Выпрямительная установка электровоза реферат

Обновлено: 06.07.2024

Преобразовательные установки предназначаются для преобразования электрического тока из переменного в постоянный (выпрямители), из постоянного в переменный (инверторы), из переменного одной частоты в переменный другой частоты (преобразователи частоты). Процесс преобразования может происходить одновременно с регулированием напряжения. На электровозах переменного тока нашли широкое применение выпрямители, а в последнее время благодаря широкому распространению управляемых полупроводниковых вентилей применяются управляемые выпрямители, т. е. выпрямители с регулированием напряжения и инверторы (электровоз ВЛ80р), также с регулированием режима рекуперативного торможения.
Необходимость в преобразователях на электроподвижном составе переменного тока обусловлена, прежде всего, применением тяговых двигателей постоянного тока, в то время как в контактной сети переменное напряжение 25 кВ частотой 50 Гц. Поэтому на электровозах устанавливают оборудование, которое в тяговом режиме снижает это напряжение до уровня, допустимого для тяговых двигателей, преобразует переменный ток в постоянный и регулирует напряжение. Понижение напряжения осуществляется трансформатором и автотрансформатором, преобразование переменного тока в постоянный — выпрямителем. Регулирование напряжения может выполняться различными способами. При наличии в выпрямителях управляемых вентилей регулирование напряжения может осуществляться выпрямителями.
Выпрямительные установки с неуправляемыми вентилями установлены на всех электровозах переменного тока, кроме ВЛ80р. Выпрямительные установки, в которых применены управляемые вентили — тиристоры, используются на электровозах ВЛ80т и ЧС4Т для регулирования режима реостатного торможения путем изменения тока возбуждения тяговых двигателей в зависимости от необходимой силы торможения, скорости и других факторов.
На электровозе ВЛ80р выпрямительно-инверторные преобразователи выполнены на управляемых вентилях. Они в режиме тяги выполняют роль управляемых выпрямителей, а в режиме рекуперативного торможения — управляемых инверторов.
Основным элементом всех преобразователей является вентиль. При прохождении через вентиль тока часть энергии теряется — выделяется в виде тепла. Современные преобразовательные установки работают сравнительно с небольшими потерями энергии — не более 2%. Однако если не предусмотреть принудительного охлаждения — вентиляции, то эти потери могут привести к недопустимому нагреву оборудования, в первую очередь самих вентилей. Поэтому вентили монтируют в специальных охладителях — радиаторах с развитой поверхностью в виде ребер, а преобразователи оборудуют системой принудительного охлаждения потоком воздуха.
Для преобразователей большой мощности требуются десятки, а иногда сотни вентилей. Ток и напряжение должны равномерно распределяться между всеми вентилями. Поэтому в преобразователях используют устройства, выравнивающие ток и напряжение между вентилями. Наконец, преобразователи с управляемыми вентилями оборудуют системой, обеспечивающей подачу открывающих импульсов на управляющие электроды тиристоров, системами защиты и сигнализации: Все перечисленные устройства в комплексе составляют преобразовательную установку.

Краткая характеристика выпрямительной установки ВУК-4000Т-02

Назначение. Выпрямительная установка ВУК-4000Т-02 предназначена для выпрямления переменного тока в постоянный для питания тяговых двигателей.
Конструкция. Конструктивно каждая выпрямительная установка выполнена в виде двух блоков — шкафов прямо­угольной формы, основу которых составляет сварной металлический каркас 1 (рис. 1). Поскольку каждый вентиль 3 с радиатором 4 должен быть изолирован от соседних вентилей, радиаторы укреплены на изоляционных шпильках 6 и между ними проложены изоляционные прокладки. Шины 2, которыми выпрямительные установки подсоединены к цепям трансформатора и двигателей, установлены на изоляторах 5. Вентили одного плеча расположены с одной стороны, а вентили другого плеча — с другой. В каждую из 12 параллельных ветвей плеча входят четыре вентиля, расположенных друг под другом. Радиаторы охлаждаются потоком воздуха, направленного от вентилятора через переключающее устройство сверху вниз. Корпуса вентилей со стороны гибкого вывода охлаждаются благодаря естественной циркуляции воздуха. На каждой секции электровоза установлены четыре блока выпрямительных установок ВУК-4000Т-02.


Рисунок 1 – Общий вид выпрямительной установки ВУК-4000Т-02


Рисунок 2 – Фото выпрямительной установки

  • подгруппа I (0,52; .0,53; 0,54 В) — цвет черный;
  • подгруппа II (0,55; 0,56; 0,57; 0,58 В) — цвет белый.

Одна выпрямительная установка содержит 192 диода.
Плечо моста содержит 4 последовательно и 12 параллельно соединенных диодов (рис.3).


Рисунок 3 – Схема соединений


Рисунок 4 - Конструкция кремниевого диода

Выпрямительный элемент 2 припаян к массивному медному основанию 1, представляющему собой короткий болт с шестигранной головкой, на торце которой имеется цилиндрическое углубление для выпрямительного элемента. Нарезка на стержне болта служит для ввинчивания в тело охладителя 8, способствующего лучшему отводу тепла от диода. Сверху в основание завальцован стальной цилиндрический кожух 4, защищающий выпрямительный элемент от воздействия окружающей среды. К верхнему электроду элемента припаян гибкий провод 3, выходящий наружу сквозь изолирующую втулку 5 из свинцового стекла, укрепленную в верхней части кожуха. Наружный конец гибкого провода верхнего вывода 6, являющегося одним из электродов диода, снабжен стандартным наконеч­ником 7 для включения диода в цепь.

Фрагмент работы с оформлением в формате PDF можно посмотреть ЗДЕСЬ

В комплект входит чертеж выпрямительной установки ВУК4000Т-02 на формате А1 в программе "Компас" (формат CDW)

Назначение, конструкция и условия работы выпрямительной установки. Основные причины неисправности узла их причины и способы их устранения. Виды технического обслуживания и ремонта локомотивов. Способы очистки и дефектации выпрямительной установки.

Рубрика Транспорт
Вид контрольная работа
Язык русский
Дата добавления 13.05.2014
Размер файла 73,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Железнодорожный транспорт является основной транспортной инфраструктуры, от которой в полной мере зависит выполнение поставленных задач по развитию экономики страны. Важная роль железных дорог подтверждается тем, что они выполняют почти 2/3 внутреннего грузооборота транспорта общего пользования и около 90% перевозок массовых грузов. Электроподвижной состав представляет собой сложную многоэлементную техническую систему, в которой отдельные элементы, в свою очередь, объединены в многочисленные узлы и агрегаты. Так как в процессе эксплуатации и производства все детали и узлы электроподвижного состава подвергаются износу и повреждению. На основании приказа № 3Р от 17.01.2005г. установлена система планово- предупредительных ремонтов и мероприятий, важнейшим из них является ремонт. Ремонт - это технические мероприятия, восстанавливающие первоначальные характеристики технического устройства, утраченные вследствие износа или нештатных ситуаций. Эти мероприятия проводятся как на этапе эксплуатации в виде технического обслуживания (ТО) или текущего ремонта (ТР), так и при проведении средних и капитальных ремонтов (СР, КР).

Основные функции ремонтного производства являются предупреждение и устранение износов и повреждений электроподвижного состава. Ремонтное производство постоянно развивается за счёт того, что происходит появление новых электропоездов и электровозов, которые имеют различие, такое как: конструктивное изменение, появление новых материалов и способов их обработки. Соответственно при этом меняется формы управления, организации, контроля и качества, предупреждения повреждений и т.д.

Важным фактом является организация рабочего места - это система мероприятий по оснащению рабочего места средствами и предметами труда, целью этого является обеспечение рабочего или группы рабочих всем необходимым для высокопроизводительного труда при возможно меньших физических нагрузках. Под его оснащением понимают - набор основного технологического и вспомогательного оборудования, технологической и организационной оснастки.

Ремонтное производство. Оно состоит из системы, организации и технологии ремонта. Под системой ремонта предусматривают порядок поддержания электроподвижного состава в работоспособном и исправном состоянии.

Техническое облуживание - комплекс операций по поддержанию работоспособности и исправности локомотива. Техническое облуживание ТО-1, ТО-2 и ТО-3 является периодическим и предназначено для контроля технического состояния узлов и систем локомотива в целях предупреждения отказов в эксплуатации. Постановка локомотивов на техническое обслуживание ТО-4, ТО-5а, ТО-5б, ТО-5в, ТО-5г планируется по необходимости.

Помимо запланированных мероприятий существует ещё 2 причины в необходимости ремонта.

Ремонт по отказу, который предусматривает восстановление только в случае перехода технической системы или ее элемента из работоспособного состояния в неработоспособное. В основном, применяется к узлам и элементам, состояние которых оценивается визуально или с помощью простых линейных измерений, а ремонт выполняется только в случае повреждений (например, опоры дизелей, стёкла, обшивка кузова, фундаменты силовых агрегатов, воздуховоды и т.д.). Преимущества такой системы ремонта заключается в оптимизации затрат, но не обеспечивает высокую надежность и не дает гарантию безаварийной работы.

Планово-предупредительная система заключается в том, что ремонт выполняют в строго регламентированном порядке в зависимости от календарного срока службы, моточасов или линейного пробега. По этой системе ремонтируются узлы и агрегаты, связанные с обеспечением безопасности движения. Она применяется также, если выход из строя в эксплуатации повлечет значительные повреждения остальных элементов технической системы. Преимущества системы заключаются в возможности гарантировать ресурс и безопасную эксплуатацию наиболее ответственных элементов технической системы.

Ввиду неоднородности износа в эксплуатации узлов и агрегатов подвижного состава и достаточно высокой величины остаточной потребительной стоимости ее работоспособной части становится очевидной целесообразность восстановления ресурса за счет капитального ремонта.

1. Назначение, конструкция и условия работы выпрямительной установки

Назначение. На каждой секции электровоза установлены четыре блока выпрямительных установок ВУК-4000Т-02. Выпрямительная установка предназначена для выпрямления переменного тока в постоянный для питания тяговых двигателей. Конструкция. Конструктивно каждая выпрямительная установка выполнена в виде двух блоков -- шкафов прямо-угольной формы, основу которых составляет сварной металлический каркас. Поскольку каждый вентиль с радиатором должен быть изолирован от соседних вентилей, радиаторы укреплены на изоляционных шпильках и между ними проложены изоляционные прокладки. Шины, которыми выпрямительные установки подсоединены к цепям трансформатора и двигателей, установлены на изоляторах. Вентили одного плеча расположены с одной стороны, а вентили другого плеча -- с другой. В каждую из параллельных ветвей плеча входят четыре вентиля, расположенных друг под другом.

Для обеспечения равномерного распределения напряжения по последовательно соединенным тиристорам используют шунтирующие резисторы, а для снятия внутренних коммутационных перенапряжений параллельно шунтирующим резисторам подключают цепочки РС (блоки БВН). Равномерное распределение тока по параллельным ветвям тиристоров достигается благодаря применению индуктивных делителей, а также подбором последовательно соединенных тиристоров по суммарному падению напряжения при двух значениях тока: предельном и 0,25 предельного. Силовая схема ВИП предусматривает четыре зоны регулирования выпрямленного напряжения. Очередность открытия плеч ВИП в выпрямительном (тяга) и инверторном (рекуперация) режимах определяется алгоритмом работы системы управления преобразователями электровоза (БУВИП). БУВИП формирует и в соответствии с заданным алгоритмом распределяет по плечам всех четырех ВИПов изменение по фазе управляющие импульсы, запускающие систему формирования импульсов, которая в свою очередь формирует и распределяет по тиристорам управляющие импульсы требуемых параметров с заданной фазой и в заданной алгоритмом последовательности.

Схема выпрямительной установки

2. Основные причины неисправности узла их причины и способы их устранения

Все элементы ВИП подвержены воздействию окружающей среды и факторами вызванные движением электроподвижного состава. Поэтому выпрямительные установки и отдельные вентили, в частности, должны обеспечивать надёжную работу в следующих условиях: высота над уровнем моря не более 1200м; температура воздуха от -50 до +60 C; температура охлаждающего воздуха от -50 до +40С; относительная влажность окружающего воздуха не выше 90% при температуре +20С; вертикальные и продольные вибрации с частотой от 3 до 100Гц и ускорением 1.6g , одиночные ударные нагрузки в любом направлении до 3g, скорость потока охлаждающего воздуха между рёбрами охладителей в их средней части не менее 10м/с.

Кроме наибольших значений отпирающих токов и напряжений, для тиристоров Т2-320 с целью повышения их помехоустойчивости установлены наименьшие значения отпирающего тока 30мА и напряжения 1В при температуре 25С. Тиристоры Т2-320 с меньшими отпирающими токами и напряжениями использовать для комплектации ВИП нельзя.

Наибольшая допустимая мощность в цепи управляющих электродов тиристоров при управлении постоянным током н должна превышать 4 Вт. В то же время силовые тиристоры в ВИП управляются импульсами длительностью t = 800/1300 мкс. При этой длительности импульсов наибольшая мощность в цепи управляющих электродов тиристоров Т2-320 не должна превышать 25В.

В процессе эксплуатации выпрямительных установок могут возникать значительные перегрузки диодов и тиристоров по току. Если в результате накопления пробитых вентилей или по другим причинам произошел сквозной пробой плеча выпрямительного моста, то одна из полуобмоток трансформатора через исправное плечо в прямом направлении и через пробитое плечо в обратном направлении замыкается накоротко. В этом контуре протекает аварийный прерывистый ток (до 20 кА), который опасен как для всего электрооборудования, так и для вентилей исправного плеча моста выпрямительной установки (ВУ).

Защита выпрямительных установок от токов короткого замыкания и перегрузок осуществляется главным выключателем (ГВ) электровоза и быстродействующими аппаратами, включенными в цепь каждого двигателя, а при пробое отдельных вентилей в любом плече с помощью сигнализации

К наиболее характерным повреждениям следует отнести: сквозной пробой плеч выпрямительных установок, одиночный пробой вентиля, повышенный обратный ток вентиля, нестабильность вольтамперных характеристик, обрыв внутренней цепи вентиля, механические и другие повреждения.

Одиночный пробой вентиля -- это полная потеря им вентильных качеств. Ток через пробитый вентиль может проходить как в прямом, так и в обратном направлении. Пробой вентиля может быть вызван различными причинами. Большой обратный ток (при напряжениях, превосходящих напряжение лавинообразования) может привести к тепловому пробою. Причиной потери вентильных свойств может быть также перекрытие по боковой поверхности кремниевой пластины на месте, которое оказалось слабозащищенным, а также не обнаруженный во время изготовления ее дефект. Выпрямительная установка рассчитана так, что в случае повреждения одного вентиля она полностью сохраняет работоспособность и машинист может вести поезд до депо или пункта оборота, где неисправный вентиль заменяют. В то же время следует иметь в виду, что (например, на электровозе ВЛ80э) одиночный отказ тиристора Т2-320 приводит к повышению напряжения на других последовательных тиристорах плеча ВИП. При этом у него несколько снижается прямое падение напряжения (до 0,5 В, а в редких случаях до 0,25 В) и через параллельную ветвь плеча, в которой находится поврежденный тиристор, протекает увеличенный ток. Полный выход из строя одиночного тиристора приводит к загоранию сигнальной лампы этого ВИП на пульте управления электровозом уже при нулевом положении штурвала.

Сквозной пробой плечо возникает при выходе из строя всех вентилей, включенных в данное плечо ВИП.

Как показал опыт эксплуатации электровозов ВЛ80э, случаи выхода из строя всех силовых тиристоров Т2-320 плеча ВИП наблюдались значительно реже, чем случаи одиночных пробоев. В то же время они более опасны, так как при сквозном пробое любого плеча возникает режим короткого замыкания всей вторичной обмотки тягового трансформатора или только некоторой её части (в зависимости от зоны регулирования в момент возникновения сквозного пробоя). При этом развиваются токи, которые могут привести к повреждению вторичных обмоток тягового трансформатора, переключателей и силовых тиристоров в других плечах ВИП. Что-бы предотвратить подобные повреждения, на шинах вторичной обмотки трансформатора установлены токовые реле РТ1 -- РТ6, имеющие уставку (8200-~-2001 А. При срабатывании этик реле замыкаются в контакты, через которые на отличающуюся катушку главного выключателя подается питание от обмотки собственных нужд.

Практика эксплуатации электровозов ВЛ80г показывает, что в подавляющем большинстве случаев такая зашита спасает силовое электрооборудование от повреждения. В то же время при сквозном пробое плеча ВИП, как правило, происходит прерывание силовых контактов переключателей 81 и 82.

Наиболее тяжелые повреждения силового электрооборудования отмечаются в случаях, когда машинисты при возникновении сквозного пробоя плеча, не отключают поврежденный ВИП, пытаются повторно включать ГВ.

Неоднократное повторное включение ГВ без отключения неисправного ВИП приводит, как правило, к сквозному пробою нескольких плеч ВИП; число поврежденных тиристоров достигает 10 -- 25; сгорают монтажные про-вода и резисторы связи на панелях силовых тиристоров; повреждаются и обугливаются текстолитовые панели с тиристорами и все элементы монтажа, расположенные на этих панелях.

Повреждения тиристоров чаще всего происходят в одном плече одного ВИП, реже возникают сквозные пробои одновременно двух и более плеч одного ВИП и исключительно редко происходят сквозные пробои плеч одновременно в нескольких ВИП. В подавляющем большинстве случаев при сквозных пробоях выходят из строя силовые тиристоры одной параллельной ветви плеча, реже происходит одновременное повреждение силовых тиристоров двух и более параллельных ветвей плеча, крайне редко наблюдается зигзагообразный выход из строя тиристоров плеча. При этом следует отметить, что самые нижние параллельные ветви тиристоров плеча повреждаются чаще, чем остальные ветви.

Увеличение обратного тока вентиля вызывается увеличением напряжения, приложенного к структуре, и повышением ее температуры. В эксплуатации иногда срабатывает защита от пробоя вентиля, но пробитые вентили не обнаруживаются. Задача отыскания вентилей с увеличенным обратным током может оказаться сложной, если в выпрямительной установке имеются вентиля с нестабильной вольтамперной характеристикой.

Нестабильность вольт-амперной характеристики приводит к тому, что временами, в каких-то условиях обратный ток вентилей резко увеличивается, а затем уменьшается до нормального значения. Причинами нестабильности характеристик может быть нарушение герметичности вентилей и отклонения от технологии при изготовлении структуры.

Обрыв внутренней цепи вентиля это такой вид повреждения, при котором вентиль не пропускает ток ни в прямом, ни в обратном направлениях. Как правило, цепь нарушается по спаю в вентилях штыревой конструкции, что в подавляющем большинстве является следствием старения их спая. Чем чаше осуществляют сброс и набор позиций на электровозе, тем интенсивнее может идти старение спая. По этой причине на электропоездах, где число наборов и сбросов позиций значительно больше, чем на электровозах, случаев обрыва цепи вентилей больше. Обрыв цепи в вентиле остается незамеченным машинистом и может быть обнаружен только специальной проверкой.

Наружные повреждения вентиля штыревой конструкции вмятины на крышке, сорванная резьба и др. часто приводят к необходимости его замены. Недопустимо оставлять в работе вентиля с видимыми наружными повреждениями. Сорванная резьба корпуса вентиля не обеспечивает полного прилегания его к охладителю, что в конечном итоге приводит к его чрезмерному нагреву и выходу из строя. Вмятина на крышке может быть причиной повреждения самого выпрямительного элемента или нарушения герметичности вентиля.

Неисправности вспомогательных элементов выпрямительных установок могут возникать как в результате механических воздействий, так и от действия повышенных токов в цепях установки. В эксплуатации наблюдаются случаи сгорания резисторов связи. Одной из причин их сгорания являются режимы перераспределения рабочего тока ВИП на несколько параллельных ветвей в двух смежных плечах. Сгорание одного резистора связи, расположенного на панели тиристора, нарушает цепь управления этого тиристора и приводит к тому, что данная параллельная ветвь тиристоров плеча вообще не принимает нагрузку. Такое положение не является критическим для ВИП, но накопление сгоревших резисторов связи в одном плече может привести к более серьезным повреждениям (например, отказу тиристоров), поэтому в эксплуатации необходимо периодически проверять целостность резисторов связи и заменять сгоревшие.

Имеют место случаи внутреннего обрыва цепи резисторов ПЭВ. Такие повреждения вызывают неравномерность в распределении напряжений по последовательно соединённым тиристорам и приводят к загоранию сигнальной лампы ВИП на пульте управления в кабине машиниста.

У резисторов наблюдаются также случаи коробления элементов, нарушение пайки в местах соединения, а у конденсаторов пробой изоляции, обрыв проводов, нарушение качества пайки, вмятины на корпусах.

3. Периодичность планового технического обслуживания и ремонта ВУ

Виды технического обслуживания и технического ремонта локомотивов (согласно приказу №423/Н от 21.10.2005г.)

1. Система технического обслуживания и ремонта локомотивов предусматривает техническое обслуживание ТО_1, ТО_2, ТО_3, ТО_4, ТО_5а, ТО_5б, ТО_5в, ТО_5г, текущий ремонт ТР_1, ТР_2, ТР_3, средний ремонт СР и капитальный ремонт КР.

2. Техническое обслуживание -- комплекс операций по поддержанию работоспособности и исправности локомотива.

Техническое обслуживание ТО_1, ТО_2 и ТО_3 является периодическим и предназначено для контроля технического состояния узлов и систем локомотива в целях предупреждения отказов в эксплуатации. Постановка локомотивов на техническое обслуживание ТО_4, ТО_5а, ТО_5б, ТО_5в, ТО_5г планируется по необходимости.

3. При производстве технического обслуживания ТО-1, а также при производстве технического обслуживания ТО-2 (в пределах установленных норм продолжительности) локомотивы учитываются в эксплуатируемом парке. Локомотивы, поставленные на остальные виды технического обслуживания и на ремонт, исключаются из эксплуатируемого парка и учитываются как неисправные.

4. Техническое обслуживание ТО_1 выполняется локомотивной бригадой при приемке-сдаче и экипировке локомотива, при остановках на станциях. Техническое обслуживание ТО-2 выполняется:

-- персоналом пунктов технического обслуживания локомотивов (ПТОЛ)

Нормы периодичности технического обслуживания и ремонта электровозов серии ВЛ80с

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Департамент кадров и учебных заведений.

Реферат на тему:

Студентка 2-го курса ЭУ

Доцент Щербицкая Т.В.

Построение силовых цепей

Список использованной литературы

Принципиальная электрическая схема электровоза представляет собой графическое изображение электрических цепей, соединяющих электрические машины, аппараты и другие элементы оборудования. Они дают представление о прохождении тока в цепи.

Общим принципом действия силовой схемы электровоза ВЛ80 р является регулирование напряжения тиристорами путем их открытия в нужный момент.

Работа написана на 23 листа, с использованием 5 источников информации, содержит 11 рисунков.

1. Построение силовых цепей

На электровозах ВЛ80 р применено плавное, бесконтактное регулирование напряжения тяговых двигателей с помощью тиристорных преобразователей, а также рекуперативное торможение. С этой целью для каждой пары тяговых двигателей установлен отдельный выпрямительно-инверторный преобразователь (рис. 1).

Тяговые двигатели электровоза работают на выпрямленном пульсирующем токе. Преобразование однофазного тока контактной сети в выпрямленный осуществляется с помощью тягового трансформатора 3 и двух выпрямительно-инверторных преобразователей (ВИП0 61 и 62, установленных в каждой секции.

Каждый ВИП собран на управляемых вентилях (тиристорах) и имеет восемь плеч, образующих мостовую схему. Все плечи имеют по семь параллельных ветвей с тремя последовательно соединенными вентилями (за исключением 5-го и 6-го плеч каждой ветви, в которых по два последовательно соединенных вентиля). Для равномерного распределения тока по параллельно соединенным ветвям применены индуктивные двигатели тока ИД (рис. 2)

Рис. 1 Схема силовых цепей электровоза ВЛ80 Р.

Напряжение холостого хода тяговых обмоток a1-x1 и a2-x2 составляет 1230 В. Обмотки a1-x1 и a2-x2 разделены каждая на три секции. Секции а1-1 и а2-3 имеют напряжение холостого хода 307 В, секции 1-2 и 3-4 – 308 В и секции 2-х1 и 4-х2 - напряжение 615 В.

Плавное регулирование напряжения тяговых двигателей достигается управлением тиристорами соответствующих плеч преобразователей 61 и 62.

Включение и отключение тяговых двигателей I – IV производится соответствующими автоматическими выключателями 51 – 54. Реверсивные переключатели 63, 64 обеспечивают изменение направления тока в обмотках возбуждения тяговых двигателей, чем достигается изменение направления движения электровоза.

Рис. 2 упрощенная силовая схема преобразователя

Измерение действительного значения тока якоря двигателей в рекуперативном режиме осуществляется датчиками тока ДкТ1 – ДкТ4.

Для снижения пульсаций выпрямленного тока в цепи тяговых двигателей установлены сглаживающие реакторы 55, 56. с целью уменьшения пульсации тока и, следовательно, потока возбуждения, обмотки возбуждения тяговых двигателей шунтированы резисторами R1 – R4 (выводы Р0 – Р3) постоянного сопротивления.

После полного открытия всех тиристоров ВИП дальнейшее увеличение скорости электровоза достигается ослаблением возбуждения тяговых двигателей, для чего их обмотки возбуждения шунтируют резисторами R1 - R4 (выводы Р1, Р2, Р3) и индуктивными шунтами ИШ1 – ИШ4. предусмотрены три ступени ослабления возбуждения: первая ОП1 – 70%, вторая ОП2 – 52% и третья ОП3 – 43%. Это значит, что соответственно 70, 52 и 43% тока якоря проходит по обмотке возбуждения.

Первая ступень ослабления возбуждения достигается подключением электропневматическими контакторами 65, 66, 71, 72 параллельно обмоткам возбуждения последовательно соединенных резисторов R1 – R4 с выводами Р1 – Р3 и индуктивных шунтов ИШ1 – ИШ4. на второй ступени ослабления контакторы 67, 68, 73, 74 замыкают накоротко часть резисторов R1 - R4 с выводами Р1 – Р2, что приводит к уменьшению тока в обмотках возбуждения. На третьей ступени контакторы 69, 70, 75, 76, замыкаясь, выводят резисторы Р1 – Р3 полностью и обмотки возбуждения шунтируются только индуктивными шунтами. Ослабление возбуждения обеспечивается активным сопротивлением индуктивных шунтов.

Индуктивные шунты ИШ1 – ИШ4 включены для снижения бросков тока и облегчения условий коммутации тяговых двигателей при неустановившихся процессах в контактной сети (колебание напряжения в контактной сети или его восстановление после кратковременного снятия).

В случае необходимости любой из тяговых двигателей может быть отключен соответствующим разъединителем ОД1 – ОД4. при этом отключаются, кроме того, соответствующие автоматические выключатели 51 – 54. Любой из выпрямительно-инверторных преобразователей 61, 62 может быть отключен переключателем 81, 82. При этом также отключаются соответствующие автоматические выключатели 51, 52 или 53, 54.

Питание тяговых двигателей, от источника низкого напряжения (сеть депо) осуществляется через розетку 106 и разъединители 19, 20.

Все переключения в силовой цепи при переходе из режима тяги в режим рекуперации и наоборот производится тормозными переключателями 49 и 50. в режиме торможения якорь каждого тягового двигателя отключен от обмотки возбуждения и подключен последовательно со стабилизирующим резистором R5 к выпрямительному преобразователю; обмотки возбуждения всех двигателей 1-й и 2-й секций соединены последовательно.

Обмотка тягового трансформатора х4 – а6 и выпрямительные установки возбуждения 1-й и 2-1 секций образуют схему двухполупериодного выпрямления с нулевой точкой для питания выпрямленным напряжением обмоток возбуждения тяговых двигателей. Напряжение холостого хода между выводами а6 – а7 и а7 – х4 составляет 180 В. Включение и отключение обмоток возбуждения осуществляется электропневматическими контакторами 46, 47.

Тяговые двигатели в режиме рекуперации работают как генераторы постоянного тока с независимым возбуждением. Рекуперативное торможение осуществляется путем инвертирования постоянного тока тяговых двигателей, работающих генераторами, в переменный ток промышленной частоты.

Стабилизирующий резистор Р5 необходим для обеспечения электрической устойчивости при параллельной работе инвертора и генерирующих тяговых машин.

2. Тяговый режим.

Схема силовых цепей предусматривает четыре зоны фазового регулирования выпрямленного напряжения.

Фазовое регулирование в пределах каждой зоны осуществляется изменением угла открытия тиристоров плеч 1 – 8 (рис. 3) с помощью блока управления. В 1-й зоне регулирования тяговые двигатели питаются от выпрямительных мостов, образуемых плечами 3, 6 и 4, 5, которые подключают их к вывода с секций 1, 2 и 3, 4 обмоток трансформатора. Первыми открываются тиристоры плеч 3 и 5 соответственно в начале каждого полупериода напряжения при подаче на их управляющие электроды импульса с углом открытия ?0 и остаются открытыми весь полупериод. Тиристоры плеч 4 и 6 в соответствующие полупериоды открываются при поступлении на их управляющие электроды импульсов с углом открытия ? рег, равным вначале 170 о , а затем плавно уменьшаемым до 10 – 15 о .

Рис. 3. упрощенная силовая схема электровоза ВЛ80 р.

Когда тиристоры плеч 4 и 6 закрыты, в силовой цепи ток не протекает. По мере уменьшения угла ? рег в силовой цепи появится ток, и выпрямленное напряжение будет постепенно возрастать (рис. 4, а). в конце первой зоны, когда эти тиристоры полностью открыты каждый полупериод, выпрямленное напряжение (скорость электровоза) достигнет наибольшего для этой зоны значения, определяемого напряжением секции 1 – 2 (3 – 4) тягового трансформатора, составляющим примерно 300 В.

Рис. 4. Форма выпрямленного напряжения при регулировании 1-й (а) и 4-ой (б) зонах

При переходе с 1-ой во 2-ю зону регулирования вступают в действие

Тиристоры плеч 1 и 2 и тяговые двигатели получают питание от выпрямительных мостов, которые образуются плечами 1, 6 и 2, 5, подключая их к выводам а1 – 2 и а2 – 4 обмоток трансформатора.

Во 2 – ой зоне регулирования тиристоры плеч 3, 4. 5 и 6 открыты весь соответствующий период питающего напряжения, а открытие тиристоров плеч 1 и 2 регулируется путем подачи на их управляющие электроды импульсов с углом ? рег, который плавно изменяется в диапазоне 170 – 10 о.

Вначале во 2 – ой зоне ток в силовой цепи протекает, как и в конце 1 – ой зоны, поскольку тиристоры плеч 1 и 2 еще не открыты. В один из полупериодов ток протекает от вывода 1 (3) к выводу 2 (4) секции 1 - 2 (3 – 4) тягового трансформатора через плечо 5, цепи тяговых двигателей , плечо 4, вывод 1 (3) трансформатора. Во второй полупериод ток проходит от вывода 2 (4) секции 1 – 2 (3 – 4) трансформатора, через плечо 3, цепи тяговых двигателей, плечо 6, вывод 2 (6) обмотки трансформатора. При уменьшении угла ? рег тиристоры плеч 1 и 2 открываются и берут на себя нагрузку, а тиристоры плеч 3 и 4 запираются. С этого момента ток протекает через тиристоры плеч 6, от вывода 2 (4) к выводу а1 (а2) обмотки трансформатора, тиристоры плеча 1 и далее через цепи тяговых двигателей, а в следующий полупериод – через тиристоры плеча 2, от вывода а1 (а2) к выводу 2 (4) трансформатора и далее через цепи тяговых двигателей. По пере уменьшения ? рег тиристоров плеч 1 и 2 выпрямленное напряжение плавно увеличивается и в конце 2 – ой зоны при полностью открытых тиристорах плеч 1, 6 и 2, 5 определяется суммарным напряжением двух секций а1 (а2) – 2 (4) обмотки трансформатора, что составляет примерно 600 В.

По окончании регулирования во 2 –ой зоне при дальнейшем движении главного штурвала контроллера машиниста и переходе в 3 – ю зону (рис. 5) происходит автоматический мгновенный перевод нагрузки с двух малых секций а1 (а2) – 2 (4) тягового трансформатора на одна большую секцию х1 (х2) – 2 (4), которая имеет такое же напряжение (около 600 В). Это производится путем переключения импульсов управления с тиристоров плеч 1, 2, 5, 6 на тиристоры плеч 5, 6, 7, 8.

В начале регулирования в 3 –ей зоне тиристоры плеч 5, 6, 7, 8 полностью открыты в каждый соответствующий полупериод питающего напряжения. Ток протекает через секцию х1 (х2) – 2 (4) и тиристоры 8, 5 или 6, 7. затем вступают в действие тиристоры плеч 3 и 4, которые открываются при подаче на их управляющие электрод импульсов, регулируемые по фазе с углом ? рег; при этом прекращается работа тиристоров плеч 5 и 6. ток протекает по двум секция х1 (х2) – 2 (4) и 2 (4) – 1 (3) через тиристоры плеч 3, 8 или 4, 7. Тиристоры плечт3 и 4 полностью открыты в каждый соответствующий полупериод.

В технике электропитания широко распространены преобразователи переменного тока в постоянный, называемые выпрямителями.

Для преобразования переменного тока в постоянный необходимо располагать вентильными устройствами (элементами с односторонней проводимостью) и электрическими накопители инерционности, роль которых выполняют L и C.

Выпрямители строятся по двум основным принципам:

- с трансформаторным входом;

- с бестрансформаторным входом.

Структурные схемы ВУ


Достоинством данной схемы выпрямления является регулируемая транзистором гармоническая развязка первичного источника питания (ПИП) и нагрузки, что обязательно при заземленном режиме нагрузки.

Кроме того, трансформатором довольно просто реализуется преобразование входного напряжения к уровню, подходящему для последующего использования.

Центральным недостатком этой схемы (трансформаторный вход) является наличие габаритного, большой массы силового трансформатора на обычно низкой частоте, питающего напряжения (на промышленной частоте 50 Гц).

Опыт показывает, что увеличение рабочей частоты в инверторе позволяет существенно уменьшить массу и габариты источника, против выпрямителей решающих ту же задачу, но построенных по схем с трансформатором на входе.

В технике электропитания в настоящее время имеется явно выраженная тенденция построения ВУ с безтрансформаторным входом.

Достоинством схемы являются уменьшенные масса и габариты источников.

Недостатки – сложность схемы, наличие многих элементов (увеличение стоимости, уменьшение надежности);

- высокие требования к вентилям во входном ВЗ1.

- повышенные требования к быстродействию элементов инвертора (транзисторы, лампы).

Внутренние и внешние характеристики ВУ

Параметры, характеризующие режим работы элементов схемы ВУ и нагрузки, а также эксплуатационные характеристики ВУ удобно рассмотреть, обращаясь к схеме выпрямителя с трансформаторным входом.


Как видно из структурной схемы любое выпрямительное устройство может быть охарактеризовано внешними электрическими параметрами.

[В]; ; f[гЦ]


- амплитуды. (1)


- мощность (2)


(3)

[А]


[Вт] (4)


- коэффициент пульсации (5)

В дополнение к характеристикам по входу и выходу каждое ВУ характеризуется КПД:


(6)

По внешним характеристикам ВУ (как и другие устройства) условно можно разделить на:


- маломощные (ММ) с


- средней мощности (СМ)


- большой мощности (БМ)

Возможны классификации: по току, выходным напряжениям (высоковольтные, низковольтные) и т.д..

U>1000 [B] – высоковольтный источник.

К внешним характеристикам при анализе возможностей ВУ и их показателей качества относят:

- массу и габариты;

- допустимый диапазон рабочих температур;

Внутренние характеристики ВУ представляют собой электрические и эксплуатационные параметры режимов работы различных элементов схемы.

(7)

(8)


(9)


- коэффициент использования транзистора (10)

В вентильном звене:

Представляют интерес следующие электрически характеристики. В В3 для каждого вентиля схемы интересуются:


- максимальным значением тока (амплитуда);


- действующим значением тока ;


- среднее значение тока: ;


- обратный ток ;


- прямое напряжение ;


- максимальное обратное напряжение

По каждому показателю выбираются при проектировании подходящие стандартные вентильные устройства.

Применительно к сглаживающим фильтрам из внутренних электрических характеристик представляют общий интерес:


- пропускаемый через фильтр в нагрузку ток ;


- его всплески ;


- максимальное напряжение источника на элементах

Вентили для ВУ. Параллельное и последовательное соединение вентилей в схемах ВУ

Электрический вентиль – устройство с односторонней проводимостью.

Для выпрямления тока используются электрические вентили следующих типов:

- с электронно-ионной проводимостью.

Любой электрический вентиль при действии на него напряжения в прямом направлении имеет малое сопротивление току, при подаче напряжения в противоположном обратном направлении, сопротивление вентиля резко увеличивается.

Типичная ВАХ для полупроводникового вентиля имеет вид:


При использовании вентилей в ВУ для каждого типа не должны превышаться допустимые значения прямого тока Iпр и обратного напряжения Uобр.

В тех случаях, когда имеющиеся в распоряжении вентили не обеспечивают необходимого тока в нагрузку, применяя параллельное включение нескольких вентилей по следующей схеме (рис 4).


Добавляют Rдоб в 2-5 раза больше Rпр. На добавочных сопротивлениях в мощных выпрямителях могут возникать недопустимые рассеивания энергии. В таких случаях возможно для выравнивания тока в вентилях применение индуктивных реакторов (рис 5).


В тех случаях, когда обратное напряжение на вентилях превышает максимально допустимое, прибегают к последовательному соединению нескольких вентилей.

В тех случаях, когда ВУ высоковольтное можно добавить емкости. Параллельное и последовательное соединение вентилей широко применяется в ВУ хотя существенно усложняет схему, увеличивается масса и объем, стоимость. А в случаях последнего соединения – увеличивается внутреннее сопротивление Rпр.


(11)


(12)

Работа многофазного выпрямителя на активную нагрузку

Работы ВУ на различные нагрузки (активные, реактивные, индуктивного характера, емкостного характера). Отличается определенной спецификой.

Наиболее простым является работа на чисто активную нагрузку

Рассмотрим особенности этого режима на примере однотактного выпрямителя для трехфазной сети переменного тока выполненной по схеме Миткевича.


В дальнейшем рассмотрении будут использованы предположения:

- об идеальности транзистора т.е. Rгр = Xгр = 0


- об идеальности вентилей Rпр = 0; Rобр =

- схема совершенно симметрична Uа = Uб = Uc

- Внутреннее сопротивление фазы равно 0

Задача состоит в анализе электрических процессов выпрямления и в вычислении связи между электрическими характеристиками режима работы трансформатора и вентильного звена (с первой стороны) и электрическими характеристиками режима работы нагрузки (с другой стороны):

1. - вторичная обмотка

2. , (13)


3. (14)


4. КПД: (15)

Анализ удобно провести, пользуясь временными диаграммами токов и напряжений, действующих в цепях и элементах схемы ВУ.


Можно убедится, что напряжение в каждой фазе может обеспечить ток через вентиль в этой фазе при выполнении 2-х условий:

- это напряжение для вентиля является прямым;

- оно больше чем положительное напряжение в смежных фазах.

Вентиль в рабочей фазе, будучи идеальным представляет собой КЗ и падение напряжения на нем равно 0. Напряжение, на закрытых вентилях образуемое из ЭДС соответствующих фаз и ЭДС работающей фазы, определяется линейным межфазным напряжением.

Подобно формулам для напряжений могут быть выведены формулы для токов. Необходимо принять во внимание, что ток в вентиле:


(16)

(17)

; (18)


(19)

Если интересоваться действительным значением тока, то необходимо вычислять среднее значение интеграла от квадрата ток и извлекать квадратный корень.


(20)

Для расчета тока первичной обмотки трансформатора необходимо учесть тот факт что постоянная составляющая тока, протекающего по фазам вторичной системы обмоток, не трансформируется.

Трансформируется через коэффициент трансформации только переменная составляющая.

По рассчитанным значениям тока и напряжения в 1-й и во второй обмотках могут быть определены полные мощности в 1-й и во 2-й обмотках и габаритная мощность.


(21)


(22)


(23)

Относительно пульсаций выходного напряжения в данной схеме необходимо отметить следующее:

- как видно из физики работы схемы временных диаграмм за период выпрямляемого напряжения ток в нагрузке появляется 3 раза;

- пульсация напряжения в связи с этим имеет вид полуволн;

- колебания (интенсивность пульсаций) можно оценить рассматривая их гармонические составляющие, т.е. разлагая их в ряд Фурье:


(24)

Пользуясь этим соотношением, запишем коэффициент по К-гармоникам:


(25)


В данном случае m=3коэффициент пульсации по первой наиболее интенсивной гармонике составит:


Проведенный анализ непосредственно распространяется только на случай чисто активной нагрузки.

Как видно из проведенного анализ особенностью работы выпрямителя на чисто активную нагрузку является:

- напряжение на выходе выпрямителя как функция времени определяется огибающей ЭДС действующих фаз;

- каждая фаза в рассмотренной схеме работает 1 раз за период а импульсы тока через нагрузку вентилей совпадают по форме с действующей фазой ЭДС. Длительность импульса тока равно 2π/м где м – число импульсов тока за период выпрямляемого напряжения;

- работа выпрямителей на чисто активную нагрузку на практике распространена сравнительно мало, т.к. непосредственно выпрямленное напряжение содержит значительную пульсацию. Для сглаживания этой пульсации применяют различные рода фильтры НЧ, которые в любой технике называют сглаживающими.

Простейшими сглаживающими фильтрами (СФ) являются индуктивные фильтры или емкостные.

Таким образом, на практике широко распространены режимы работы выпрямления, на нагрузку с индуктивной или емкостной реакцией.

Эти режимы имеют определенное отличие от режима работы на чисто активную нагрузку. Эти отличия определяют и различия требований к элементам схемы, а также особенности расчетных формул, связывающих напряжение и ток с нагрузки с напряжениями и токами в вентилях и трансформаторах.

Особенности работы выпрямителя на нагрузку емкостного характера

В качестве основы берем ту же схему Миткевича:


Считаем что трансформатор идеальный, т.е. Rтр = 0 Xтр = 0 вентили идеальны. Схема совершенно симметрична:


Емкость (мгновенно в идеальном случае) заряжается до напряжения в фазе и напряжение на емкости будет, изменяется в соответствие с ЭДС по достижении его максимального значения. При уменьшении напряжения в фазе емкость разряжается на нагрузку по экспоненциальному закону и если напряжение на ней выше, чем в фазе, вентиль закрывается разностью этих воздействий.

Принято оценивать длительность импульса тока угловой мерой . - угол отсечки.

Если мы увеличиваем нагрузку, то длительность импульса тока уменьшается и наоборот.

Как видно из проведенного рассуждения.

Работа выпрямителя на нагрузку емкостного характера. Особенности:


- напряжение на выходе выпрямителя представляет собой сравнительно сложную функцию, составленную из периодически чередующихся отрезков косинусов и экспоненты:



- длительность импульса тока а фазе и в вентиле (чаще всего)


- отведенное время для работы фазы.

При прочих требованиях к току в нагрузке, ток через вентиль в импульсном режиме, соответствующем емкостному характеру нагрузки, имеет большую амплитуду, чем в случае чисто активного сопротивления нагрузки.

Таким образом, требования к пропускной способности вентиля по току при работе на емкостную нагрузку, существенно увеличивается против случая с активной нагрузкой, что является платой за достигаемое сглаживание пульсаций.

1. Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. - Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 200

2. Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Под ред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.

3. Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. – М.: Три Л, 2000. – 400 с.

4. Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. – М.: Альтекс а, 2002. –191 с.

Силовая часть схемы ВУВ представляет собой однополупериодный управляемый тиристорный выпрямитель (рис. 6.5). В приложении 3 приведен перечень аппаратов блока ВУВ-001 на четырех параллельно включенных тиристорах типа Т143-500. Регулирование тока возбуждения производится изменением угла проводимости тиристоров путем подачи с заданной фазой управляющих импульсов, формируемых схемой управления. Тиристоры V защищены предохранителями 1-7-Е4 типа ПП57 иа ток 400 А. Блоки тиристоров Е1-Е4 включают в себя также помехозащищенные конденсаторы С и выравнивающие резисторы Н. Делители индуктивные ДИ1-ДИ4 предназначены для выравнивания распределения токов между параллельно включенными тиристорами V.

Схема управления силовой цепью блока состоит из трех основных функциональных узлов: фильтра питания цепей усилителя-формирователя импульсов, собственно усилителя-формирователя импульсов и цепц, формирования крутизны переднего фронта импульсов.

Фильтр питания цепей усилителя-формирователя импульсов состоит из дросселя Е и панели с 20 параллельно соединенными конденсаторами СЗ-С22. Защита сглаживающего фильтра от КЗ производится при помощи предохранителя Е5.

Усилитель-формирователь импульсов представляет собой транзисторный бло-кинг-генератор. Питание осуществляется выпрямленным напряжением 50 В. Через сглаживающий фильтр Е-СЗ-С22 и резисторы Н5, Н6-Н9 питание подают на обмотку размагничивания Н4-К4 и первичную обмотку НГ-К1 импульсного трансформатора Т. Обмотка размагничивания Н4-К4, включенная встречно первичной обмотке Н1-К1, позволяет создать начальное смещение индукции сердечника по петле гистерезиса.

Начальное смещение регулируется переменным резистором 1?5, чем устанавливается продолжительность цикла работы импульсного трансформатора Т и соответственно длительность выходного импульса. Резисторы Я6-Я9 служат для ограничения тока в обмотке размагничивания.

Транзисторы V7-V9, работающие в ключевом режиме, до подачи управляющего импульса находятся в закрытом состоянии. После подачи импульса управления на базы транзисторов через диод V5 и резистор R12, ограничивающий сигнал управления по току, транзисторы открываются и по цепи база-эмиттер транзисторов V7-V9 потечет ток. Последний нарастает лавинообразно вследствие трансформации электромагнитной энергии в обмотку обратной связи. Диод V4 устраняет расход мощности управляющего сигнала, поступающего через диод V5.

Токи между транзисторами V7-V9 распределяются равномерно за счет резисторов R16-R19, R20-R23, R24-R27, включенных в эмиттерные цепи транзисторов. Конденсаторы С24, С25, С26 и резисторы R13, R14, R15 служат для обеспечения помехозащищенности и необходимого смещения рабочей точки транзисторов. Электромагнитная энергия трансформируется во вторичную обмотку Н2-К2 трансформатора Т и происходит заряд конденсатора С23. Последний заряжается до тех пор, пока напряжение на нем не превысит напряжения пробоя стабилитрона V2.

Цепь формирования крутизны переднего фронта импульса состоит из тиристора VI, стабилитрона V2, диода V3, резисторов R2 и R3.

После пробоя стабилитрона V2 сигнал управления поступает ла тиристор VI. Последний открывается и через него происходит разряд конденсатора С23 на управляющие переходы силовых тиристоров V, которые одновременно открываются, и через них течет силовой ток обмоток возбуждения тяговых двигателей.

Одновременность открывания тиристоров V обусловливается наличием цепей выравнивания распределения токов по их управляющим переходам через резисторы R. Конденсаторы служат для защиты управляющих переходов силовых тиристоров от помех; резистор R2 - для по-мехозащиты "управляющего перехода тиристора VI.



После достижения насыщения сердечником трансформатора Т трансформация в обмотке прекращается, транзисторы У7-У9 запираются и формирование импульса прекращается.

Цепочка НЮ, ЯП, У6, шунтирующая первичную обмотку НІ-К7 трансформатора Т, обеспечивает разряд накопленной в трансформаторе энергии и возврат усилителя-формирователя импульсов в исходное состояние.

Каждый из двух одинаковых блоков ВУВ (рис. 6.6) скомпонован на панели 6, на которой установлены блоки тиристоров с охладителями 7 (Е1-Е4), делители индуктивные 5 (ДИ1-ДИ4), предохранители 4 (^/-Ї4) типа ПП57-37372 на ток 400 А, панель управления 3, закрытая металлическим кожухом 8.

На панели управления установлен предохранитель 2 (Р5) типа ВПБ6-39 (5 А). Охладители тиристоров закрыты стекло-пластовым желобом 9, через который нагнетается охлаждающий воздух.

Шинами А и Б подводят напряжение к тиристорам; через зажим 1 - напряжение к панели управления.

Читайте также: