Закон радиоактивного распада и период полураспада реферат

Обновлено: 30.06.2024

Все известные типы радиоактивных превращений являются следствием фундаментальных взаимодействий микромира: сильных взаимодействий (ядерные силы) или слабых взаимодействий. Первые ответственны за превращения, сопровождающиеся испусканием ядерных частиц, например α-частиц, протонов или осколков деления ядер: вторые проявляются в β-распаде ядер. Электромагнитные взаимодействия ответственны за квантовые переходы между различными состояниями одного и того же ядра, которые сопровождаются испусканием гамма-излучения. Эти переходы не связаны с изменениями состава ядер и поэтому, согласно современной классификации, не принадлежат к числу радиоактивных превращений. Понятие радиоактивности распространяют также на β-распад нейтронов.

Последующие исследования свойств атомов и электронов завершились созданием квантовой механики — физической теории, описывающей законы микромира. Ядерная физика изучает превращения атомных ядер, происходящие как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Наша работа также посвящена ядерным реакциям, радиоактивности и способам защиты от результатов ядерных реакций

Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли литосфере, гидросфере, атмосфере и биосфере. Сохранившиеся на нашей планете радиоактивные элементы условно могут быть разделены на три группы.

Оптика. Квантовая и ядерная физика

В лабораторной практике радиометрическое титрование применяют сравнительно редко. Применение активационного анализа связано с использованием мощных источников тепловых нейтронов, и поэтому этот метод имеет пока ограниченное распространение.

Беккерелем было открыто явление радиоактивности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды и, конечно, о физической сущности явления радиоактивного распада.

Свинец хорошо поглощает радиоактивное излучение, причем не только заряженные частицы, но и нейтральные -кванты и нейтроны. Поэтому для защиты от опасного дня живых существ излучения радиоактивные препараты хранят в толстостенных свинцовых контейнерах.

-излучение – отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у -частиц; представляет собой поток быстрых электронов.

1.1 Типы радиоактивных распадов 1.1.1 Радиоактивность и виды радиоактивного распада

2. Как называется распространенное в настоящее время представление о происхождении Вселенной, согласно которому Вселенная возникла в особой точке пространства-времени с бесконечной кривизной?

Чем больше узнавали о влиянии радиоактивного излучения на организм человека и окружающую среду, тем противоречивее становились мнения о ее значимости и пользе, и том какое же место должна занимать радиация во всех сферах деятельности человека.

Возрастает опасность аварий с выбросом радиоактивных веществ, причинами ко-торых могут быть нарушения технологических процессов, правил работы с источниками радиоактивности, их хранения и перевозки, некомпетентность персонала. В результате аварий могут возникнуть обширные зоны радиоактивного загрязнения местности и происходить обручение персонала ядерно- и радиационно-опасных объектов (РОО) и населения, что характеризует создавшуюся ситуацию как чрезвычайную. Степень опасности и масштабы этой ЧС будут определяться количеством и активностью выброшенных радиоактивных веществ, а также энергией и качеством сопровождающих их распад ионизирующих излучений.

В первой половине двадцатого века мир столкнулся с новой технологией, связанной с атомной энергией. С того времени атомные технологии совершили большой рывок в развитии, открывая миру новые перспективы в основном в области снабжения электроэнергией как крупного производства, так и большей части населения страны. В настоящее время в мире эксплуатируется

44. атомных энергоблока общей мощностью около

Список источников информации

Жуковский Ю.Г. и др. Практикум по ядерной физике: Учеб. пособие. – М.: Высш. школа, 1975. – 197 с.

2. Кадменский С.Г., Фурман В.И. Альфа-распад и родственные ядерные реакции. М.: Энергоатомиздат, 1985.- 134 с.

3. Климов А.Н. Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.

4. Ремизов А.Н. Медицинская и биологическая физика: Учеб. для вузов. – М.: Дрофа, 2003. – 560 с.

5. Сивухин Д. В. Общий курс физики. Т. V. Атомная и ядерная физика. — 3-e издание, стереотипное. — М.: Физматлит, 2002. — 784 с.

6. Таблицы физических величин. Справочник./ Под ред. акад.

И. К. Кикоина. — М., Атомиздат, 1976. — 1008 с.

7. Трофимова Т.И. Курс физики: КУчеб. пособие для вузов. – М.: Высш. шк., 2004. – 544 с.

8. Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1994. — С. 210. — 704 с.

9. Фриш С.Э., Тиморева А.В. Общий курс физики. Т. III. – Гос. изд. Физматлит.: 1959. – 608 с.

10. Шиллинг Г. Статистическая физика в примерах. – М.: Мир, 1975. – 431 с.

Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. В каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минусили… Читать ещё >

Закон радиоактивного распада ( реферат , курсовая , диплом , контрольная )

Выполнила студентка очной формы обучения

3 курса ФВМ 3 группы Перегудова Е.Н.

Оглавление Введение Закон радиоактивного распада Экспоненциальный закон Характеристики распада

1. Среднее время жизни

2. Период полураспада Заключение Список использованной литературы:

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть, начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад атомных ядер, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.

Ядро, испытывающее радиоактивный распад, и ядро, возникающее в результате этого распада, называют соответственно материнским и дочерним ядрами. Изменение массового числа и заряда дочернего ядра по отношению к материнскому описывается правилом смещения Содди.

В настоящее время, кроме альфа-, бетаи гамма-распадов, обнаружены распады с испусканием нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или в + -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро. Последовательность таких распадов называется цепочкой распадов, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. В каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минусили бета-плюс-распадов они превращаются в ближайший бета-стабильный нуклид. Ядра, находящиеся в изобарной цепочке между двумя бета-стабильными нуклидами, могут испытывать и в ? -, и в + -распад (или электронный захват). Например, существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:

Закон радиоактивного распада

С помощью теоремы Бернулли был получен следующий вывод: скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

радиоактивный распад атом квантовомеханический которое означает, что число распадов? dN, произошедшее за короткий интервал времени dt, пропорционально числу атомов N в образце.

Экспоненциальный закон

В указанном выше математическом выражении — постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с ?1 . Знак минус указывает на убыль числа радиоактивных ядер со временем.

Решение этого дифференциального уравнения имеет вид:

где — начальное число атомов, то есть число атомов для

Таким образом, число радиоактивных атомов уменьшается со временем по экспоненциальному закону. Скорость распада, то есть число распадов в единицу времени также падает экспоненциально.

Дифференцируя выражение для зависимости числа атомов от времени, получаем:

где — скорость распада в начальный момент времени

Таким образом, зависимость от времени числа нераспавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной

Характеристики распада

Кроме константы распада радиоактивный распад характеризуют ещё двумя производными от неё константами:

1. Среднее время жизни

Время жизни связано с периодом полураспада T½ (временем, в течение которого число выживших частиц в среднем уменьшается вдвое) следующим соотношением:

Величина, обратная времени жизни, называется постоянной распада:

2. Период полураспада

Период полураспада квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д. ) — время TЅ, в течение которого система распадается с вероятностью ½. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2TЅ останется четверть от начального числа частиц, за 3TЅ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

Период полураспада, среднее время жизни и постоянная распада связаны следующими соотношениями, полученными из закона радиоактивного распада:

Поскольку, период полураспада примерно на 30,7% короче, чем среднее время жизни.

На практике период полураспада определяют, измеряя активность исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада, можно вычислить период полураспада данного вещества Парциальный период полураспада

Если система с периодом полураспада T½ может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

Стабильность периода полураспада

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой овариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д. ). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа б-р аспада самария-147 изменилась не более чем на 0,75%, а для в-распада рения-187 изменение за это же время не превышает 0,5%; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Заключение

Каждое радиоактивное ядро распадается независимо от поведения всех других ядер, а потому общая скорость распада, т. е. число ядер, распадающихся в единицу времени (активность) пропорционально числу имеющихся радиоактивных ядер. Самопроизвольные превращения радиоактивных ядер приводят к непрерывному уменьшению числа атомов (ядер) исходного радиоактивного изотопа и к образованию дочерних продуктов. Радиоактивный распад относится к разряду вероятностных процессов, и к нему применимы методы статистического анализа. Смысл основного закона радиоактивного распада состоит в том, что за равные промежутки времени подвергается распаду постоянная часть от общего количества имеющихся в данный момент атомов радиоактивного изотопа.

4. Кудрявцев, П. С. Открытие радиоактивных преврещений. Идея атомной энергии // Курс истории физики. — 2-е изд., испр. и доп. — М.: Просвещение, 1982. — 448 с.

5. А. Н. Климов Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.

6. Ф. Содди История атомной энергии. — Москва: Атомиздат, 1979. — С. 288.

Рис. 1. Виды радиоактивных распадов Рис. 2. График распада частицы (ядра) Рис. 3. Закон радиоактивного распада


Познакомившись с ядерными реакциями, настало время поговорить о радиоактивных излучениях. На этом уроке мы рассмотрим типы радиоактивных излучений и особенности, которыми они характеризуются, а также познакомимся с законом радиоактивного распада.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Закон радиоактивного распада"

Френсис Бэкон

Открытие радиоактивности было сделано в результате работы многих ученых. В основном – это Мария и Пьер Кюри, Антуан Беккерель, Фредерик Содди и, конечно, Эрнест Резерфорд. Знания об этом явлении и на сегодняшний день являются очень важным для всего человечества.

Напомним, что в 1896 году Анутаном Беккерелем было открыто совершенно новое излучение, исходящее от урана. Изучением нового излучения занялись многие ученые того времени. Уже в 1898 году, супруги Кюри выяснили, что такое излучение исходит не только от урана, но и от других веществ, таких как радий или полоний. Примерно через год, Резерфорд доказал, что радиоактивное излучение делится на три вида, которые он назвал a-, b-, и g-излучениями.

Ядро любого атома состоит из нуклонов, то есть протонов и нейтронов. Массовым числом называется общее число нуклонов в ядре. Число протонов, входящих в ядро атома, называется зарядовым числом. Это число соответствует порядковому номеру элемента в таблице Менделеева. Таким образом, число нейтронов равно разности массового и зарядового чисел. В опыте Резерфорда использовался радий, который испускал поток a-частиц, проходящих через золотую фольгу. Дальнейшие опыты, с помощью которых были открыты такие частицы, как протон и нейтрон тоже не обходились без участия a-частиц. Но, что заставляет радий испускать эти частицы? Чтобы ответить на этот вопрос, необходимо познакомиться с радиоактивным распадом.


В курсе физики 9 класса уже говорилось об этом явлении. Радиоактивность представляет собой самопроизвольное излучение, сопровождаемое испусканием различных частиц. Все эти излучения делятся на три вида: альфа-распад, бета-распад и гамма-излучение. Альфа-распад характеризуется испусканием ядер гелия два четыре . При этом, образуется новое ядро с массовым числом на четыре меньше и с зарядовым числом – на два меньше, чем у исходного ядра. Этот вид радиоактивного распада наблюдается для тяжелых ядер (с массовым числом более двухсот). Для различных ядер энергия частиц может составлять от 2–9 МэВ. Скорости частиц в одном потоке мало отличаются.


Бета-распад характеризуется самопроизвольным испусканием электрона. Однако детальное изучение бета-распада показало, что в нем часть энергии как будто бесследно исчезает. Дело в том, что в процессе бета-распада рождается ещё одна частица, обладающая нулевым зарядом и ничтожно малой (возможно даже нулевой) массой. Такую частицу назвали нейтрино (её часто не указывают в уравнениях соответствующих реакций). Таким образом, при бета-распаде образуется новое ядро с тем же массовым числом и зарядовым числом на единицу больше, чем у исходного ядра. Этот вид радиоактивного распада наблюдается как для тяжелых, так и для средних ядер. В зависимости от того, какое ядро распалось, скорости испускаемых электронов сильно отличаются. Отметим, что некоторые электроны достигают скорости, равной 0,999 скорости света. При такой скорости из-за релятивистских эффектов масса электрона увеличивается в десятки раз.


Исходя из закономерностей и особенностей альфа- и бета-распада, Фредерик Содди вывел общее правило, которое называется правилом смещения. При альфа-распаде ядро теряет положительный заряд 2e и его масса убывает примерно на 4а.е.м. В результате элемент смещается на две клетки к началу периодической системы. При бета-распаде ядро приобретает положительный заряд равный е, в результате чего смещается на одну клетку ближе к концу периодической системы.

a-распад


b-распад


Гамма-излучение испускается не атомом, а самим ядром при его переходах между возбужденными состояниями. При этом заряд ядра не изменяется, а масса ядра меняется ничтожно мало. Гамма-излучение является видом электромагнитного излучения с очень малой длиной волны (от 10 –13 до 10 –10 метров). Гамма-квантами являются фотоны с высокой энергией (от десятков кэВ до нескольких МэВ).


Итак, исследовав все три вида радиоактивных излучений, можно сделать вывод, что при радиоактивном распаде сохраняется суммарный электрический заряд и приближенно сохраняется относительная масса ядер.

Для примера, рассмотрим уже известный нам распад радия. Радий имеет порядковый номер 88 и массу 226. Согласно правилу смещения при альфа-распаде, элемент смещается на две клетки ближе к началу таблицы Менделеева. Под номером 86 в таблице мы видим газ радон. Атомная масса радона равна 222, то есть на 4 атомные единицы меньше, чем масса радия. Зарядовые числа гелия и радона в сумме дают зарядовое число радия. То же самое и с массовым числом.

Надо сказать, что продукты радиоактивного распада сами могут являться радиоактивными. Например, уран имеет целый радиоактивный ряд.


Начинается этот ряд с урана 238, который в результате альфа-распада превращается в торий 234. Обратите внимание, какой огромный период полураспада имеет уран 238. Именно столь длительное время распада позволило ученым определить возраст Земли (объяснение этого метода выходит за рамки школьной физики). Торий 234 в результате бета-распада превращается протактиний, который очень быстро превращается в уран 234, также в результате бета-распада. В результате альфа-распада уран 234 снова превращается в торий (но уже с массовым числом 230). Торий, в свою очередь, превращается в радий, а радий – в радон. Радон превращается в полоний, а полоний превращается в свинец 214. Далее следует целая серия альфа- и бета-распадов, и в конце концов получается свинец 206, который уже является стабильным.

Наконец, существует такое понятие, как искусственная радиоактивность. Это радиоактивный распад изотопов, полученных в результате ядерных реакций. Впервые такое понятие было введено Фредериком и Ирен Жолио-Кюри, которые обнаружили, что некоторые нерадиоактивные вещества после облучения становятся радиоактивными. Например, при бомбардировке алюминия a-частицами образуется радиоактивный изотоп фосфора. Этот изотоп через две с половиной минуты образует кремний с испусканием позитрона и нейтрино (позитрон является античастицей – о которых разговор пойдёт немного позже).

Как долго может продолжаться радиоактивный распад? От чего зависит количество испускаемых частиц? Для ответа на эти вопросы необходимо познакомиться с законом радиоактивного распада.

При изучении радиоактивности, было замечено, что разные ядра испускают частицы с различной интенсивностью. В связи с этим, Марией Склодовской-Кюри было введено понятие активности. Активность – это число распавшихся ядер в единицу времени. Опытным путем было установлено, что активность прямо пропорциональна исходному количеству ядер.


Коэффициентом пропорциональности в этой зависимости является постоянная распада. Функция зависимости количества оставшихся активных ядер от времени имеет вид


Итак, количество активных ядер зависит от начального количества ядер и экспоненциально убывает с течением времени. Для упрощения этого уравнения, Резерфорд предложил ввести такое понятие как период полураспада. Периодом полураспада данного радиоактивного вещества называется промежуток времени, за который количество исходных ядер уменьшается в два раза.

Рассмотрим функцию в момент времени, равный периоду полураспада. По определению периода полураспада, в этот момент времени, количество распавшихся ядер будет равно половине исходного количества ядер.




Периоды полураспадов различных элементов сведены в таблицы, поэтому, используя эту функцию очень легко найти количество оставшихся активных ядер в определенный момент времени.

Задача 1. Закончите реакции. Найдите недостающие элементы и определите тип реакции.






Задача 2. При a-распаде образовалось 100 г некоторого вещества. Найдите массу этого вещества через трое суток.


Основные выводы:

– Существуют три вида радиоактивных излучений: a-распад, b-распад и g-излучение.


– a-распад характеризуется испусканием a-частиц, то есть ядер гелия два четыре .

– b-распад характеризуется испусканием электрона и антинейтрино.

– При g-излучении ядро не претерпевает никаких изменений. Изменяется только состояние ядра и это изменение сопровождается испусканием гамма-кванта.

– В общем случае, a- и b-распад описывается правилом смещения, которое было сформулировано Фредериком Содди: при a-распаде ядро теряет положительный заряд 2е и его масса убывает примерно на 4 а.е.м. В результате элемент смещается на две клетки к началу периодической системы. При b-распаде ядро приобретает положительный заряд равный е, в результате чего смещается на одну клетку ближе к концу периодической системы. При радиоактивном распаде сохраняется суммарный электрический заряд и приближенно сохраняется относительная масса ядер.

– Законом радиоактивного распада определяется число оставшихся активных ядер в определенный момент времени.


– Период полураспада – это промежуток времени, за который количество активных ядер уменьшается вдвое. Исходя из этого, можно вывести другую формулу описывающую закон радиоактивного распада.

При всем разнообразии реакций самопроизвольного (спонтанного) распада ядер в этом процессе наблюдается общая закономерность, которую можно описать математически. Интересно, что зависимость количества распавшихся ядер от времени задается одной и той же функцией для различных ядер, участвующих в распаде. Перейдем к количественному описанию процессов радиоактивного распада.

Для записи закона радиоактивного распада будем считать, что в начальный момент времени () число радиоактивных ядер . Через промежуток времени, равный периоду полураспада, это число будет , еще через такой же промежуток времени — (рис. 218). Спустя промежуток времени, равный n периодам полураспада , радиоактивных ядер останется:

Это соотношение выражает закон радиоактивного распада, который можно сформулировать следующим образом:

число нераспавшихся радиоактивных ядер убывает с течением времени по закону, представленному соотношением (1).

Закон радиоактивного распада позволяет найти число нераспавшихся ядер в любой момент времени. Полученное выражение хорошо описывает распад радиоактивных ядер, если их количество достаточно велико.
Приведем экспериментальные результаты, которые показывают, что при малом количестве радиоактивных ядер это выражение неприменимо. На рисунке 219 изображен график распада 47 ядер изотопа фермия , период полураспада которого . Из рисунка 219 видно, что пока ядер было достаточно много — от 47 до 12, то показательная функция хорошо описывала закон распада. Однако при меньшем числе ядер истинная зависимость существенно отличается от показательной функции.
Периоды полураспада некоторых радиоактивных изотопов веществ приведены в таблице 11.

Таблица 11. Периоды полураспада радиоактивных изотопов веществ
Вещество Период полураспада
30,17 лет
5,3 года
8,04 суток
24 390 лет
1600 лет
3,8 суток
700 млн лет
4,5 млрд лет

В 1927 г . американский ученый Г. Блюмгарт, используя изотоп , впервые определил скорость кровотока у людей.

В 1934 г . венгерский ученый Дьердь фон Хевеши, используя дейтерий, впервые установил, что в организме человека вода полностью обновляется в течение 14 суток.

Читайте также: