Жировой обмен реферат по анатомии

Обновлено: 04.07.2024

Цель урока: представлять схему обмена питательных веществ в организме, значение воды и минеральных веществ для нормальной жизнедеятельности, общую характеристику обмена энергии, основной обмен и рабочую прибавку, пути повышения теплопродукции, знать роль витаминов их классификацию и возможные заболевания.

План изложения нового материала

1. Общая характеристика обмена веществ и энергии

2. Виды обмена веществ: водно-солевой обмен, белков, углеводов, жиров

4. Распад и окисление питательных веществ

Общая характеристика обмена веществ и энергии

В организм человека поступают вещества (белки, жиры, углеводы), витамины, вода и минеральные соли. Кислород воздуха проникает в кровь через легкие, частично — через кожу. Они необходимы клеткам и тканям, в которых происходят биохимические процессы, образуются специфические вещества (полезные и вредные) и энергия Продукты обмена веществ (экскреты) выводятся через почки, легкие, кожу и органы желудочно-кишечного тракта.

Обмен веществ и энергии ( метаболизм) — это совокупность физиологических процессов , направленных на обеспечение организма необходимыми для его жизнедеятельности веществами, их превращение и использование для получения энергии и построения клеточных структур, и в конечном итоге на удаление во внешнюю среду ненужных продуктов происшедших реакций. Метаболизм — это превращение в организме сложных веществ в простые и удаление продуктов распада.

Метаболизм связан с процессами синтеза и распада различных структур. В клетках образуются разнообразные вещества, используемые для построения, обновление структур клеток Синтез новых веществ проходит с затратой энергии . Процесс синтеза веществ называется анаболизмом, ассимиляцией . Это пластический обмен веществ , которому необходима энергия ,она образуется при распаде сложных полимеров на мономеры, воду, углекислый газ.

Реакции расщепления питательных веществ с выделением энергии , называется катаболизмом, диссимиляцией . Они сопровождаются энергетическим обменом веществ с участием ферментов.
Метаболизм включает процессы анаболизм и катаболизм, которые происходят в организме постоянно в течение всей жизни .Процессы анаболизма преобладают в детском возрасте, необходимы для роста. Преобладание процессов диссимиляции ведут к истощению, старению, гибели организма.
Питательные вещества, минеральные соли имеют определенное значение для организма, для них характерны свои процессы метаболизма, витамины играют в основном роль катализаторов биохимических процессов, так как большинство из них входят в состав ферментов.

Обмен воды и минеральных солей.

Обмен воды. На долю воды в организме приходится в среднем 65-70% массы тела. В разных органах процент воды отличается.

в костях около 20%

в головном мозге около 95%

Вода бывает внеклеточная и внутриклеточная. Около 300 мл образуется в организме в результате метаболизма.
С продуктами питания, при питье в сутки необходимо 1,5-2,5 л воды, такое же количество воды должно удаляться из организма: с потом 0,5л , с мочой 1,5л , при дыхании 0,5л ,с калом 0,1 л, что зависит от окружающей температуры воздуха

Вода выполняет жизненно важные функции:

1) растворитель веществ для метаболитических процессов

2) с водой в организм поступают минеральные вещества, водорастворимые витамины

3) участвует в терморегуляции, выделяясь с потом

4) участвует в биохимических процессах

Нарушение водного обмена связано с а) обезвоживанием организма при кровотечении, рвоте, диарее, опасно для жизни б) задержка в организме с образованием отеков, асцита. В подкожно-жировой клетчатке задержка воды - анасарка.

Минеральные вещества выполняют разнообразные функции..Общий вес минеральных веществ 4-5% от массы тела

регулирует кислотность и осмотическое давление крови, проводят импульсы

процессы возбуждения и торможения

поддерживает водно-солевой обмен влияет на работу мышц, миокарда, проводит нервные импульсы

картофель,греча,яблоки,абрикосы, курага, хлеб, мясо

процессы возбуждения и торможения

сердечнососудистую систему, передача нервных импульсов в синапсах, в гемостазе

молочные продукты, яйца, греча,горох,лук

сердечнососудистые, костной системы

нуклеиновые кислоты ,костной системе

зерновые и бобовые продукты

кроветворение, образование гемоглобина, процесс дыхания

костеобразование, обмен углеводов, сосудорасширяюшее действие, деторождение , снижает нервное возбуждение, улучшает половую функцию

глухота, деформация суставов

образование гормонов щитовидной железы

морская рыба и морские продукты питания, салат иодированный(красный),шампиньоны

построение зубов, костей

морские продукты, чай,изюм, тыква,просо,орех

для функции половых желез, кроветворения, в состав ферментов

аллергия, инфекционные болезни, пятна на ногтевых пластинках

кроветворения, тканевого дыхания, образование коллагена, меланина, в состав ферментов

мясо,рыба, продукты моря,греча,овсянка,картофель,орех

анемия, облысение, дерматозы

влияет на выработку иммунитета,задерживает развитие онкоклеток, для образования семенной жидкости

морская рыба и морские продукты, печень,мясо, яйца,дрожжи,подсолнух

регулирует обмен холестерина,образование инсулина

нарушение функции ногтей, волос,кожи,костей

для построение костей, эмали,половых гормонов,ЖВС,

остеопороз, эрозия и рак женских половых органов

для щитовидной железы, ЦНС(успокаивает

сердечнососудистую систему, снижает уровень холестерина, улучшает зрение

сахарный диабет, атеросклероз

кроветворение,образование витаминаВ12,всостав ферментов,

кроветворение,ЖВС,снижает артериальное давление крови,

чечевица, бобовые,груша, кукуруза,

влияет на иммунитет

бактерицидное,противовоспалительное,вяжущее действие, как антибиотик

Обмен белков.

"Жизнь — есть способ существования белковых тел" Ф.Энгельс. Все живое состоит из азотсодержащих веществ белков. Это полимеры-полипептиды, состоящие из мономеров- аминокислот (10 являются заменимыми, 10 незаменимыми).
Заменимые аминокислоты могут образовывать из других аминокислот, незаменимые должны поступать с пищей. Белки пищи, содержащие полный набор аминокислот, называются полноценными животного происхождения. Отсутствие в пищевом рационе даже одной аминокислоты приводит к заболеваниям.

Переваривание белков начинается в желудке под действием пепсина, он расщепляет их на молекулы меньшего размера.

В тонкой кишке ферменты кишечного и панкреатического соков (трипсин, химотрипсин, карбоксипептидаза, аминопептидаза) расщепляют белки до аминокислот, которые и всасываются в кровь в тонкой кишке. С током крови они проходят через печень, где гепатоциты синтезируют из аминокислот белки крови свертывающей системы( протромбин). Аминокислоты переносятся ко всем органам и тканям. для построения собственных белков, специфичных для организма. Синтез белков (первичная структура ) происходит на рибосомах под действием ферментов, затем образование вторичной, третичной структуры в комплексе Гольджи.

Белки азотсодержащие вещества. Организму в сутки необходимо 100— 110 г белка. Соотношение количества азота, поступившего в организм и удаленного из него, называют азотистым балансом. У взрослого человека в норме количество белка, поступившего в организм, равно количеству распавшегося. Это соотношение можно определить понятием азотистое равновесие. В детском возрасте для роста ребенка необходимо больше белков, чем выделяется , как и больным при выздоровлении. Это положительный азотистый баланс . В старческом возрасте, при длительном голодании и у ослабленных больных преобладает распад белков над его поступлением — это отрицательный азотистый баланс, или азотистый дефицит .

1)пластическая, входят в состав всех клеток, тканей

2)ферментативная - ферменты - это белки

3)регуляторная , гормоны , медиаторы - это белки Гормон роста (соматотропин), гормоны щитовидной железы (тироксин, трийодтиронин) оказывают анаболическое действие на метаболизм белков.

4)энергетическая , при расщеплении 1 г белка образуется 4,1 ккал тепла

5)специфические функции (актин и миозин в мышечной ткани выполняют сократительную, фибриноген сыворотки крови — свертывающую, иммуноглобулины крови — защитную и т.д.

Белки не депонируются в организме и при их дефиците происходит разрушение белков, они участвуют преимущественно в пластическом обмене. Конечный распад белков приводит к образованию воды, углекислого газа и аммиака, который затем преобразуется в мочевину.

Обмен углеводов

Углеводы поступают в организм в основном в виде полисахаридов (крахмала и гликогена) и дисахаридов (например, сахарозы). Ферменты слюны амилаза и мальтаза , кишечного и панкреатического сока продолжают действовать на углеводы и расщепляют их до моносахаридов (глюкоза, фруктоза.), которые всасываются в кишечнике. По воротной вене глюкоза поступает в печень, где образуется гликоген, полимер глюкозы. При мышечной нагрузке гликоген расщепляется на моносахариды, которые поступают в кровь, к органам и тканям Гликоген образуется и в мышечной ткани, во внутренних органах, кроме головного мозга Углеводный обмен регулирует поджелудочная железа, вырабатывающая гормон инсулин, он уменьшает количество сахара в крови. К гормонам, увеличивающим количество глюкозы в плазме крови, относятся адреналин, глюкагон.. Нормальная концентрация глюкозы в крови — 4,2 —6,4 ммоль/л. Понижение уровня глюкозы ниже 4,2 ммоль/л называется гипогликемией. Повышение выше нормы — гипергликемией. Суточное количество углеводов 400-500г.

Функции углеводов:

1. энергетическая функция - при распаде 1 г глюкозы выделяется 4,1 ккал энергии.

2.пластическая функция- излишнее количество углеводов превращается в жиры, жирные кислоты

Конечные продукты выводятся через почки вода и легкие (С02).При недостатке глюкозы в крови возникает обморок. Больше других органов в глюкозе нуждается головной мозг.

Обмен жиров.

Жиры плохо растворяются в воде. После обработки пищи в ротовой полости и желудке химус содержит их в виде крупных скоплений, капель. Желчные кислоты, содержащиеся в желчи, эмульгируют жиры, образуют из них мелкие капли и на нейтральные жиры начинают действовать липазы кишечного и панкреатического соков, а на сложные жиры фосфолипиды - фосфолапаза. Жиры расщепляются на жирные кислоты и глицерин., которые всасываются в лимфу ворсинок тонкого кишечника . С током лимфы липиды попадают в кровь ко всем клеткам и тканям. Больше всего липидов в жировой ткани (до 90%) подкожной жировой клетчатке -гиподерме . В сутки необходимо около 100 г жиров. Соотношение белков: жиров: углеводов - 1:1:4.

Употребление большого количества жиров приводит к ожирению, образованию бляшек в сосудах и развитию атеросклероза, нарушению кровотока, образованию камней в желчных путях. Жиры могут синтезироваться из белков и углеводов.

Функции липидов:

1) пластическая - входят в структуры клеток ( мембраны);

2) энергетическая -при их распаде 1 г жира образуется 9,3 ккал

3) гормональная- половые гормоны стероидного происхождения, жироподобные вещества

4) в организм поступают жирорастворимые витамины (A, D, Е, К);

5)терморегуляторная -жиры подкожной жировой клетчатки участвуют в поддержании температурного гомеостаза организма.

6)источник воды-при окислении 100г жира образуется 118 мл. воды.

Витамины делятся на жирорастворимые и водорастворимые. Жирорастворимые витамины поступают в организм с жирами пищи, без которых невозможно их всасывание. Обозначаются витамины латинскими буквами и имеют название. Жирорастворимые витамины A, D, Е, К. Водорастворимые витамины группы В, С.

таблица 14 Витамины

расстройства,заболе-

жирорастворимые витамины

на рост,выработку родопсина

куриная слепота, ксерофтальмия

ультрафиолетовое излучение,яйца,масло,молоко,рыбий жир

злаки, масло, зеленые овощи, шпинат

противостерильный, от бесплодия,на половую систему

крапива,образуется в толстом кишечнике,шпинат, капуста

водорастворимые витамины

антицинготный,повышает сопротивляемость к инфекциям, простуде,на построение коллагена

укрепляет стенку капилляров

синтезируется в кишечнике,мясо,печень,яйца,дрожжи

пеллагра(три Д) дерматит,диарея,деменция. анемия

влияет на нервную систему

синтезируется в кишечнике

синтезируется в желудке,содержится в печени,мясе,яйцах

антианемический,влияет на кроветвореие

синтезируется в толстом кишечнике

В продуктах питания часто находятся провитамины, которые в организме превращаются в активные витамины, например, каротин моркови в ретинол.

Распад и окисление органических веществ в клетках

Для жизнедеятельности организма постоянно требуется энергия. Она образуется при распаде органических соединений — в основном углеводов и жиров, в меньшей степени — белков. Белки нужны организму человека для обеспечения анаболических процессов. Энергия выделяется при разрушении химических связей.

Для окислительных процессов в организме необходим кислород . Дефицит кислорода наблюдается в клетках при чрезмерной физической нагрузки. . При окислении веществ образуется молочная кислота. При значительном накоплении молочной кислоты возникают болезненные ощущения, связанные с закислением внутренней среды организма.

1.Теплопроведение— это отдача тепла через непосредственное соприкосновение тела человека с другими физическими телами (например, одеждой, водой). (15 %)

2.Излучение—это отдача тепла в окружающую среду поверхностью тела посредством инфракрасных волн.( воздух аудиторий нагревается) ( 66%)

Конвекция— способ отдачи тепла при контакте тела с движущимися потоками воздуха.

3. Теплоиспарение - это отдача тепла испарением пота с поверхности тела при физической работе или влаги с поверхности слизистых оболочек (19%.). Количество жидкости за 1 час может выделится при физической работе до 2 литров. 1 мл пота выделяет 0,58 ккал тепла.

Основную роль в теплоотдаче играет кожа. При высокой температуре воздуха кровеносные сосуды расширяются , усиливается потоотделение . При пониженной температуре воздуха сосуды суживаются и тепло сохраняется в организме.
На отдачу тепла имеют значение влажность воздуха, движение ветра, одежда, температура воздуха, физическая работа.

Регуляция обмена веществ

Регуляция теплообмена происходит нейрогуморальным путем.
Центр терморегуляции находится в гипоталамусе (промежуточном мозге, к нему поступают импульсы от терморецепторов, которые воспринимают изменение температуры различных участков тела человека даже на 0,01 градуса. Этот отдел головного мозга включает в себя важные центры обмена веществ: голода и насыщения, жажды, терморегуляции через вегетативную нервную систему. Эндокринная система оказывает решающее влияние на регуляцию обмена веществ и энергии. Гормоны действуют на биохимические превращения непосредственно в клетке, вызывая изменения в функциях всего организма. Соматотропный гормон гипофиза оказывает анаболическое действие, ускоряя синтез пластических веществ, ускоряет рост. Гормоны мозгового вещества надпочечников усиливают окислительные процессы, энергообразование. Тироксин и трийодтиронин (гормоны щитовидной железы) стимулируют синтез белка из аминокислот и разрушение жиров и углеводов .

Нажмите, чтобы узнать подробности

ЦЕЛЬ: Представлять общую схему обмена веществ в организме, обмен белков, жиров, углеводов и проявления патологии этих видов обмена.

Поступив в организм, молекулы пищевых веществ участвуют в множестве различных реакций. Эти реакции, а также остальные химические проявления жизнедеятельности называются обменом веществ, или метаболизмом. Пищевые вещества либо используются в качестве сырья для синтеза новых клеток, либо окисляются, доставляя организму энергию. Часть этой энергии необходима для непрерывного построения новых тканевых компонентов. Другая часть расходуется в процессе функционирования клеток: при сокращении мышц, передаче нервных импульсов, секреции клеточных продуктов. Остальная энергия освобождается в виде тепла.

Процессы обмена веществ принято разделять на анаболические и катаболические. Анаболизмом (ассимиляцией) называют химические процессы, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом (диссимиляцией) называют расщепление этих сложных веществ, приводящее к освобождению энергии. При этом происходит разрушение протоплазмы и расходование составляющих ее веществ.

Таким образом, сущность обмена веществ заключается:

в поступлении в организм из внешней среды различных питательных веществ;

в усвоении и использовании их в процессе жизнедеятельности как источников энергии и материала для построения тканей;

3) в выделении образующихся продуктов обмена во внешнюю среду.
В этой связи выделяются 4 специфические функции обмена веществ:

извлечение энергии из окружающей среды в форме химической энергии органических веществ;

превращение экзогенных веществ в строительные блоки, т.е. предшественники макромолекулярных компонентов клетки;

сборка белков, нуклеиновых кислот и других клеточных компонентов из этих строительных блоков;

синтез и разрушение тех биомолекул, которые необходимы для выполнения различных специфических функций данной клетки.

Обмен белков - это совокупность пластических и энергетических процессов превращения белков в организме, включая обмен аминокислот и продуктов их распада. Белки составляют основу всех клеточных структур и являются материальными носителями жизни. Биосинтез белков определяет рост, развитие и самообновление всех структурных элементов в организме и тем самым их функциональную надежность. Суточная потребность в белках (белковый оптимум) для взрослого человека в среднем составляет 100-120 г (при трате энергии 3000 ккал/сутки). В распоряжении организма должны быть все аминокислоты (20) в определенном соотношении и количестве, иначе белок не может быть синтезирован. Многие составляющие белок аминокислоты (8 - валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин, триптофан) не могут синтезироваться в организме и должны поступать с пищей. Это так называемые незаменимые аминокислоты. Другие аминокислоты, которые могут быть синтезированы в организме, называются заменимыми (их 12: гликокол, аланин, глутаминовая кислота, пролин, оксипролин, серии, тирозин, цистеин, аргинин, гистидин и др.). Исходя из этого, белки делят на биологически полноценные (с полным набором всех восьми незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Всосавшись в кровеносные капилляры ворсинок слизистой оболочки

тонкого кишечника, аминокислоты по воротной вене поступают в печень, где они либо немедленно используются, либо задерживаются в качестве небольшого резерва. Часть аминокислот остается в крови и попадает в другие клетки тела, где они включаются в состав новых белков

Период обновления общего белка в организме составляет у человека 80 дней. Белки, которые организм расходует после истощения запаса углеводов и жиров, - это не резервные белки, а ферменты и структурные белки самих клеток.

Нарушения обмена белков в организме могут быть количественные и качественные. О количественных изменениях белкового обмена судят по азотистому балансу, т.е. по соотношению количества азота, поступившего в организм с пищей и выделенного из него.

Качественные изменения белкового обмена приводят к изменениям в структуре клеток и тканей - белковым дистрофиям - диспротеинозам. Одни из них проявляются в изменениях белка в клетках - паренхиматозные (клеточные) дистрофии, другие - в изменениях внеклеточного белка тканей - мезенхимальные (внеклеточные) дистрофии.

Обмен жиров - это совокупность процессов превращения липидов (жиров) в организме. Жиры являются энергетическим и пластическим материалом, входят в состав оболочки и цитоплазмы клеток. Часть жиров накапливается в виде запасов, составляющих 10-30% массы тела. Основная масса жиров - это нейтральные липиды (триглицериды олеиновой, пальмитиновой, стеариновой и других высших жирных кислот). Суточная потребность в жирах для взрослого человека в среднем составляет 70-100 г. Некоторые, ненасыщенные жирные кислоты (линолевая, линоленовая, арахидоновая, являются незаменимыми и не могут образовываться в организме человека из других жирных кислот. Поэтому они должны обязательно поступать с пищей (растительные и животные жиры). Суточная потребность в незаменимых жирных кислотах для взрослого человека составляет 10-12 г.

Основными этапами жирового обмена являются:

ферментативное расщепление жиров пищи до глицерина и жирных кислот и всасывание последних в тонком кишечнике;

образование липопротеидов в слизистой оболочке кишечника и в печени и транспорт их кровью;

гидролиз этих соединений на поверхности клеточных мембран, всасывание жирных кислот и глицерина в клетки органов и тканей. После синтеза липиды могут подвергаться окислению, выделяя энергию, и превращаться в конечном итоге в углекислый газ и воду (100 г жиров дает при окислении 118 г воды). Жир может трансформироваться в гликоген, а затем подвергаться окислительным процессам по типу углеводного обмена. При избытке жир откладывается в виде запасов в подкожной клетчатке, большом сальнике, вокруг некоторых внутренних органов.

С пищей, богатой жирами, человек принимает жироподобные вещества - фосфатиды и стерины. Фосфатиды необходимы организму для синтеза клеточных мембран, они входят в состав ядерного вещества, цитоплазмы клеток Главным представителем стеринов является холестерин. Он также входит в состав клеточных мембран, является предшественником гормонов коры надпочечников, половых желез, витамина D, желчных кислот. Холестерин повышает устойчивость эритроцитов к гемолизу, служит своеобразным изолятором для нервных клеток, обеспечивая проведение нервных импульсов. Нормальное содержание общего холестерина в плазме крови составляет 3,11-6,47 ммоль/л (120-250 мг%),

Патология жирового обмена проявляется чаще всего в общем увеличении нейтрального жира в организме, называемом общим ожирением, или тучностью. Причиной этого могут быть нейроэндокринные расстройства, а также избыточное питание, алкоголизм, малоподвижный образ жизни.

Нарушение обмена холестерина заключается в очаговом накоплении его в интиме крупных артерий, что лежит в основе атеросклероза. С нарушением холестеринового обмена связано также образование желчных камней в желчном пузыре.

Обмен углеводов - это совокупность процессов превращения углеводов в организме. Углеводы являются источниками энергии для непосредственного использования (глюкоза) или образуют депо энергии (гликоген),

Суточная потребность в углеводах взрослого человека в среднем составляет 400-500 г.

Основными этапами углеводного обмена являются:

расщепление углеводов пищи в желудочно-кишечном тракте и всасывание моносахаридов в тонком кишечнике;

депонирование глюкозы в виде гликогена в печени и мышцах или непосредственное ее использование в энергетических целях;

расщепление гликогена в печени и поступление глюкозы в кровь по мере ее убыли в крови (мобилизация гликогена);

синтез глюкозы из промежуточных продуктов (пировиноградной и молочной кислот) и неуглеводных предшественников;

5) превращение глюкозы в жирные кислоты;

6) окисление глюкозы с образованием углекислого газа и воды.
Углеводы всасываются в пищеварительном канале в виде глюкозы,фруктозы, галактозы.. Они поступают по воротной вене в печень, где фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде гликогена (полисахарид). Процесс синтеза гликогена в печени из глюкозы называется гликогенезом

Глюкоза является постоянной составной частью (биологической константой) крови. Содержание глюкозы в крови человека в норме составляет 4,44-6,67 ммоль/л (80-120 мг%). При увеличении ее содержания в крови (гипергликемии) до 8,34-10 ммоль/л (150-180 мг%) она выводится с мочой в виде следов. При понижении уровня глюкозы в крови (гипогликемии) до 3,89 ммоль/л (70 мг%) появляется чувство голода, до 3,22 ммоль/л (40 мг%) - возникают судороги, бред и потеря сознания (кома).

При окислении глюкозы в клетках для получения энергии она в конечном итоге превращается в углекислый газ и воду. Процесс распада гликогена в печени до глюкозы называется гликогенолизом. Процесс биосинтеза углеводов из продуктов их распада или продуктов распада жиров и белков называется гликонеогенезом. Процесс расщепления углеводов при отсутствии кислорода с накоплением энергии в АТФ и образованием молочной и пировиноградной кислот называется гликолизом.

Когда поступление глюкозы превышает непосредственную потребность в этом веществе, печень превращает глюкозу в жир, который откладывается про запас в жировых депо и может быть использован в будущем как источник энергии.

Нарушение нормального обмена углеводов проявляется прежде всего повышением содержания глюкозы в крови. Постоянная гипергликемия и глюкозурия, связанная с глубоким нарушением углеводного обмена, наблюдается при сахарном диабете. В основе этой болезни лежит недостаточность инкреторной функции поджелудочной железы. Вследствие недостатка или отсутствия инсулина в организме нарушается способность тканей использовать глюкозу, и она выводится с мочой.


Метаболизм – обмен веществ и энергии - представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

Согласно современным представлениям расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих три главные стадии катаболизма. На первой стадии полимерные органические молекулы распадаются на составляющие их специфические структурные блоки - мономеры. Так, полисахариды расщепляются до гексоз или пентоз, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов и нуклеозидов, липиды — до жирных кислот и глицерина. Эти реакции протекают в основном гидролитическим путем и количество энергии, освобождающейся на этой стадии, не превышает 1% от всей выделяемой в ходе катаболизма энергии, и почти целиком используется организмом в качестве тепла.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

Главным катаболическим процессом в обмене веществ принято считать биологическое окисление - совокупность реакций окисления, протекающих во всех живых клетках, - а именно дыхание и окислительное фосфорилирование. Интегральной характеристикой биологического окисления служит так называемый дыхательный коэффициент (RQ), который представляет собой отношение объема выделенного организмом углекислого газа к объему одновременно поглощенного кислорода. При окислении углеводов объем расходуемого кислорода соответствует объему образующегося углекислого газа и поэтому дыхательный коэффициент в этих случаях равен единице. При окислении жиров и белков такое соответствие отсутствует, поскольку кроме окисления углерода до углекислого газа часть кислорода расходуется на окисление водорода с образованием воды. Вследствие этого величины дыхательного коэффициента в случае окисления жиров и белков составляют соответственно около 0, 7 и 0, 8. Подавляющая часть белкового азота при окислении белка в организме переходит в мочевину. Поэтому по дыхательному коэффициенту и данным о количестве выделяемой мочевины можно определять соотношение участвующих в биологическом окислении углеводов, жиров и белков.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.


Общая характеристика обмена веществ

Обмен веществ (метаболизм) — одно из основных свойств живого организма. Суть его в постоянном поступлении и выведении из организма различных веществ. В организм человека поступает кислород, вода, органические и неорганические вещества. Сложные органические вещества, поступающие в организм, расщепляются до простых веществ, всасываются и поступают в клетки, где часть подвергается распаду и окислению до воды углекислого газа, аммиака, мочевины, молочной кислоты, обеспечивая организм энергией — реакции диссимиляции, или энергетического обмена (катаболизма).

Другая часть поступивших веществ является строительным материалом для реакций ассимиляции, или пластического обмена (анаболизма). Из организма удаляются углекислый газ, продукты обмена, выделяется энергия.

Реакции ассимиляции и диссимиляции протекают одновременно и взаимосвязано. Синтез веществ требует энергии, которая образуется в реакциях энергетического обмена, а для реакций энергетического обмена нужны ферменты, синтезируемы в результате ассимиляции.

Обмен веществ зависит от выполняемой работы, от возраста, от состояния человека. В период роста преобладают реакции пластического обмена, в период старения реакции катаболизма. Регуляция осуществляется с помощью нервной системы и желез внутренней секреции.

Белковый обмен

Белки составляют около 25% от массы тела. В пище различают белки растительного и животного происхождения, все они состоят из 20 видов аминокислот, из которых 10 являются незаменимыми — не могут синтезироваться в организме человека и должны поступать вместе с пищей.

В зависимости от аминокислотного состава белки делят на две группы: полноценные, содержащие все виды аминокислот и неполноценные. Растительные белки чаще неполноценные, в них могут отсутствовать некоторые аминокислоты, поэтому пища вегетарианцев должна быть разнообразной.

При положительном азотистом балансе в организм поступает больше азота, чем выделяется, например, во время роста; при отрицательном балансе — наоборот. Выведение 1 г азота соответствует распаду 6,25 г белка. Суточная потребность в белке 50-150 г. При избытке белки превращаются в углеводы и жиры. Синтезироваться из углеводов и жиров не могут.

В регуляции белкового обмена играют важную роль некоторые гормоны, например, тироксин, который вызывает расщепление белков и превращение их в углеводы; соматотропный гормон усиливает биосинтез белков организмом.

Углеводный обмен

Углеводы составляют около 1% от массы тела. В организм поступают в виде моно-, ди- и полисахаридов. Под действием ферментов амилазы, мальтазы, лактазы, сахаразы происходит их гидролиз до глюкозы, которая поступает в кровь. Содержание глюкозы в крови относительно постоянно, в норме — 0,12%, это основной источник энергии для клеток организма. При её избытке, с помощью инсулина активируются ферменты, снижающие уровень глюкозы в крови, она поступает в клетки печени и мышц, где превращается в гликоген. При недостатке глюкозы ряд гормонов (глюкагон, адреналин, ТТГ, тироксин, АКТГ, СТГ, адреналин) приводят к расщеплению гликогена и выведению глюкозы в кровь, а затем в клетки, где она подвергается гликолизу и кислородному окислению.

Основная функция углеводов в организме — энергетическая. При расщеплении выделяется 17,6 кДж на 1 г. Суточное потребление должно составлять около 500 г. В результате пластического обмена синтезируется гликоген, углеводы, входящие в состав клеточных мембран, слизи и другие вещества.

При недостаточном поступлении углеводов с пищей они могут быть образованы из белков и жиров, при избыточном — превращаться в жиры.

Жировой обмен

Жиры составляют 10-20% от массы тела. Состоят из глицерина и жирных кислот. Жирные кислоты могут быть насыщенными (в твердых, животных жирах) и ненасыщенными (в маслах). Последние не синтезируются в организме и должны поступать с пищей. Взрослому организму необходимо около 100 г в сутки. Под действием желчи эмульгируются, под действием липаз гидролизуются, в клетках кишечного эпителия синтезируются транспортные формы жиров, которые поступают в лимфу.

При пластическом обмене фосфолипиды образуют мембраны клеток, жиры входят в состав медиаторов, гормонов, ферментов. Избыток жиров запасается в жировых клетках сальника, подкожной жировой клетчатки. При катаболизме обеспечивают организм энергией, при окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии.

Главные функции: структурная — входят в состав мембран, энергетическая, источник метаболической воды (100 г жира при окислении образуют 107 г воды), теплоизоляционная, жиры образуют миелиновые оболочки нервных клеток.

В регуляции жирового обмена большую роль играют гормоны аденогипофиза, щитовидной железы, надпочечников. Жиры способны превращаться в углеводы. Синтез жиров может осуществляться из углеводов и белков.

Водно-солевой обмен

Вода составляет около 60% от массы тела. В мышцах до 80%, в костях до 20%. В сутки в среднем потребляется 2,5 л: 1,2 л в виде жидкостей, 1 л с пищей, 0,3 л образуется метаболической воды. Выводится почками, кишечником, кожей и легкими. Избыток и недостаток воды приводят к отравлению организма. Содержание воды в организме регулируется нейрогипофизом, выделяющим вазопрессин, а также корой надпочечников, секретирующей гормон альдостерон. Оба этих гормона регулируют работу почек. Например, если в крови солей больше нормы, нейрогипофиз выделяет больше вазопрессина. Антидиуретический гормон уменьшает мочеобразование и мочевыделение, сохраняя воду в организме.

Функции: вода необходима для нормально течения многих физиологических процессов: является растворителем, принимает участие в образовании структуры органических молекул, выполняет транспортные функции, участвует в регуляции температуры, участвует в реакциях гидролиза различных веществ.

Водный обмен тесно связан с минеральным обменом. Минеральные вещества необходимы организму для самых различных функций: обуславливают осмотическое давление, участвуют в проведении нервного возбуждения, в мышечных сокращениях, свертывании крови. Составляют около 4% от массы организма.

Недостаток минеральных веществ приводит к различным нарушениям, обмена веществ, у детей сказывается на их развитии и росте.

Витамины

В пище содержатся также витамины — органические вещества, которые в организме человека или не синтезируются вовсе, или синтезируются в недостаточных количествах. Впервые их наличие было предположено русским ученым Н.И.Луниным в 1880 году. Их принято обозначать буквами латинского алфавита и делить на жирорастворимые А, D, E, K и водорастворимые. В настоящее время известно около 50 витаминов. Интересно, что вещество, являющееся витамином для одного организма, для других видов витамином не является. Например, витамин С необходим человеку, всем приматам, а большинство других млекопитающих его могут синтезировать.

Витамины входят в состав ферментов. Соединяясь с белками, образуют ферменты; необходимы для нормального обмена веществ. Общее количество витаминов, необходимое человеку незначительно, отсутствие какого-либо витамина в пище приводит к авитаминозу. Избыток витамина приводит к гипервитаминозам и различным нарушениям обмена веществ. Содержатся витамины в растительной пище и животной пище.

Количество витаминов в пище колеблется в зависимости от времени хранения овощей и фруктов, от приготовления пищи. Например, витамин А теряется при длительном хранении и сушке, при варке разрушается часть витаминов группы В и часть витамина С. Витамин С разрушается при контакте с воздухом и металлом.

Важнейшие витамины, их источники и значение.

Физиологическое действие, авитаминозы

Влияет на зрение, рост и развитие. Участвует в образовании зрительного пигмента. При авитаминозе — нарушение сумеречного зрения (куриная слепота), повреждение роговицы глаз, сухость эпителия и его ороговение.

Животные жиры, мясо, печень, яйца, молоко. Источники каротина, из которого образуется витамин А — морковь, абрикосы.

Регулирует обмен кальция и фосфора. При его недостатке в детском возрасте развивается рахит.

Яичный желток, печень, рыбий жир. Образуется в коже под действием ультрафиолетовых лучей.

Обладает противовоокислительным действием на внутриклеточные липиды. При недостатке — дистрофия скелетных мышц, ослабление половой функции.

Участвует в синтезе протромбина, способствует нормальной свертываемости крови.

Шпинат, салат, капуста, морковь, томаты. Синтезируется микрофлорой кишечника.

Участвует в обмене белков, жиров, углеводов, функции желудка, сердца. При недостатке — полиневрит (бери-бери), поражения нервной системы.

Крупы, молочные продукты, яйца, фрукты.

РР, никотиновая кислота

Участвует в клеточном дыхании, нормализует функции желудочно-кишечного тракта, при недостатке развивается пеллагра (воспаление кожи), понос, слабоумие.

Дрожжи, отруби, пшеница, рис, ячмень, арахис.

Кроветворение. Всасывается, соединившись с белками желудочного тракта — фактором Кастла. При недостатке — анемия.

Печень, мясо, рыба, яйца. Вырабатывается микрофлорой кишечника.

Участвует в окислительно-восстановительных реакциях, активизирует расщепление белков, это приводит к потере сосудами эластичности, к цинге. Увеличивает устойчивость к инфекциям

Шиповник, хвоя, зеленый лук, черная смородина, картофель, капуста.

Читайте также: