Жидкие среды организма реферат

Обновлено: 02.07.2024

Кровь – внутренняя среда организма, образованная жидкой соединительной тканью.

Состоит из плазмы и клеток (лейкоцитов, эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями тела. В среднем, массовая доля крови к общей массе тела человека составляет 6,5-7 %.

Плазма крови – жидкая часть крови, которая содержит воду и взвешенные в ней вещества (белки и другие соединения). Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).

Эритроциты (красные кровяные тельца) – самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке. В эритроцитах содержится железосодержащий белок – гемоглобин. Он обеспечивает главную функцию эритроцитов – транспорт газов, в первую очередь – кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин, который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ.

Тромбоциты (кровяные пластинки) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга (мегакариоцитов). Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от кровопотери.

Лейкоциты (белые клетки крови) являются частью иммунной системы организма. Они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов — защита от чужеродных тел и соединений. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества; В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.

Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новых органами кроветворения. Главным из них у человека и других млекопитающих является костный мозг. У человека красный, или кроветворный, костный мозг расположен в основном в тазовых костях и в длинных трубчатых костях.

Функции крови в организме

Кровь непрерывно циркулирует в замкнутой системе кровеносных сосудов и выполняет в организме различные функции, такие как:

  • Транспортная — передвижение крови; в ней выделяют ряд подфункций:
    • Дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;
    • Питательная — доставляет питательные вещества к клеткам тканей;
    • Экскреторная (выделительная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;
    • Терморегулирующая — регулирует температуру тела.
    • Регуляторная — связывает между собой различные органы и системы, перенося сигнальные вещества (гормоны), которые в них образуются.



    Соблюдение совместимости крови именно по этим группам имеет особое значение для безопасного переливания крови. Существуют и другие, менее значимые группы крови. Можно определить вероятность появления у ребёнка той или иной группы крови, зная группу крови его родителей.

    Сведения о составе, физико-химических свойствах и физиологической роли внутрисосудистых (кровь, лимфа) и внесосудистых (цереброспинальная, плевральная и синовиальная жидкости, жидкие среды глазного яблока, слезы, пот) жидкостей. Основные константы крови.

    Рубрика Медицина
    Вид учебное пособие
    Язык русский
    Дата добавления 09.12.2014
    Размер файла 105,5 K

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Министерство здравоохранения Республики Беларусь

    Кафедра нормальной физиологии

    Физиология жидких сред организма человека

    доктор биологических наук, профессор

    К38 Физиология жидких сред организма человека : Учебное пособие. - Гомель, 2004. - 68 с.

    В основу пособия положен материал лекций по нормальной физиологии, читаемых автором студентам лечебного факультета и факультета по подготовке специалистов для зарубежных стран.

    В пособии представлены современные сведения о составе, физико-химических свойствах и физиологической роли внутрисосудистых (кровь, лимфа) и внесосудистых (цереброспинальная, плевральная и синовиальная жидкости, жидкие среды глазного яблока, слезы, пот) жидкостей. Рассматриваются возрастные особенности системы крови. В конце пособия представлены основные константы крови и список источников литературы.

    Для студентов, аспирантов и преподавателей ВУЗов медицинского и биологического профиля и смежных с ними специальностей. Может быть полезным для практических врачей.

    внутрисосудистый кровь жидкость пот

    Предисловие ко 2-му изданию

    1. Физиология крови

    1.1 Понятие о системе крови

    1.2 Основные функции крови

    1.3 Состав и количество крови

    1.4 Плазма крови

    1.5 Физико-химические свойства крови

    1.6 Форменные элементы крови

    1.6.1.3 Скорость оседания эритроцитов (СОЭ)

    1.7.1 Свертывающая система крови

    1.7.1.1 Сосудисто-тромбоцитарный гемостаз

    1.7.1.2 Коагуляционный гемостаз

    1.7.2 Противосвертывающая система крови

    1.7.2.2 Противосвертывающие механизмы

    1.8 Регуляция свертывания крови

    1.9 Группы крови

    1.11 Физиологические механизмы переливаемой крови

    1.12 Регуляция системы крови

    1.13 Кровезамещающие растворы

    1.14 Возрастные особенности системы крови

    2. Физиология лимфы

    3. Внесосудистые жидкие среды

    4. Основные константы крови

    Введение

    В пособие включены современные сведения о составе, количестве, функциях и физико-химических свойствах крови, ее участии в поддержании гомеостаза. Анализируются изменения количества крови (нормо-, гипер- и гиповолемии). Представлены сведения об особенностях строения, химическом составе, свойствах и функциях эритроцитов, изменениях их количества. Изложены данные о строении, видах, соединениях, количестве и функциях гемоглобина. Дано понятие гемолиза, его видов и факторов его вызывающих. Раскрывается сущность СОЭ, указываются факторы ее определяющие, и ее диагностическая значимость. Представлена классификация лейкоцитов, описываются их свойства и связанные с ними функции отдельных их популяций. Дается анализ лейкоцитарной формулы и указывается ее диагностическая значимость. Рассматриваются изменения количества лейкоцитов, виды лейкоцитозов. Изложены сведения о строении, образовании, химическом составе, количестве и функциях тромбоцитов. Представлены сведения о сущности системы гемостаза. Рассматриваются факторы свертывающей и противосвертывающей систем (плазменные, тканевые, форменных элементов). Излагаются механизмы регуляции свертывания крови. Рассматриваются факторы, определяющие групповую и резусную принадлежность крови (по системе АВО и Rh), их особенности и свойства, основные принципы подбора донорской крови, правила переливания крови, физиологические механизмы действия переливаемой крови и факторы риска для реципиента. Анализируются основные функции лимфатической системы, состав и свойства лимфы, факторы, определяющие ее образование и движение. Рассматриваются нейро-гуморальные механизмы регуляции системы крови. Дано понятие о кровезамещающих растворах, приводятся требования, предъявляемые к ним, и классификация по функциональному назначению. Отдельно рассматриваются возрастные особенности системы крови. Представлены данные о составе, физико-химических свойствах и физиологической роли внесосудистых жидкостей (цереброспинальной, плевральной, синовиальной, жидких сред глазного яблока, слез, пота). В конце пособия представлены основные константы крови здорового человека.

    При этом автор осознает, что в данном пособии в связи с небольшим его объемом не представилось возможным осветить подробно все аспекты физиологии жидких сред организма человека, поэтому часть из них представлена в конспективном виде, более расширенные сведения о которых можно найти в приведенных в конце пособия источниках литературы.

    Профессор А.И. Киеня

    Предисловие ко 2-му изданию

    Профессор Э.С. Питкевич

    1. Физиология крови

    1.1 Понятие о системе крови

    Кровь вместе с тканевой жидкостью и лимфой является важнейшим компонентом внутренней среды организма, относительное постоянство которой, в том числе физико-химических показателей (рН, осмотическое давление, температура, и др.), является необходимым условием жизнедеятельности организма. Изучение этих свойств крови необходимо для понимания деятельности органов, физиологических и функциональных систем организма (кислородтранспортной системы, регуляции водно-солевого обмена, кислотно-щелочного состояния, поддержание возбудимости клеток др.). Изменения физико-химических свойств крови, являющихся важным механизмом в патогенезе многих заболеваний, используются для их диагностики, оценки эффективности лечения и прогноза.

    Рассматривая функции, физико-химические свойства крови, ее состав, механизмы регуляции кроветворения и кроверазрушения необходимо исходить из того, что это целая система, т. е. система крови, которая по предложению Г. Ф. Ланга (1939), включает:

    1. Кровь (в сосудах).

    2. Органы кроветворения - красный костный мозг, лимфатические узлы, селезенка, тимус.

    3. Органы кроверазрушения (печень, костный мозг, селезенка).

    4. Регулирующий нейрогуморальный аппарат.

    Главным местом образования клеток крови является красный костный мозг. В нем же происходит и разрушение клеток (эритроцитов), реутилизация железа, синтез Hb, а также созревание популяций B-лимфоцитов - факторов гуморального иммунитета.

    В тимусе - происходит образование Т-лимфоцитов. Кроме того, в выработке иммунных компонентов принимают участие селезенка, лимфатические узлы и другие лимфоидные образования (пейеровы бляшки, миндалина, червеобразный отросток и др.).

    В селезенке - осуществляется лимфоцитопоэз, синтез Ig, разрушение эритроцитов, лейкоцитов, тромбоцитов, депонировании крови.

    1.2 Основные функции крови

    Транспортная (перенос различных веществ).

    Дыхательная (перенос кислорода от органов дыхания к тканям и СО2 в обратном направлении).

    Трофическая или питательная (перенос питательных веществ от пищеварительного тракта к клеткам организма и использование клетками тканей и органов компонентов крови для пластических и энергетических нужд).

    Экскреторная (перенос к органам выделения ненужных или вредных для организма веществ: конечных продуктов обмена веществ, избытка минеральных и органических веществ, образующихся в процессе обмена, или поступивших с пищей).

    Терморегулирующая (кровь, обладая большой теплоемкостью и находясь в постоянном движении, протекая через органы и ткани, в которых образуется много энергии, нагревается, т.е. забирает часть тепла и разносит его по всему телу, включая органы, отдающие тепло. Через посредство терморецепторов с участием гипоталамических и других нервных центров осуществляется регуляция процессов, связанных с теплообразованием и теплоотдачей).

    Гомеостатическая (вместе с тканевой жидкостью и лимфой создает внутреннюю среду организма и участвует в поддержании ее постоянства).

    Обеспечивает водно-солевой обмен между кровью и тканями.

    Защитная (содержит факторы гуморального и клеточного иммунитета: антитела, фагоциты, факторы свертывания, бета-лизины, интерфероны, интерлейкины, комплемент, популяции Т- и В -лимфоцитов и др.).

    Коррелятивная (находясь в постоянном движениичерез посредство переносимых различных физиологически активных веществ обеспечивает взаимосвязь между различными органами и тканями, в результате чего организм функционирует как единое целое).

    Функция креаторных связей (состоит в переносе плазмой и форменными элементами макромолекул, (эритропоэтины, фактор роста нервов, лейкопоэтины и др.), осуществляющих в организме информационные связи, которые обеспечивают регуляцию внутриклеточных процессов, межклеточных связей, степень дифференцировки клеток, поддержание структуры тканей).

    Поддержание постоянства кислотно-щелочного состояния (за счет карбонатной, фосфатной, белковой и гемоглобиновой буферных систем).

    1.3 Состав и количество крови

    Кровь состоит из плазмы и форменных элементов (эритроцитов, тромбоцитов, лейкоцитов). Между объемом плазмы и форменных элементов существует определенное соотношение, которое выражается гематокритным числом.

    Гематокрит - это часть объема крови, приходящая на долю клеточной части. В норме у мужчин объем эритроцитов составляет 44 - 46% , плазмы 54 - 56%. Для перевода в СИ полученное число умножают на 0,01 и получают величину гематокрита. В норме он равен: у мужчин 0,44 - 0,46, у женщин 0,41 - 0.43. У новорожденных гематокрит на 10% выше. Изменение величины гематокрита отражает степень концентрации или разведения крови.

    Количество крови. У взрослого человека абсолютное количество крови составляет примерно 4,5 - 6 литров. Относительное ее содержание соответствует 6 - 8% массы тела (у новорожденного - 15%). В расчете на 1 кг массы взрослого человека приходится 70 - 80 мл крови, у детей значительно выше (например, у 10- летних детей - 95 -100 мл).

    Нормальное содержание крови называется нормоволемией. Различают нормоволемию простую, олигоцитемическую и полицитемическую (табл.1).

    Исраилова В. К. – заведующая кафедрой анестезиологии и реаниматологии КазНМУ, доктор медицинских наук.


    Составители: к.м.н. Батырханова Н.М., ассистент Прмагамбетов Г.К., резидент Иманбекова К.Б., резидент Тлеубаев С.С., под редакцией доцента Чурсина В.В.

    Справочное пособие содержит информацию о физиологии водно-солевого обмена (ВСО). Также представлена информация о методах клинической и лабораторной диагностики нарушений ВСО. Перечислены варианты дисгидрий и методы лечения. Предназначается для врачей всех специальностей, курсантов ФПК и студентов медвузов.

    Вода организма

    В норме у взрослого человека на долю воды приходится около 60% массы тела. Оставшиеся 40% массы тела составляет сухой остаток, который содержит белки 18%, жиры 16%, углеводы 1% и минеральные соли 5%.
    Вода является, универсальным биологическим растворителем и только в водной среде могут протекать все сложнейшие биохимические процессы в живом организме. Вода выполняет транспортную функцию, являясь переносчиком различных веществ по всему организму, а также участвуя в выведении из организма во внешнюю среду конечных продуктов обмена веществ. Кроме того, вода является основным пластическим материалом и принимает активное участие в терморегуляции.

    Общее количество воды в организме человека колеблется в пределах 50-83% массы тела и зависит от таких факторов как возраст, пол и степень упитанности. Наибольшее количество воды содержится в организме новорождённых – до 83% массы тела. С возрастом её процентное содержание постепенно уменьшается, достигая у мужчин около 60%, а у женщин около 50% массы тела. В пожилом и старческом возрасте общее количество воды составляет лишь 40-45% массы тела.

    Вся вода, содержащаяся в организме, распределяется по двум водным секторам, между которыми при нормальных условиях устанавливается строгое динамическое равновесие. В среднем 2/3 её объёма (около 40% массы тела) находятся в клетках, а остальное количество во внеклеточном пространстве.

    Клеточная жидкость является основной частью цитоплазмы и по своему электролитному составу значительно отличается от внеклеточной воды.

    Схема распределения воды в организме

    Внутриклеточный сектор, вода которого составляет примерно 30-40% массы тела (около 28 л у мужчин при массе 70 кг), и внеклеточный - примерно 20% массы тела (около 14 л). Внеклеточный объем воды распределяется между интерстициальной водой (15-16% массы тела, или 10,5 л), в которую входит также вода связок хрящей, плазмой (около 4-5%, или 2,8 л), лимфой и трансцеллюлярной водой (цереброспинальная и внутрисуставная жидкости, содержимое желудочно-кишечного тракта), не принимающей активного участия в метаболических процессах.

    Электролитный состав организма


    Из таблицы 1, где представлен нормальный состав трех главных сред организма, следует, что Na+ является преимущественно катионом внеклеточной жидкости. Хлорид (С1-) и бикарбонат (НСО3 -) представляют собой анионную электролитную группу внеклеточного пространства. В клеточном пространстве определяющим катионом является К+, а к анионной группе относятся фосфаты, сульфат, белки, органические кислоты и в меньшей степени бикарбонат.

    Электролитный состав сред человеческого организма

    Факторы, влияющие на перемещение внеклеточной воды в организме

    Физиология рассматривает три фактора, определяющих целенаправленное движение воды при транскапиллярном обмене:

    Осмосом называют спонтанное движение растворителя из раствора с низкой концентрацией частиц в раствор с высокой концентрацией через мембрану, проницаемую только для растворителя. Осмотическое давление - избыточная величина гидростатического давления, которое должно быть приложено к раствору, чтобы уравновесить диффузию растворителя, через полупроницаемую мембрану.


    Осмотическое давление плазмы крови составляет в среднем 6,62 атм (пределы колебаний 6,47-6,72 атм). Осмотическое давление зависит только от концентрации частиц, растворенных в растворе, и не зависит от их массы, размера и валентности. Таким образом, осмотическое давление создают в растворе все частицы - как ионы, так и нейтральные молекулы (глюкоза, мочевина).


    В биологии и медицине осмотическое состояние сред принято выражать двумя понятиями: осмолярностью, представляющей собой суммарную концентрацию растворенных частиц в 1 л раствора (в миллиосмолях на литр), и осмоляльностью, являющейся концентрацией частиц в 1 кг растворителя, т. е. воды (мосмоль/кг).


    Осмоляльность раствора численно равна суммарной концентрации, выраженной в количестве веществ (в миллимолях, но не в миллиэквивалентах), содержащихся в 1 кг растворителя (вода), плюс количество полностью диссоциированных электролитов, недиссоциированных веществ (глюкоза, мочевина) или слабодиссоциированных субстанций, таких как белок. Все одновалентные ионы (Na+, К+, С1-) образуют в растворе число осмолей, равное числу молей и эквивалентов (электрических зарядов). Двухвалентные ионы образуют в растворе каждый по одному осмолю (и молю), но по два эквивалента.


    Осмоляльность нормальной плазмы - величина достаточно постоянная и равна 280-300 мосмоль/кг. Из общей осмоляльности плазмы лишь 2 мосмоль/кг обусловлены наличием растворенных в ней белков. Таким образом, главными компонентами, обеспечивающими осмоляльность плазмы, являются Na+ и С1- (около 140 и 100 мосмоль/кг соответственно). Постоянство осмотического давления внутриклеточной и внеклеточной жидкости предполагает равенство молярных концентраций содержащихся в них электролитов, несмотря на различия в ионном составе внутри клетки и во внеклеточном пространстве.


    Вследствие того, что величина осмотического давления внеклеточной жидкости более чем на 90% обусловлена концентрацией солей натрия, именно натрию принадлежит главная роль в распределение воды по жидкостным секторам организма. Следовательно, первичное нарушение обмена натрия влечёт за собой нарушение водного обмена.


    Если концентрация в плазме глюкозы и мочевины нормальна, то натриемия, умноженная в два раза будет примерно соответствовать осмолярности плазмы. Более точно она вычисляется по следующей формуле:


    Конечно, значительно достоверней измерение осмолярности плазмы при помощи осмометра. Нормальная осмолярность плазмы: 280 – 300 мосм/л.

    2. Часть осмотического давления, создаваемую в биологических жидкостях белками, называют коллоидно-осмотическим (онкотическим) давлением (КОД).

    Оно составляет примерно 0,7% осмотического давления (или осмотической концентрации), т. е. около 25 мм рт. ст. (2 мосмоль/кг), но имеет исключительно большое функциональное значение в связи с высокой гидрофильностью белков и неспособностью их свободно проходить через полупроницаемые биологические мембраны.


    Величина коллоидно-осмотического давления зависит, в основном, от количества общего белка плазмы (на 80% определяется концентрацией альбумина) и составляет в среднем 25 мм.рт.ст.


    3. Одновременно на капиллярную стенку воздействует и другая сила – гидростатическое (точнее – гидродинамическое) давление, создаваемое самой массой крови за счёт энергии сердца. Оно направлено на то, чтобы вытолкнуть воду из капилляров в межклеточное пространство. В отличие от онкотического давления величина гидростатического давления в капиллярах непостоянна. В артериальном колене капилляра она составляет в среднем 32,5 мм.рт.ст., а в венозном – 17,5 мм.рт.ст.. Вследствие градиента давлений (в среднем 9 мм рт.ст.) из артериального колена капилляра жидкость с растворёнными в ней электролитами диффундирует в межклеточное пространство. С другой стороны, в венозном колене капилляра, благодаря градиенту в пользу онкотического давления, вода из межклеточного сектора начинает поступать в кровеносное русло.
    Величина обмена тканевой жидкости более чем в 40 раз превышает объём кровотока. Более 200 л жидкости в минуту циркулирует в пределах сосудистого тканевого сектора, вызывая постоянное обновление окружающей ткани среды. В течение суток примерно 20 л жидкости покидает сосудистое русло через артериальное колено капилляров и столько же возвращается назад – 18 л через венозное колено капилляров и 2 л дренируются лимфатической системой.

    Баланс факторов, определяющих движение жидкости на капиллярном уровне

    В венозном конце капилляра решающая роль в возврате воды в сосудистое русло принадлежит коллоидно-онкотическому давлению плазмы. Ему противостоит величина венозного давления.


    1) В случае снижения коллоидно-онкотического давления плазмы (гипопротеинемия) даже при нормальном венозном давлении нарушается резорбция жидкости в сосудистое русло, что проявляется отёками (безбелковыми, голодными).


    3) Ещё один механизм образования отёков формируется при синдроме капиллярной утечки – за счёт повышения проницаемости капиллярной стенки в интерстиций проникает много белка. В результате этого повышается коллоидно-онкотическое давление интерстиция при уменьшенном коллоидно-онкотическом давлении плазмы.


    Исходя из знаний этих механизмов образования отёков, можно сделать клинически важный вывод – нелогично, малоэффективно, а иногда и опасно применять мочегонные для устранения отёков. Мочегонные оправданы только в случае нарушений функции почек, в остальных клинических ситуациях необходимо устранять патогенетическую причину их образования – повышать уровень белка или лечить сердечную недостаточность или устранять причину синдрома капиллярной утечки.


    Необходимо помнить о важной роли в постоянстве интерстициального объема жидкости лимфодренажной системы, постоянно сбрасывающей в вену небольшой избыток жидкости и белка.

    Механизмы поддержания внутриклеточного объема жидкости и внутриклеточного ионного состава


    Осмотические и электрические силы. Основным условием постоянства объема водных внутри- и внеклеточных сред, разделенных клеточной мембраной, является их изотоничность.


    Тоничностью называют компонент осмолярности внеклеточной жидкости, обусловленный концентрацией растворенных веществ, плохо проникающих через клеточные мембраны (Na+, в отношении некоторых тканей - глюкоза). Обычно осмолярность и тоничность изменяются однонаправлено, поэтому гиперосмолярность означает и гипертоничность [Loeb J. Н., 1984].

    Однако возможно повышение осмолярности без увеличения тоничности (в частности, при повышении в плазме концентрации мочевины, этанола, для которых тканевые мембраны хорошо проницаемы) [Fabri Р. J., 1988]. В этом случае существенных перемещений жидкости между внутри- и внеклеточным пространствами не происходит.


    Анионы, находящиеся внутри клетки, обычно поливалентны, велики и не могут свободно проникнуть через клеточную мембрану. Единственным катионом, для которого клеточная мембрана проницаема и который находится в клетке в свободном состоянии и в достаточном количестве, обеспечивающем частичную нейтрализацию клеточных анионов, является К+.

    Как уже говорилось, Na+ является внеклеточным катионом. Его локализация обусловлена двумя обстоятельствами: относительно низкой способностью проникать через клеточную мембрану и наличием особого механизма вытеснения Na+ из клетки - так называемого натриевого насоса. Сl- также является внеклеточным компонентом, но его потенциальная способность проникать через клеточную мембрану относительно высока. Она не реализуется потому, что клетка имеет достаточно постоянный состав фиксированных клеточных анионов, создающих в ней преобладание отрицательного потенциала, вытесняющего С1-. Таким образом, осмотическое и электрическое равновесие между клеточным и внеклеточным пространством может быть достигнуто при относительно высокой концентрации К+ внутри клетки и соответствующей высокой концентрации С1- за ее пределами. Эти различия в концентрациях мобильных ионов внутри клетки и вне ее обеспечивают постоянную разность потенциалов - так называемый трансмембранный потенциал, равный примерно 60—80 мВ, причем внутриклеточный заряд имеет отрицательное значение.

    В действительности этого не происходит, поскольку такая сила оказывается сбалансированной другой, действующей в обратном направлении и называемой натриевым насосом. Энергия натриевого насоса, являющегося специфическим свойством клеточной мембраны, обеспечивается гидролизом аденозинтрифосфата (АТФ) и направлена на выталкивание Na+ из клетки [Whittman R., Wheeler К. Р., 1970].

    Эта же энергия способствует движению К+ внутрь клетки. Установлено, что противоположно направленные движения К+ и Na+ осуществляются в пропорции 2:3. По мнению М. W. В. Bradbury (1973), с физиологической точки зрения для К+ этот механизм не столь существен, так как последний в норме обладает высокой способностью проникать через клеточную мембрану. Описанный механизм является основным для обеспечения постоянства концентрации клеточных и внеклеточных компонентов. Принципиально важен тот момент, что осмолярность внутриклеточной воды величина достаточно постоянная и не зависящая от осмолярности внеклеточного пространства. Это постоянство обеспечивается энергозависимым механизмом.


    Гипоксия, так же как и гипогликемия или дефицит инсулина приводит к нарушению синтеза энергии, что может привести к остановке насоса. Если функция натриевого насоса оказывается нарушенной, то это приводит к неконтролируемой ситуации, когда клеточное пространство почти свободно доступно для Na+. В результате уменьшается внутриклеточный отрицательный потенциал и клетка становится более доступной и для С1-. Связанное с этим повышение осмотического давления в клетке приводит к перемещению воды внутрь клетки и ее набуханию, а в дальнейшем и к нарушению ее целостности.

    Таким образом, дисфункция натриевого насоса приводит к трансминерализации и является патофизиологической основой гибели клетки.

    Перемещение воды в организме


    Внеклеточная жидкость омывает клетки и является транспортной средой для метаболических субстанций, обеспечивающих нормальную жизнедеятельность клеток. Через нее в клетку проникают кислород, различные вещества из крови и желудочно-кишечного тракта и выводятся продукты метаболизма клетки, которые затем попадают в кровь и экскретируются легкими, почками и печенью.


    Плазма - часть внеклеточной жидкости - служит средой для эритроцитов, лейкоцитов и тромбоцитов. Содержание белков в плазме примерно 70 г/л, что значительно превышает содержание их в интерстициальной жидкости (10-30 г/л). На долю чистой воды в плазме приходится в связи с этим 93% объема, т. е. несколько меньше, чем в инстерстициальной жидкости.

    Строго говоря, интерстициальное пространство заполнено не свободно перемещающейся жидкостью, а гелем, удерживающим воду в фиксированном состоянии. Основу геля составляет преимущественно гиалуроновая кислота.


    Значение интерстициального пространства невозможно оценивать и обсуждать без упоминания о лимфатической системе. Лимфа по существу является составной частью интерстициальной жидкости и предназначена в основном для транспорта химических крупномолекулярных субстратов, главным образом белков, а также (частично) жировых конгломератов и углеводов из интерстициального пространства (куда они проникают из клеток) в кровь. На терминальных концах лимфатических сосудов имеются клапаны, которые регулируют этот процесс. Движение лимфы по сосудам осуществляется за счет насосного действия миоэндотелиальных волокон, функционирующих синхронно с клапанным аппаратом, расположенным по всей длине лимфатического сосуда. Лимфатическая система обладает также концентрационной функцией, поскольку осуществляет реабсорбцию воды в зоне венозного конца капилляра.


    Быстрое удаление белков из интерстициального пространства снижает тканевое коллоидно-осмотическое давление (КОД). Этот механизм вместе с насосной функцией лимфатической системы обеспечивает слабое гидростатическое давление (около 3 мм рт. ст., в лёгких – 6 мм рт.ст.) в интерстициальном пространстве [Guyton А. С. 1971]. Значение низкого давления в интерстициальном пространстве переоценить невозможно, поскольку оно не только определяет клеточную архитектуру, но и создает оптимальные условия для жизнедеятельности клеток. При отечных состояниях, когда давление в интерстициальной жидкости повышается, клеточная архитектура нарушается. Отрицательное давление в интерстициальном пространстве является также гарантией постоянства интерстициального водного объема, предупреждает накопление излишних объемов жидкости и, наконец, улучшает условия метаболизма, поскольку сближает поверхности сосудистой и клеточной диффузионных мембран.


    Факторами, повышающими интерстициальное давление, являются: увеличение внутрикапиллярного давления и снижение КОД плазмы, возрастание интерстициального КОД и, наконец, повышение проницаемости капилляров. Сначала влияние названных факторов компенсируется усилением лимфатического тока, иногда в 10—50 раз [Hillman К., 1990]. С исчерпанием компенсирующего лимфатического механизма интерстициальное давление поднимается выше нуля. При этом в интерстициальном пространстве накапливается большое количество жидкости. Отношения между давлением и объемом жидкости в разных зонах интерстициального пространства неодинаковы, поскольку различные ткани имеют разную степень податливости, растяжимости (compliance).


    Примерно те же механизмы определяют динамику легочного интерстициального пространства. Однако легочное капиллярное давление ниже и легочные капилляры относительно легко пропускают молекулы белка. Вместе с тем движение лимфы по легочным лимфатическим сосудам осуществляется быстрее из-за выраженного пульсирующего характера кровотока в близи расположенных легочных кровеносных сосудах. В целом же относительная величина легочного интерстициального пространства значительно меньше тканевого и альвеолярный легочный эпителий может противостоять давлению со стороны интерстиция не выше 2 мм рт. ст. При превышении этого значения начинается отек легких. В норме жидкость не накапливается в интерстициальном пространстве легких благодаря лимфодренажу.
    Однако в последнее время широкое распространение в онкохирургии получила лимфодиссекция – удаление лимфодренажа. При лимфодиссекции в верхнем этаже брюшной полости и грудной клетки нарушаются противоотёчные механизмы, и у больных даже при небольшой по объёму инфузии развивается интерстициальный отёк лёгких и гипоксемия.

    Читайте также: