются фазовыми превращениями в стали, протекающими в процессе нагрева и охлаждения при сварке.

Участок неполного расплавления представляет собой очень узкую область – от 0,1 до 0,4 мм основного металла. Здесь проходит граница сплавления. Данный участок нагревается немного выше температуры плавления, т. е. происходит частичное оплавление зерен Структура: феррито-перлитная с окантовкой перлитных выделений ферритными прослойками. Структура характеризуется значительным ростом зерен, развивается ликвация и как следствие участок имеет пониженную прочность и пластичность. Структурный и химический состав в большой степени зависит от диффузии легирующих элементов между сварным швом и основным металлом,так как область неполного расплавления очень узкая,то сфотографировать ее нам не удалось.

Участок перегрева (рис.3) находится в интервале максимальных температур и ограничивается: со стороны шва – температурой участка неполного расплавления ( 1450°С, идет интенсивный рост зерна аустенита); со стороны основного металла – температурой плавления основного металла (1100 – 1200°С). На этом участке металл претерпевает полиморфное превращение из Fed(ОЦК-решетка) в Feg(ГЦК-решетка). Здесь наблюдается перегрев и, следовательно, рост аустенитного зерна. В процессе остывания образуется крупнозернистая видманштеттова структура. Формирующаяся неблагоприятная структура характеризуется резким снижением пластичности и снижением сопротивления хрупкому разрушению,что оказывает решающее влияние на качество сварного соединения.

Ширина этого участка 1-3 мм, – чем меньше его протяженность, тем выше качество сварного соединения. Перегретый металл является слабым местом в сварном соединении.



Рис.3. Участок перегрева

На участке перекристаллизации или нормализации (рис.4) температура находится несколько выше точки Ас3 (1000–900 °С). На этом участке происходит полная перекристаллизация или нормализация, образуется мелкозернистая структура. Длительность пребывания стали при этих температурах невелика, зерно аустенита не успевает вырасти. Участок характеризуется высоким комплексом механических свойств. Ширина в зависимости от способа и режима сварки изменяется от 1,2 до 4 мм.



Рис.4. Участок нормализации

Участок неполной перекристаллизации (рис.5) имеет максимальную температуру нагрева в интервале температур точек от Ас1 до Ас3 (725–850°С). Структура состоит из крупных неперекристаллизовавшихся зерен феррита и расположенных вокруг них колоний мелких перекристаллизовавшихся зерен феррита и перлита. Механические свойства более низкие, чем у участка нормализации. Влияние на свойства сварного соединения менее отрицательны, чем у участка перегрева, механические свойства выше.


Рис.5. Участок неполной перекристаллизации

На участке рекристаллизации температура находится в пределах от 0,4Тпл до Ас1 (450–700°С). Здесь наблюдается рост новых равноосных зерен после упрочняющей термической обработки или после пластической деформации (ковка, штамповка, прокатка). Происходит рекристаллизация, которая вызывает разупрочнение металла, пластичность повышается. Если до сварки металл не подвергался пластической деформации (например, литые сплавы), рекристаллизации не происходит.


Рис. 5. Участок рекристаллизации

Участок перехода от ЗТВ к основному металлу охватывает температурный интервал 200–400°С, характеризуется резким снижением вязкости, которое обусловлено старением металла. Из пересыщенного феррита выпадают карбиды железа, оксиды, нитриды. Они скапливаются вокруг дефектных участков кристаллической решетки. На поверхности металла появляются синие цвета побежалости. Иногда этот участок называют участком синеломкости.

Основной металл (рис. 6) – это малоуглеродистая сталь. Структура: феррит и небольшое количество перлита. Приблизительное количество перлита (темные участки) 10-13%, что соответствует содержанию углерода ≈ 0,1%. Определенная нами марка стали 10.


Рис. 6. Основной металл

Данная работа по детальному изучению отдельных зон сварного шва и участков зоны термического влияния имеет научное и практическое значение, так как, изменяя, можно влиять на механические свойства сварного соединения.

Ефименко Л.А., Прыгаев А.К., Елагина О.Ю. Металловедение и термическая обработка сварных соединений. М.: Логос, 2007. 456с.

Геллер Ю.А., Рахштадт А.Г. Материаловедение. М.: Металлургия, 1989. 387с.

Зоной термического влияния (ЗТВ) называют участки в области шва. В процессе сварки металл в этом месте испытывает различную термонагрузку, она влияет на изменение структуры сплава. В околошовной области влияние нагрева проявляется внутренними напряжениями, трещинами. Прочность соединения снижается. Хотя металл в ЗТВ полностью не расплавляется, он нагревается до критических температур. Структура и физические свойства сплава в области нагрева изменяются. Это сказывается на прочности сварного соединения.

Свойства

На протяжении зоны термического влияния у металла свойства меняются. Они определяются термопластическим циклом, зависят от локальности нагрева. Под воздействием температуры образуется зернистость. Чем дольше сплав прогревается до температуры фазового перехода, тем крупнее зерна. Меняются показатели ударной вязкости, пластичности. Это основные физические свойства металлоизделий.

Как же изменяется ширина зоны термического влияния с увеличением скорости сварки?

Чем быстрее нагревается и остывает деталь, тем меньше ЗТВ. При снижении силы тока сокращается влияние температуры, уменьшается размер ЗТВ.

Структура и размеры зоны термического влияния

Исходя из понятия зоны термического влияния (это нагреваемая область), нетрудно предположить, что на разном удалении от шва деталь нагревается. Для наглядности представим участок околошовной зоны сварки низкоуглеродистой стали.

Строение зоны термического влияния

Схема структурных изменений в зоне термического влияния делится на несколько участков:

1 – неполного расплава. Он является переходным, металл находится в состоянии диффузии наплавки и основного сплава, соединяются две фазы – жидкая и твердая. Протяженность участка небольшая, от 100 до 500 микрон. При температуре 1500°С начинается образование крупных зерен.

2 – перегрева (длина 3–4 мм), в сплаве образуются крупные зерна, характерные для закалочного процесса, сс-железо переходит в у-железо. Ударная вязкость и пластичность стали снижаются. Температура постепенно падает с 1500 °С до 1100°С.

3 – нормализации или перекристаллизации (длина от 200 мкм до 1,5 мм, t – от 1100 до 900°С). Металл находится в температурном интервале. Образуются вторичные мелкие зерна (ферритовая фаза), физические свойства сплава близки к начальным.

4 – неполной перекристаллизации (длина от 500 мкм до 1,2 мм, t – от 900 до 725°С). Мелкие зерна чередуются с перлитными пластинками. Физические свойства хуже, чем на 3-м участке.

5 – рекристаллизации или старения (длина до 1,5 мм, t – от 725 до 450°С). Структура, характерная для нагартованного металла, разрушается. При нагреве до точки пластичности металл восстанавливается, формируются зерна стандартной величины.

6 – синеломкости, переход к основному металлу, температура понижается до 200°С. На сплаве видны синеватые пятна побежалости. Происходит насыщение поверхностного слоя азотом, водородом и углекислым газом с образованием нитридов, карбидов. Прочность стали повышается, пластичность снижается.

При сварке других сталей, в многопроходных швах структура ЗТВ меняется. Размеры зоны термовлияния зависят от нескольких факторов: толщины заготовок, химического состава стали, вида сварочного аппарата, они установливаются экспериментальным путем.

Под влиянием тепла дуги, происходит не только плавление металла в месте образования шва, но и нагрев околошовной зоны или зоны термического влияния. В результате чего, меняется размер и форма зерен основного металла, по мере удаления от оси симметрии шва.

По этому признаку в зоне термовлияния (ЗТВ) различают следующие участки:

1. Участок НЕПОЛНОГО РАСПЛАВЛЕНИЯ (1539 – 1500 град) –

характеризуется частично оплавленными зернами основного металла. Этот участок или зона сплавления, определяет прочность сварного соединения. Если кристаллиты и зерна основного металла хорошо срослись или как бы проникли друг в друга, то соединения будет обладать высокой прочностью. Это характерно тогда, когда химический состав электродного или присадочного металлов совпадают.

Однако это не всегда бывает так, при разнице в химическом составе. Тогда на границе между основным металлом и металлом шва, образуется оксидная пленка, снижающая прочность. Ширина участка неполного расплавления небольшая и составляет от 0,1 до 0,4 мм. 0

2. Участок ПЕРЕГРЕВА (1500-1100 С )

характеризуется крупнозернистой структурой, с размерами зерен до 12 раз превышающими исходные зерна основного металла. Перегрев понижает механические свойства, главным образом пластичность и ударную вязкость. Разрушение сварного соединения, по основному металлу, обычно происходит по этому участку. Ширина участка, зависит от химического состава стали (например, у легированных сталей, имеющих меньшую теплопроводность, она большая) и от времени выдержки при температуре 1500 – 1100 град и в среднем составляет 3-4 мм.

3. Участок НОРМАЛИЗАЦИИ или ПОЛНОЙ ПЕРЕКРИСТАЛЛИЗАЦИИ (1100 – 900 град)

Эта температура несколько превышает критическую, при которой происходит преобразование кристаллической ячейки объемно-центрированного куба (альфа – железа или структуры феррита), в кристаллическую ячейку гранецентрированного куба (гамма-железа или структуры аустенита). В результате чего, зерно измельчается и при охлаждении сохраняется. Именно так проводится термообработка называемая нормализацией, от чего и произошло название этого участка. Благодаря мелкозернистому строению, механические свойства металла на этом участке выше, по сравнению с основным металлом. Ширина участка составляет 1-4 мм.

4. Участок НЕПОЛНОЙ ПЕРЕКРИСТАЛЛИЗАЦИИ (900 – 700 град) –

характеризуется смесью мелких зерен, в которых произошла перекристаллизация, и довольно крупных зерен основного металла. Неравномерное кристаллическое строение на этом участке, приводит к некоторому снижению механических свойств.

5. Участок РЕКРИСТАЛЛИЗАЦИИ (700 – 500 град) –

здесь происходит восстановление формы зерен от деформированной, полученной в результате прокатки, штамповки и др., до глобулярной. Этот участок характерен только для катанных сталей, т.е. прошедших обработку давлением. У литых сталей, т.е. деталей изготовленных методом литья в формы, этот участок отсутствует.

6. Участок СИНЕЛОМКОСТИ (500 – 200 град) –

характерен тем, что на светлом металле появляются цвета побежалости (синего, фиолетового оттенка). На этом участке размер и форма зерен основного металла не меняются, но возможно выделение между границ зерен неметаллических включений, снижающих в этом месте пластичность.

При меньшей, чем 200 град. Температуре, каких-либо изменений с основным металлом не происходит.

Ширина зоны термического влияния зависит от количества тепла вводимого в металл при сварке за единицу времени и способа сварки. При сварке на больших токах ее ширина будет меньшая и наоборот. При ручной дуговой сварке покрытыми электродами ширина зоны термовлияния составляет 5 -7 мм, а при газовой сварке может достигать 20-25 мм в зависимости от толщины металла, что объясняется меньшей, чем у дуги, температурой пламени.

Чем меньше ширина зоны термического влияния, тем на меньшей ширине происходят структурные изменения, тем выше механические свойства сварного соединения.

Читайте также: