Вуглеводи реферат з хімії

Обновлено: 04.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Углеводы – обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями.

Углеводы и их производные во всех живых клетках выполняют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов.

В ротовой полости при участии гидролитических ферментов слюны начинается переваривание углеводов. В желудке продолжается гидролиз углеводов ферментами слюны. В двенадцати перстной кишке под действием сока поджелудочной железы полисахариды пищи (крахмал, гликоген и др.) и сахара (олигосахариды и дисахариды) расщепляются при участии a -глюкозидазы и других глюкозидаз до моносахаридов, которые и всасываются в из тонкой кишки в кровь.

Прохождение всасываемых углеводов через эпителиальные клетки кишечника и поступление их в клетки периферических тканей осуществляются с помощью особых транспортных системам. Попадая в клетки углеводы расщепляются там и выделяют большое количество энергии 1г – 17,2кДж.

Еще одна важная роль углеводов в организме человека и животных связана с тем что углеводы в отличие от белков могут расщепляться как при участии кислорода, так и без него. Это очень важно для организмов которые обитают в условиях нехватки кислорода.

В организме и клетке углеводы обладают способностью накапливаться в виде крахмала у растений и гликогена у животных. Крахмал и гликоген представляют собой запасную форму углеводов и расходуются по мере возникновения потребности в энергии. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени.

Углеводы выполняют не только питательную функцию в живых организмах они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ. В растениях полисахариды выполняют опорную функцию.

Углеводы в организмах выполняют также и защитную функцию. Вязкие секреты (слизи), выделяемые различными железами, богаты углеводами и их производными, в частности гликопротеидами. Они предохраняют стенки полых органов (пищевод, кишки, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов в организм.

Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-

Школа БИОТОП Лаборатории непрерывного математического образования

Минаева Аглая Георгиевна

Воронаев Иван Геннадьевич

Введение – стр. 3

Классификация углеводородов – стр.4

Природные источники – стр.8

Углеводоро́ды — органические соединения, состоящие из атомов углерода и водорода.

Например: CH4, C2H6, C3H6, C6H6, C8H10 и т.п. В общем виде - СxHy.

hello_html_mef8490a.jpg

Рисунок1.

Углеводороды считаются базовыми соединениями органической химии, все остальные органические соединения рассматривают как их производные. Углерод имеет четыре валентных электрона, а водород – один. Простейший углеводород — метан (CH 4 ). Но это не значит, что их соотношение всегда равно 1 к 4. Между атомами углерода могут быть не только одинарные, но и двойные, а также тройные связи. По этому критерию различают классы углеводородов. Простейший углеводород — метан (CH 4 ).

1.1. Многообразие углеводородов

В силу особенностей строения и свойств углерода, его соединения с водородом весьма многочисленны и разнообразны. Это обусловлено рядом структурных факторов:

атомы углерода способны соединяться между собой в цепи различного строения:

hello_html_276140f.jpg

даже при одинаковом количестве атомов углерода в молекулах углеводороды могут отличаться числом атомов водорода,

например: C6H14, C6H12, C6H10, C6H8, C6H6;

или другой пример: молекулы с 4-мя атомами углерода могут содержать от 10-ти до 2-х атомов водорода:

hello_html_m1fc3a64c.jpg

одному и тому же элементному составу молекул (одной молекулярной формуле) может соответствовать несколько различных веществ – изомеров. Например:

hello_html_m767a5acb.jpg

Многочисленность и разнообразие углеводородов требуют их классификации.

Классификацию углеводородов проводят по следующим структурным признакам, определяющим свойства этих соединений:

строение углеродной цепи (углеродного скелета);

наличие в цепи кратных связей С=С и С C (степень насыщенности).

2.1 В зависимости от строения углеродной цепи углеводороды подразделяют на две группы:

ациклические или алифатические,т.е. "жирные" (от греческого слова "алейфар" – "жир",

т.к. впервые структуры с длинными углеродными цепями были обнаружены в составе жиров);

Открытая (незамкнутая) цепь алифатических углеводородов может

быть неразветвленной или разветвленной. Углеводороды с неразветвленной углеродной цепью называют нормальными (н-) углеводородами.

Среди циклических углеводородов выделяют: алициклические (т.е. алифатические циклические); ароматические (арены).

В этом случае классификационным признаком служит строение цикла.

К ароматическим углеводородам относят соединения, содержащие один или несколько циклов С 6 Н 6 (структура бензола).

По степени насыщенности различают:

насыщенные (предельные) углеводороды (алканы и циклоалканы), в которых имеются только простые связи С-С и отсутствуют кратные связи;

ненасыщенные (непредельные), содержащие наряду с одинарными связями С-С двойные и/или тройные связи (алкены, алкадиены, алкины, циклоалкены, циклоалкины).

Следует заметить, что хотя по составу бензол С 6 Н 6 формально соответствует ненасыщенным циклическим углеводородам (его молекулу часто изображают как шестичленный цикл с тремя двойными связями), по свойствам это соединение

hello_html_5929b086.jpg

резко отличается от ненасыщенных веществ из-за делокализации кратных связей. Поэтому соединения ряда бензола относят к самостоятельной группе ароматических углеводородов (аренов).

hello_html_m37d360ba.jpg

Рисунок 6.

3.1. Алканы – это ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой C n H 2n+2 . Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода.

Типичным представителем данного класса является метан – СН4. Именно он начинает гомологический ряд алканов, обладает всеми свойствами, присущими остальным представителям парафинов. Первые представители данного класса углеводородов являются газообразными веществами, обладающими малой растворимостью в воде, специфическим запахом. Среди основных химических свойств, которыми обладают представители гомологического ряда алканов, выделим радикальное замещение. Галогенирование протекает при повышенной температуре либо наличии ультрафиолетового облучения. Реакция протекает в несколько стадий, характеризуется постепенным замещением атомов водорода галогеном. Свойства углеводородов ряда метана объясняются насыщенностью связи между углеродными атомами. Они не способны вступать в реакции присоединения, при этом отлично горят в кислороде воздуха с образованием углекислого газа, водяного пара, выделением достаточного количества тепловой энергии.

hello_html_m1129e674.jpg

Рисунок 7.

3.3. Формулы и температуры фазовых переходы первых пяти представителей предельных углеводородов

T плавления о С

3.4. Для органических соединений характерно такое явление, как

изомерия. Изомерывещества, имеющие одинаковый состав, но различное строение. Первые три предельных углеводорода не имеют изомеров. Бутан существует в виде двух изомеров. С увеличением числа углеродных атомов в молекуле резко возрастает число изомеров.

Изомерных пентанов – три, гексанов – пять, гептанов – девять, деканов – семьдесят пять и далее количество их нарастает в геометрической прогрессии. Изомеры отличаются по физическим и химическим свойствам.

3.4. Все предельные углеводороды химически относительно неактивны. Это связано с тем, что для реакций с их участием необходим разрыв химических связей С–Н или С–С, которые характеризуются высокой прочностью. Наиболее важные реакции для них: окисление кислородом и крекинᴦ. Крекинг – процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины, происходящий в присутствии катализаторов (каталитический крекинг) или при нагревании предельных углеводородов до 500÷700 °С под давлением (термический крекинг). Пример - реакция разложения бутана:

СН 3 –СН 2 –СН 2 –СН 3 → СН 3 –СН 3 + СН 2 =СН 2 .

- (олефины, этиленовые углеводороды) — ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой C n H 2n. Свое второе название — олефины — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел.

Углеводороды – это огромное разнообразие веществ даже с учетом классификации. Но все же стоит кратко перечислить наименования соединений, входящих в этот многочисленный класс. Предельные углеводороды – это метан, этан, пропан, бутан, пентан, гексан, гептан и т. д. Первое и третье названия наверняка знакомы даже тем, кто не особенно дружит с химией. Так называются довольно распространенные виды газов. В класс алкенов (олефинов) входят этен (этилен), пропен (пропилен), бутен, пентен, гексен и т. д. К алкинам относятся этин (ацетилен), пропин, бутин, пентин, гексин и т. д. Кстати, двойные и тройные связи могут быть не одиночными. В таком случае такие структуры относятся к алкадиенам и алкадиинам. Но слишком уж углубляться не стоит. Что касается углеводородов, структура которых замкнута, для них есть свои названия: циклоалканы, циклоалкены и циклоалкины. Названия первых: циклопропан, циклобутан, циклопентан, циклогексан и т. д. Во второй класс входят циклопропен, циклобутен, циклопентен, циклогексен и т. д. Наконец циклоалкины, не встречающиеся в природе. Синтезировать их пытались очень давно и долго, и это удалось лишь в начале XX века. Молекулы циклоалкинов состоят не менее чем из 8 атомов углерода. При меньшем количестве соединение просто нестабильно из-за слишком большого напряжения. Есть еще арены (ароматические углеводороды), самым простым и распространенным представителем которых является бензол. Также к этому классу относятся нафталин, фуран, тиофен, индол и т. д.

Как и другие полезные ископаемые, некоторые углеводороды располагаются в виде залежей и запасов в земной коре. В частности, они составляют большую часть газа и нефти. Это хорошо видно при переработке последней: в процессе выделяется огромное количество веществ, большая часть из которых относится именно к углеводородам. Газ и вовсе на 80-97% обычно состоит из метана. Кроме того, метан образуется при разложении органических отходов и останков, так что его получение не представляет серьезной проблемы.

Артеменко А.И. Органическая химия. - М.: Высшая школа, 2006 - 439 с.

Гранберг И.И. Органическая химия. - М.: Дрофа, 2007 - 672 с.

Потапов В.М. Проверь свои знания по органической химии. - М.: Просвещение,1986 - 142 с.

Содержание

Введение……………………………………………..……………………3
1. Классификация углеводов…………………………………..…….4
2. Особенности строения классов углеводов …………. ………….5
3. Физические свойства классов углеводов…………………..……11
4. Химические свойства классов углеводов ……………………….11
5. Экспериментальное подтверждение свойств углеводов……….15
6. Применение…………………………………………………..……17
Заключение……………………………………………………………….18
Список литературы………………………………………………..……..

Вложенные файлы: 1 файл

Реферат.docx

  1. Классификация углеводов…………………………………..…….4
  2. Особенности строения классов углеводов …………. ………….5
  3. Физические свойства классов углеводов…………………..……11
  4. Химические свойства классов углеводов ……………………….11
  5. Экспериментальное подтверждение свойств углеводов……….15
  6. Применение…………………………………………………. .……17

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу, а также несколько гидроксильных групп.

Биологическое значение углеводов:

  1. Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений).
  2. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).
  3. Углеводы выполняют пластическую функцию — хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК.
  4. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  5. Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
  6. Углеводы выполняют рецепторную функцию — многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % сахара.

Скорость усвоения организмом разных видов углеводов неодинакова. Различают:

  • Быстроусвояемые углеводы, содержащиеся в больших количествах в сахаре, муке, кукурузе, картофеле и в других богатых крахмалом продуктах, а также во фруктовых соках.
  • Медленноусвояемые углеводы, содержащиеся в богатых клетчаткой продуктах: фруктах, овощах, отрубях и злаках.
  • Углеводы, которые либо вообще не усваиваются организмом, либо усваиваются с трудом. К этому виду углеводов относят клетчатку.

Продукты с высоким содержанием углеводов

Наиболее распространенными углеводами являются глюкоза, фруктоза и сахароза, входящие в состав овощей, фруктов и меда. Лактоза входит в состав молока. Сахар-рафинад представляет собой соединение фруктозы и глюкозы.

Глюкоза играет центральную роль в процессе обмена веществ. Она является поставщиком энергии для таких органов, как головной мозг, почки, и способствует выработке красных кровяных телец.

Человеческий организм не в состоянии делать слишком большие запасы глюкозы и потому нуждается в ее регулярном пополнении. Но это не значит, что нужно есть глюкозу в чистом виде. Гораздо полезнее употреблять ее в составе более сложных углеводных соединений, например, крахмала, который содержится в овощах, фруктах, зерновых. Все эти продукты, кроме того, являются настоящим кладезем витаминов, клетчатки, микроэлементов и других полезных веществ, помогающих организму бороться со многими болезнями. Полисахариды должны составлять большую часть всех поступающих в наш организм углеводов.

являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами. Некоторые моносахариды обладают сладким вкусом. Моносахариды — стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза) и полисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную (альдозы) или кетогруппу (кетозы). Каждый углеродный атом, с которым соединена гидроксильную группу (за исключением первого и последнего) является хиральным, давая начало многим изомерным формам. Например, галактоза и глюкоза — альдогексозы, но имеют различные химические и физические свойства. Моносахариды, как и все углеводы, содержат только 3 элемента (C,O,H).

Моносахариды подразделяют на триозы, тетрозы, пентозы, гексозы и т. д. (3, 4, 5, 6 и т. д. атомов углерода в цепи); природные моносахариды с углеродной цепью, содержащей более 9 атомов углерода, не обнаружены. Моносахариды, содержащие 5-членный цикл, называются фуранозами, 6-членный — пиранозами.

В природе широко распространены гексозы и пентозы. Моносахариды редко в природе встречаются в свободном состоянии. Они входят в виде остатков в состав многочисленных гликозидов: олиго- и полисахаридов, более сложных биополимеров-гликопротеинов, гликолипидов, нуклеиновых кислот и др. Исключение - D-глюкоза, содержащаяся в плазме крови и соках растений, ее формулу запомнить очень легко: это альдогексоза, в формуле Фишера которой все гидроксильные группы, за исключением одной – второй сверху (у C-3) располагаются справа.

D-манноза D-глюкоза D-галактоза

Альдогексозу, отличающуюся от D-глюкозы расположением первой гидроксильной группы (у C-2), называют D-маннозой, а третьей (у C-4) – D-галактозой. D-Фруктоза отличается от D-глюкозы тем, что она кетоза, а не альдоза.

D-фруктоза D-арабиноза L-арабиноза

Молекулы этих углеводов образуются из двух циклических молекул моносахаридов (одинаковых или разных) и построены по типу простых эфиров:
ROR' +®ROH + R'OH Н2O
Из всех гидроксильных групп, содержащихся в циклических формах моносахаридов, наиболее легко подвергается замещению гликозидный гидроксид. Поэтому в образовании дисахарида участвует гликозидный гидроксид хотя бы одного из двух исходных моносахаридов; второй моносахарид может реагировать или своим полуацетальным гидроксидом, или каким-либо из остальных (спиртовых) гидроксидов.
Сахароза представляет собой дисахарид, имеющий молекулярную -фруктозы:b-глюкозы и aформулу С12Н22О11 и построенный из остатков


Восстанавливающие дисахариды всеми свойствами похожи на моносахариды. При гидролизе мальтозы или целлобиозы образуется глюкоза.
Существует много других дисахаридов. Например, в молоке содержится лактоза (молочный сахар), ее гидролиз приводит к глюкозе и галактозе (галактоза имеет такую же, как и глюкоза, структурную формулу, но другое пространственное расположение заместителей у одного из четырех асимметрических атомов углерода).

Практически дисахариды получают только из природных источников: из сахарной свеклы и сахарного тростника (сахароза).

Полисахариды являются высокомолекулярными соединениями, содержащими сотни и тысячи остатков моносахаридов. Общим для строения полисахаридов является то, что остатки мо-носахаридов связываются за счет полуацетального гидроксила одной молекулы и спиртового гидроксила другой и т.д. Каждый остаток моносахарида связан с соседними остатками гликозидными связями.
Полигликозиды могут содержать разветвленные и неразветвленные цепи. Остатки моносахаридов, входящие в состав молекулы, могут быть одинаковыми или разными. Наибольшее значение из высших полисахаридов имеют крахмал, гликоген (животный крахмал), клетчатка (или целлюлоза). Все эти три полисахарида состоят из молекул глюкозы, по-разному соединенных друг с другом. Состав всех трех соединений можно выразить общей формулой: (С6Н10О5)n

Крахмал относится к полисахаридам. Молекулярная масса этого вещества точно не установлена, но известно, что очень велика (порядка 100000) и для разных образцов может быть различна. Поэтому формулу крахмала, как и других полисахаридов, изображают в виде (С6Н10О5)n. Для каждого полисахарида n имеет различные значения.

Из растений извлекают крахмал, разрушая клетки и отмывая его водой. В промышленном масштабе его получают главным образом из клубней картофеля (в виде картофельной муки), а также из кукурузы.

1) При действии ферментов или при нагревании с кислотами (ионы водорода служат катализатором) крахмал, как и все сложные углеводы, подвергается гидролизу. При этом сначала образуется растворимый крахмал, затем менее сложные вещества — декстрины. Конечным продуктом гидролиза является глюкоза. Можно выразить суммарное уравнение реакции следующим образом:


3) Характерной реакцией является взаимодействие крахмала с растворами йода. Если к охлажденному крахмальному клейстеру добавить раствор йода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определении крахмала в пищевых продуктах. Так, например, если каплю йода нанести на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Целлюлоза, или клетчатка

Целлюлоза — еще более распространенный углевод, чем крахмал. Из него состоят в основном стенки растительных клеток. В древесине содержится до 60%, в вате и фильтровальной бумаге — до 90% целлюлозы.

Состав и строение

Состав целлюлозы, так же как и крахмала, выражают формулой (С6Н10О5)n. Значение n в некоторых видах целлюлозы достигает 10-12 тыс., а молекулярная масса доходит до нескольких миллионов. Молекулы ее имеют линейное (неразветвленное) строение, вследствие чего целлюлоза легко образует волокна. Молекулы же крахмала имеют как линейную, так и разветвленную структуру. В этом основное отличие крахмала от целлюлозы.
Имеются различия и в строении этих -глюкозы, аaвеществ: макромолекулы крахмала состоят из остатков молекул -глюкозы. Процесс образования фрагментаbмакромолекулы целлюлозы — из остатков макромолекулы целлюлозы можно изобразить схемой:

Целью данной работы является систематизация, накопление и закрепление знаний о применении углеводов в медицине.

Содержимое разработки

Муниципальное общеобразовательное учреждение
ГАПОУ ПО Пензенский колледж транспортных технологий

Выполнила: студентка 1 курса
группы 16оп23
Лукьянова Анастасия
Проверила: Филиппова Л.В

ВВЕДЕНИЕ 3
1. ЗНАЧЕНИЕ, ИСТОЧНИКИ, РОЛЬ УГЛЕВОДОВ 4
1.1. Понятие и сущность углеводов 4
1.2. Роль углеводов 5
2. ПРИМЕНЕНИЕ УГЛЕВОДОВ В МЕДИЦИНЕ 7
2.1. Применение углеводов в парентеральном питании 7
2.2. Использование углеводов при диетическом питании 8
ЗАКЛЮЧЕНИЕ 9
СПИСОК ЛИТЕРАТУРЫ 11

Целью данной работы является систематизация, накопление и закрепление знаний о применении углеводов в медицине.
Источниками углеводов в питании служат главным образом продукты растительного происхождения - хлеб, крупы, картофель, овощи, фрукты, ягоды. Из продуктов животного происхождения углеводы содержаться в молоке (молочный сахар). Пищевые продукты содержат различные углеводы. Крупы, картофель содержат крахмал - сложное вещество (сложный углевод), нерастворимое в воде, но расщепляющееся под действием пищеварительных соков на более простые сахара. Во фруктах, ягодах и некоторых овощах углеводы содержаться в виде различных более простых сахаров - фруктовый сахар, свекловичный сахар, тростниковый сахар, виноградный сахар (глюкоза) и др. Эти вещества растворимы в воде и хорошо усваиваются в организме. Растворимые в воде сахара быстро всасываются в кровь. Целесообразно вводить не все углеводы в виде сахаров, а основную их массу вводить в виде крахмала, которым богат, например, картофель. Это способствует постепенной доставке сахара тканям. Непосредственно в виде сахара рекомендуется вводить лишь 20-25% от общего количества углеродов, содержащихся в суточном рационе питания. В это число входит и сахар, содержащийся в сладостях, кондитерских изделиях, фруктах и ягодах.
Если углеводы поступают с пищей в достаточном количестве, они откладываются главным образом в печени и мышцах в виде особого животного крахмала - гликогена. В дальнейшем запас гликогена расщепляется в организме до глюкозы и, поступая в кровь и другие ткани, используются для нужд организма. При избыточном же питании углеводы переходят в организме в жир. К углеводам обычно относят и клетчатку (оболочку растительных клеток), которая мало используется организмом человека, но необходима для правильных процессов пищеварения.

1.ЗНАЧЕНИЕ, ИСТОЧНИКИ, РОЛЬ УГЛЕВОДОВ

1.1. Понятие и сущность углеводов.

1.2. Роль углеводов.

Углеводы служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.
В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов подразделяются на простые углеводы: моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза) и сложные углеводы, или полисахариды (крахмал, гликоген, клетчатка).
Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.
Наиболее распространенный моносахарид - глюкоза - содержится во многих плодах и ягодах, а также образуется в организме в результате расщепления дисахаридов и крахмала пищи. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, работающих мышц (в том числе и сердечной мышцы), для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени. Во всех случаях при большом физическом напряжении глюкоза может использоваться как источник энергии.
Фруктоза обладает теми же свойствами, что и глюкоза, и может рассматриваться как ценный, легкоусвояемый сахар. Однако она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70 - 80%) задерживается в печени и не вызывает перенасыщение крови сахаром. В печени фруктоза более легко превращается в гликоген по сравнению с глюкозой. Фруктоза усваивается лучше сахарозы и отличается большей сладостью. Высокая сладость фруктозы позволяет использовать меньшие ее количества для достижения необходимого уровня сладости продуктов и таким образом снизить общее потребление сахаров, что имеет значение при построении пищевых рационов ограниченной калорийности.
Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, пищи, частично и белка). Таким образом, количество поступающего сахара может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных микроорганизмов, усиливается интенсивность гнилостных процессов в кишечнике, развивается метеоризм. Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы. Основными источниками фруктозы являются фрукты и ягоды. Глюкоза и фруктоза широко представлены в меде: содержание глюкозы достигает 36.2%, фруктозы - 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. Третий моносахарид - галактоза - в свободном виде в пищевых продуктах не встречается. Галактоза является продуктом расщепления основного углевода молока - лактозы.
Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу. Источниками сахарозы в питании человека являются, главным образом, тростниковый и свекловичный сахар. Содержание сахарозы в сахаре-песке составляет 99.75%. Натуральными источниками сахарозы являются бахчевые, некоторые овощи и фрукты.
Содержание углеводов на 100 г. Продуктов
Овощи и фрукты капуста белокочанная картофель свекла яблоки виноград Глюкоза 2.6 0.6 0.3 2.0 7.8 Фруктоза 1.6 0.1 0.1 5.5 7.7 Сахароза 0.4 0.6 8.6 1.5 0.5 Гемицеллюлоза 0.1 0.3 0.7 0.4 0.6 Клетчатка 1.0 1.0 0.9 0.6 - Крахмал 0.1 16.0 0.1 0.8 0.6 Пектин 0.6 0.4 1.1 1.0 0.6
Сложные углеводы, или полисахариды, характеризуются усложненным строением молекулы и плохой растворимостью в воде. К сложным углеводам относятся крахмал, гликоген, пектиновые вещества и клетчатка.
Крахмал имеет основное пищевое значение. Высоким его содержанием в значительной степени обуславливается пищевая ценность зерновых продуктов. В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре.
Гликоген в организме используется в качестве энергетического материала для питания работающих мышц, органов и систем. Восстановление гликогена происходит путем его его ресинтеза за счет глюкозы.

Пектины относятся к растворимым веществам, усваивающимися в организме. Современными исследованиями показано несомненное значение пектиновых веществ в питании здорового человека, а также возможность использовать их с терапевтической целью при некоторых заболеваниях преимущественно желудочно-кишечного тракта.

Клетчатка по химической структуре весьма близка к полисахаридам. Высоким содержанием клетчатки характеризуются зерновые продукты. Однако помимо общего количества клетчатки, важное значение имеет ее качество. Менее грубая, нежная клетчатка хорошо расщепляется в кишечнике и лучше усваивается. Такими свойствами обладает клетчатка картофеля и овощей. Клетчатка способствует выведению из организма холестерина.
Потребность в углеводах определяется величиной энергетических затрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

2.ПРИМЕНЕНИЕ УГЛЕВОДОВ В МЕДИЦИНЕ.

2.1. Применение углеводов в парентеральном питании.

Углеводы используются для парентерального питания в силу того, что они являются наиболее доступными источниками энергии для организма больного. Их энергетическая ценность составляет 4 ккал/г. Учитывая то, что суточная потребность в энергии составляет около 1 500–2 000 ккал, то становится понятной проблема изолированного применения углеводов для ее покрытия. Если перевести расчет на изотонический раствор глюкозы, то для этого потребуется перелить не менее 7–10 л жидкости, что может привести к таким осложнениям, как гипергидратация, отек легких, сердечно-сосудистые нарушения.
Применение же более концентрированных растворов глюкозы чревато опасностью возникновения гиперосмолярности плазмы, а также раздражением интимы вен с развитием флебитов и тромбофлебитов.
Для того чтобы исключить осмотический диурез, нельзя допускать превышения скорости вливания глюкозы более 0,4–0,5 г/кг/ч. В переводе на изотонический раствор глюкозы это составляет чуть более 500 мл для больного массой 70 кг. Чтобы предупредить возможные осложнения, обусловленные нарушением толерантности к углеводам, надо добавлять к раствору глюкозы инсулин в соотношении 1 ЕД инсулина на 3–4 г сухого вещества глюкозы. Кроме положительного влияния на утилизацию глюкозы инсулин играет важную роль в абсорбции аминокислот.
Среди многочисленных углеводов, существующих в природе, в практике парентерального питания применяют глюкозу, фруктозу, сорбитол, глицерол, декстран, этиловый алкоголь.

2.2. Использование углеводов при диетическом питании.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г. Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов.

Избыточное потребление углеводов ведет к ожирению. При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).
При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.
В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляемых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.


1. Алабин В. Г., Скрежко А. Д. Питание и здоровье. – Минск, 1994
2. Бальсевич В.К. Питание человека. – М., Интел, 2000
3. Березин И. П., Дергачев Ю.В. Школа здоровья. - СПб, 2001
4. Воробьев В.И. Слагаемые здоровья. - М., Интел, 2002
5. Егорушкин А. С. Про витамины. – М.: Высшая школа, 1998
6. Куценко Г.И., Новиков Ю.В. Книга о здоровом образе жизни. - М., Приор, 2000
7. Петров В. К. Жить, чтобы есть, или есть, чтобы жить? – М., Инфра-М, 2002
8. Сотник Ж.Г., Заричанская Л.А. Белки, жиры и углеводы. – М., Приор, 2000

Получите свидетельство о публикации сразу после загрузки работы




Получите бесплатно свидетельство о публикации сразу после добавления разработки

Новые олимпиады


Комплекты учителю


Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Вебинары для учителей


Бесплатное участие и возможность получить свидетельство об участии в вебинаре.

Читайте также: