Вода в фармации реферат

Обновлено: 04.07.2024

Вода для фармацевтических целей относится к одному из самых важных элементов, обеспечивающих безопасность и качество производимых лекарственных средств. Ввиду особенностей продукта вода широко используется в качестве вспомогательного вещества в составе лекарственных средств, самого лекарственного средства, а также при различных технологических нуждах, например, мойка флаконов, ампул, уборка помещений и приготовление дезинфицирующих растворов и т.д.

Поскольку вода может использоваться на разных стадиях производства и в различных целях, существует несколько типов воды, отличающихся по требованиям к ее чистоте. Требования к качеству воды для различных применений в фармацевтических производствах регламентируются фармакопейными статьями.

Действующие в России фармакопейные статьи:

Производители большинства стран мира и в частности - России, одновременно с национальными фармакопеями для оценки качества воды для фармацевтических целей также учитывают требования USP и Европейской Фармакопеи, поскольку они содержат более жесткие требования к качеству воды.

В Европейской Фармакопее существуют статьи:

До настоящего времени отечественные регуляторы принимали стандарты Европейской фармакопеи в качестве основного ориентира, что нашло свое отражение в государственной фармакопее, а также в фармакопейных статьях предприятий на отечественные препараты. Явно или косвенно принята на вооружение Европейская фармакопея и в ряде стран бывшего СССР.

Европейская фармакопея имеет классическую структуру: содержит общую фармакопейную статью и собственно фармакопейные статьи. Но ее особенностью является то, что она не содержит фармакопейных статьей на препараты. В ней имеются фармакопейные статьи только на субстанции.

В соответствии с современными требованиями, изложенными в Фармакопее США (USP) вода для фармацевтических целей делиться на следующие ее виды:

Фармакопея США – Национальный формуляр выпускается единственной в мире негосударственной фармакопейной организацией – Фармакопейной конвенцией США. Однако требования этого стандарта признаются на государственном уровне и определяют минимальный уровень качества, обязательный для организаций, производящих или поставляющих лекарственных средства в США. Не будет преувеличением сказать, что Фармакопейная конвенция США является одной из самых влиятельных фармакопейных организаций в мире. Ее стандарты качества действуют не только в США и Канаде, но и принимаются на вооружение в ряде других стран, активно производящих лекарственные средства.

Принимая во внимание процесс гармонизации фармакопейных требований, большое значение имеет выход русскоязычного издания Фармакопеи США.

Переводное издание USP не имеет законодательного значения в РФ, однако значительное число воспроизведенных лекарственных средств анализируется по методикам, описанным, в частности, в USP. И производители дженериков часто ориентируются на этот документ при разработке фармакопейных статей предприятия или других нормативных документов.

Дженерик - лекарственное средство, продающееся под международным непатентованным названием либо под патентованным названием, отличающимся от фирменного названия разработчика препарата.

Соответствие фармакопейных статей типам воды для фармацевтических целей:

ВОДА, ОЧИЩЕННАЯ используется для производства и (или) изготовления нестерильных лекарственных средств, а также для получения пара, санитарной обработки, мытья тары и укупорки (за исключением финишного ополаскивания при производстве и/или изготовлении стерильных лекарственных средств), в лабораторной практике. На фармацевтическом производстве она является исходной при получении воды для инъекций.

Вода очищенная, удовлетворительно прошедшая испытание на эндотоксины, может быть использована при производстве растворов для диализа.

Методы получения и хранения Воды очищенной:

В случае использования ионного обмена как финишного этапа, обеспечить надлежащую микробиологическую чистоту, либо использовать для удаления или разрушения бактерий дополнительный метод.

Требования по физико-химическим показателям и микробиологической чистоте, предъявляемые к Воде очищенной различными фармакопеями:

В последнее время для получения воды очищенной часто используют одноступенчатый обратный осмос в комплексе с модулем электродеонизации или двухступенчатый обратный осмос. Данные методы эффективны и энергетически выгодны. Дистилляция для получения воды очищенной применяется достаточно редко.

ВОДА ДЛЯ ИНЪЕКЦИЙ - это вода для приготовления лекарств для парентерального введения, если вода используется в качестве носителя (вода для инъекций ангро или вода для инъекций нерасфасованная) и для растворения или разведения субстанций перед применением препаратов для парентерального введения (вода для инъекций стерилизованная).

Вода для инъекций используется для производства и/или изготовления стерильных лекарственных средств, финишного ополаскивания тары и укупорки, обработки систем приготовления, хранения и распределения, непосредственно контактирующих с конечной продукцией.

Методы получения и хранения Воды для инъекций:

Требования по физико-химическим показателям и микробиологической чистоте, предъявляемые к Воде для инъекций различными фармакопеями:

На протяжении многих лет, применение обратного осмоса для получения воды для инъекций является предметом дискуссии в рамках Европейской фармакопейной комиссии. Но поскольку на сегодняшний день, нет достаточного количества аргументов в пользу применения обратного осмоса для производства воды для инъекций, а также исходя из требований к безопасности, вода для инъекций может производиться только методом дистилляции, как это предусмотрено в Европейской Фармакопее. Однако это достаточно дорогой метод, который требует высоких капитальных и эксплуатационных затрат, поэтому необходимо тщательно проводить предварительную подготовку подаваемой воды.

Следует отметить, что по требованиям USP и Государственной Фармакопее РФ допускается использование обратного осмоса для получения воды для инъекций.

ВОДА ВЫСОКООЧИЩЕННАЯ имеет такие же показатели качества, как и вода для инъекций, различие заключается, только в методах, которые допущены для приготовления воды высокоочищенной и воды для инъекций. Вода высокоочищенная готовится мембранными методами и может применяться, в основном для мытья контейнеров и поверхностей, соприкасающихся с парентеральными продуктами при условии проведения депирогенизации контейнеров и поверхностей.

Источником воды питьевого качества является городской водопровод или природная вода. Важным моментом является доведение природной воды до воды питьевого качества путем фильтрации, умягчения и т.п.

Питьевая вода, в фармацевтическом производстве, зачастую используется для мойки неклассифицированных помещений и оборудования, которое находится в этих помещениях, на ранних стадиях производства.

Вода разной степени очистки широко применяется как в отечественной, так и в зарубежной медицинской и фармацевтической практике.

Вода – универсальный и самый доступный растворитель. Это свойство позволяет использовать воду как растворитель и дисперсионную среду при приготовлении жидких лекарственных форм. В фармацевтической практике принято, что если в прописи рецепта не указан растворитель, применяют воду очищенную — Aqua purificata (лат.).

Применение воды очищенной в медицине:

  • лекарственные растворы для внутреннего и наружного применения;
  • глазные капли и офтальмологические растворы;
  • лекарственные препараты для новорожденных;
  • не инъекционные растворы, для которых предусмотрена последующая стерилизация.

Если для лекарственных форм не предусматривается стерилизация, применяют воду очищенную стерильную [1].

Воду также используют в санитарии и медицине как моющее средство. В повседневной санитарной практике поликлиник, больниц и медицинских учреждений для мытья поверхностей, посуды и оборудования используют обычную питьевую воду. Для конечного ополаскивания медицинской посуды и оборудования, на начальных стадиях подготовки инфузионного оборудования и ёмкостей используется вода очищенная.

Еще более высоким критериям чистоты воды соответствует вода для инъекций – Aqua pro injectionibus (лат.). Вода для инъекций — основа тех лекарственных форм, к которым предъявляются повышенные требования к чистоте, она служит для растворения инъекционных и инфузионных препаратов. Вода для инъекций используется и для конечного ополаскивания медицинской посуды и оборудования перед стерилизацией.

Лекарственные препараты для инъекций, изготовляемые в асептических условиях и не подлежащие последующей стерилизации, изготавливают на основе стерильной воды для инъекций.

Достоинства и недостатки воды как лекарственного растворителя

(Данные взяты из источника [2])

  1. Фармакологическая индифферентность. Не вызывает побочных эффектов и нежелательных реакций в организме.
  2. Дешевизна и доступность. Методы получения воды очищенной и воды для инъекций апробированы и без особых усилий реализуются на практике.
  3. Хороший растворитель для многих лекарственных веществ. Вода смешивается с этанолом, глицерином, димексидом, ПЭО. Не смешивается с жирными, минеральными, эфирными маслами.
  4. Возможны нежелательные процессы гидролиза некоторых лекарственных препаратов.
  5. Благоприятная среда для размножения микроорганизмов.
  6. Если в исходной питьевой воде высокое содержание солей, этот факт затрудняет получение воды очищенной и требует предварительного обессоливания природной воды.

В зависимости от вида национальной и требований зарубежных фармакопей (Европейской, Британской, Американской и Японской), а также в зависимости от качества и расфасовки воды для фармацевтических целей, применяют следующие термины для наименования воды (по данным [3]):


Воду широко используют как сырье, ингредиент и растворитель в процессах технологической обработки и производстве, а также как компонент в составе лекарственных препаратов, активных фармацевтических ингредиентов (АФИ), промежуточных продуктов и аналитических реактивов

типов воды во избежаниеиспарения и для

вода для инъекций

типа II, содержащих разовую дозу, или в многодозовых контейне-

в условиях, исключающих микробиологический рост и предотвра-

логический рост и предотвращающих любые другие виды загряз-

Стабильность и условия хранения

Вода химически стабильна во всех своих физических состояниях (лед, жидкость и пар). Вода, прошедшая очистку на фармацевтическом предприятии и поступающая в емкость для хранения, должна соответствовать определенным требованиям. Основной задачей при проектировании и в ходе эксплуатации системы хранения и распределения воды является предотвращение отклонения ее качественных показателей от допустимих предельных значений. В частности, система хранения и распределения должна обеспечивать защиту воды от загрязнения ионами и органическими молекулами, которое может привести к увеличению соответственно электропроводности воды и повышению в ней уровня общего органического углерода. Система также должна препятствовать проникновению в воду частиц примесей и микроорганизмов в целях предотвращения микробного роста или сведения его к минимуму. Воду, предназначенную для конкретных целей, необходимо хранить в соответствующих емкостях (табл. 1).


Методы получения

Фармацевтические компании незакупают воду (в отличие от другихвспомогательных веществ) у внешних поставщиков, а очищают еенепосредственно на производстве. Учитывая, что вода природного происхождения содержит целый ряд загрязняющих веществ,для их удаления были разработаны многочисленные технологииобработки. Стандартная схемаочистки воды на фармацевтическом предприятии состоит из нескольких типовых процессов,предназначенных для удаленияразличных компонентов. Выборнаиболее подходящей схемы очистки и общей конструкции установки является решающим фактором в обеспечении производства воды надлежащего качества.

Для получения воды, пригодной для питья, или питьевой, воду, набранную из источника водоснабжения, подвергают обработке при помощи процессов коагуляции, осаждения (осветления) и фильтрования с целью удаления из нее нерастворимых веществ. Затем с помощью таких методов, как аэрация, хлорирование и др., уничтожают находящиеся в воде патогенные микроорганизмы. Очищать воду от живых патогенных микроорганизмов также можно при помощи интенсивного кипячения в течение 15 – 20 мин. Для удаления из воды хлора и разного рода растворенных органических веществ применяют фильтры на основе активированного угля, хотя они могут быть средой для размножения микроорганизмов. Вкусовые качества воды улучшают с помощью аэрации и угольной очистки.

Очищенную воду, подходящую для применения в фармацевтических целях, обычно получают путем очистки питьевой воды с использованием таких процессов, как дистилляция, деионизация и обратный осмос.

Дистилляция – процесс, который подразумевает испарение воды с последующей конденсацией полученного пара. Метод дистилляции является дорогостоящим, однако позволяет удалять почти все органические и неорганические примеси и получать воду очень высокого качества. Кроме того, дистилляция признана наиболее эффективным методом предотвращения загрязнения воды микроорганизмами и эндотоксинами. Для повышения энергоэффективности дистилляцию обычно проводят в многоступенчатых аппаратах, конструкция которых позволяет регенерировать б льшую часть энергии, затраченной на испарение воды. Стандартный выпарной аппарат состоит из испарителя, пароотделителя и компрессора. Дистиллируемую жидкость (загружаемую водопроводную воду) нагревают в испарителе до кипения, в результате чего полученный пар отделяется от исходной жидкости в пароотделителе. Затем пар попадает в компрессор, температура паров в котором достигает 107 °C. Далее перегретый пар конденсируется на внешней поверхности труб испарителя, внутри которых циркулирует прохладная дистиллируемая жидкость.

В продаже имеются термокомпрессионные дистилляторы различных размеров, при правильной установке которых можно производить воду высокого качества. Высококачественный дистиллят, такой как вода для инъекций, можно получить после предварительной деионизации воды. Наиболее надежные дистилляторы изготавливают из нержавеющей стали марок 304 или 316 с покрытием из чистого олова либо из химически стойкого стекла.

Деионизация – ионообменный процесс, основанный на способности некоторых видов синтетических смол к селективной адсорбции катионов или анионов и высвобождению (обмену) других ионов, обусловленному их относительной активностью. Катионо- и анионообменные смолы используют для очистки питьевой воды путем удаления растворенных в ней ионов. Удаляют также растворенные газы, а хлор в тех количествах, в которых он содержится в питьевой воде, нейтрализуют непосредственно ионитом. Некоторое количество органических и коллоидных соединений отделяют с помощью методов адсорбции и фильтрации. Если не принять необходимые меры для предотвращения загрязнения, то слои ионита могут стать средой размножения и роста микроорганизмов и причиной получения пирогенной воды. Еще одним недостатком метода является необходимость использования для регенерации смолы некоторых химических реактивов. В системах непрерывной деионизации, где совмещены процессы ионного обмена и мембранного разделения, для непрерывной регенерации ионообменной смолы используют электрический ток; регенерация осуществляется одновременно с процессом водоподготовки, благодаря чему исключается необходимость применения сильных химических реактивов. В настоящее время аппараты для ионного обмена широко используют в целях подготовки водопроводной воды перед проведением дистилляции или обратного осмоса.

Обратный осмос. Воду принудительно пропускают через полупроницаемую мембрану в направлении, обратном обычной осмотической диффузии. Как правило, используют мембраны с размером пор 0,1 – 1 нм, которые задерживают не только органические соединения, бактерии и вирусы, но и 90 – 99 % всех содержащихся в воде ионов. Обычно применяют двухступенчатые системы обратного осмоса, являющиеся двумя последовательными стадиями фильтрования. Такие системы соответствуют требованиям Фармакопеи США к производству воды очищенной и воды для инъекций. В то же время согласно требованиям Европейской Фармакопеи не допускается использование обратного осмоса в качестве завершающей стадии очистки при получении воды для инъекций.

Некоторые термины и комментарии

Бактериостатическая вода для инъекций в USP 32 определена как стерильная вода для инъекций, в которой содержится один или несколько соответствующих антимикробных консервантов.

Вода, не содержащая углерода диоксид, – вода очищенная, подвергшаяся интенсивному кипячению в течение 5 мин и охлажденная в условиях, препятствующих поглощению углекислого газа из атмосферного воздуха.

Деаэрированная вода – вода очищенная, подвергнутая интенсивному кипячению в течение 5 мин, а затем охлажденная в целях снижения содержания в ней кислорода.

Жесткая вода – вода, содержащая не менее 120 мг / л и не более 180 мг / л солей в пересчете на кальция карбонат.

Мягкая вода – вода, содержащая не более 60 мг / л солей в пересчете на кальция карбонат.

Стерильная вода для ингаляций в USP 32 определена как вода для инъекций стерилизованная и надлежащим образом упакованная. Такая вода не содержит ни антимикробных консервантов, ни других добавленных веществ, за исключением воды, используемой в увлажнителях и других подобных устройствах, а также в случаях, когда существует риск контаминации на протяжении определенного периода времени.

Стерильная вода для ирригаций в USP 32 определена как вода для инъекций стерилизованная и надлежащим образом упакованная. Такая вода не содержит антимикробных консервантов или других веществ.

Вода для фармацевтических целей относится к ключевым элементам, обеспечивающим безопасность изготавливаемых лекарственных средств. Без применения воды не обходится ни одно фармацевтическое предприятие или аптека.

Содержание

1. Введение.
2. Вода очищенная, её характеристика и область применения.
3. Требования действующей нормативной документации ,предъявляемые к воде очищенной и условиям её получения:
3.1. Помещения для получения воды очищенной.
3.2. Исходная вода для воды очищенной.
3.3. Водоподготовка и её процессы ,связанные с её проведением.
4. Способы получения воды очищенной:
4.1. Фильтрация
4.2. Ионный обмен.
4.3. Электродеионизация.
4.4. Обратный осмос.
4.5. Дистилляция.
5. Аппаратура для получения воды очищенной, её описание, схема и правила эксплуатации.
6. Подача воды очищенной к рабочим местам:
6.1. Материалы трубопроводов и особенность их монтажа.
6.2. Способы подачи воды к рабочим местам. Способы очитки и дезинфекции
трубопроводов.
7.Хранение воды очищенной в условиях аптек.
Выполнить следующие задания:
8. Описать условия получения, хранения и использования воды очищенной в данной аптеке:
8.1. Проанализировать соблюдение требований НД в аптеке при получении воды очищенной.
8.2. Описать систему подачи воды очищенной к рабочим местам.
8.3. описать аппаратуру используемую в аптеке для получения воды очищенной

Работа состоит из 1 файл

Курсовая работа.doc

План курсовой работы:
1. Введение.

2. Вода очищенная, её характеристика и область применения.

3. Требования действующей нормативной документации ,предъявляемые к воде очищенной и условиям её получения:

3.1. Помещения для получения воды очищенной.

3.2. Исходная вода для воды очищенной.

3.3. Водоподготовка и её процессы ,связанные с её проведением.

4. Способы получения воды очищенной:

4.2. Ионный обмен.

4.4. Обратный осмос.

5. Аппаратура для получения воды очищенной, её описание, схема и правила эксплуатации.

6. Подача воды очищенной к рабочим местам:

6.1. Материалы трубопроводов и особенность их монтажа.

6.2. Способы подачи воды к рабочим местам. Способы очитки и дезинфекции

7.Хранение воды очищенной в условиях аптек.

Выполнить следующие задания:

8. Описать условия получения, хранения и использования воды очищенной в данной аптеке:

8.1. Проанализировать соблюдение требований НД в аптеке при получении воды очищенной.

8.2. Описать систему подачи воды очищенной к рабочим местам.

8.3. описать аппаратуру используемую в аптеке для получения воды очищенной.

    1. Выводы и рекомендации по организации получения воды очищенной на примере 2-3 аптек.

Вода для фармацевтических целей относится к ключевым элементам, обеспечивающим безопасность изготавливаемых лекарственных средств. Без применения воды не обходится ни одно фармацевтическое предприятие или аптека.

В данной статье мы остановимся на методах предварительной подготовки, получения, хранения и распределения воды очищенной.

Вода очищенная (ВО) используется для:

  • изготовления неинъекционных лекарственных средств;
  • для получения пара;
  • санитарной обработки;
  • мытья посуды (за исключением финишного ополаскивания);
  • в лабораторной практике и др.;

На фармацевтическом производстве является исходной при получении воды для инъекций

Согласно ФС 42-2619-97 воду очищенную можно получить дистилляцией, ионным обменом, обратным осмосом, комбинацией этих методов, или другим способом.

ВО должна отвечать требованиям по ионной и органической химической, а также микробиологической чистоте.

Поскольку воду для фармацевтических целей получают из воды питьевой, источником которой является природная вода, важным моментом следует считать освобождение ее от присутствующих примесей.

Природная вода может содержать различные примеси:

  • механические частицы (нерастворимые неорганические или органические примеси);
  • растворенные вещества (неорганические соли, ионы кальция, магния, натрия, хлора, ионы серной и угольной кислот и др.);
  • растворенные химически неактивные газы (кислород, азот);
  • растворенные химически активные газы (диоксид углерода, аммиак);
  • микроорганизмы (видимые, плесень, водоросли, вирусы, цисты);
  • бактериальные эндотоксины (липополисахариды клеточной стенки грамотрицательных микроорганизмов);
  • органические вещества (природные органические вещества (гуминовая кислота и др.) и загрязняющие органические вещества (промышленные сбросы, удобрения, пестициды и др.));
  • коллоиды (железа ( Fe2O3 yH2O ), кремния ( SiO2 yH2O ), алюминия ( Al2O3 yH2O ) , образующие комплексные соединения с органическими веществами);
  • остаточные дезинфицирующие вещества (хлор хлорноватистая кислота гипохлорит-ион, хлорамины и др.)

В зависимости от качества исходной воды, ее химического состава, возможных примесей в технологической схеме получения воды очищенной большое значение имеет предварительная подготовка воды, которая может включать несколько стадий, таких как фильтрация, умягчение, ионный обмен, обратный осмос и др.

Выбор технологической схемы получения воды очищенной обусловлен:

  • качеством исходной воды;
  • выбором конечной стадии получения воды;
  • требованиями, предъявляемыми к воде фармакопейными статьями;
  • требованиями, предъявляемыми определенными стадиями (например, дистилляцией, обратным осмосом) к качеству подаваемой (исходной) воды;
  • стадиями предварительной очистки, направленными на удаление примесей, содержание которых нормируется нормативной документацией или производителем фармацевтической продукции.

Предварительная подготовка и получение

Предварительная подготовка – это совокупность операций, направленных на получение воды такого качества, которое требуется для конечной стадии получения воды очищенной.

Получение – финишная стадия, обеспечивающая получение воды, соответствующей нормативным требованиям.

4. Обратный осмос

Основной задачей при проектировании системы хранения и распределения воды очищенной является обеспечение постоянного движения воды в трубопроводе, отсутствии застойных зон, которые способствуют росту микроорганизмов и образованию биопленок на поверхностях. Современные системы хранения и распределения подразумевают под собой рециркуляционную систему с однонаправленным движением потока и возможностью полного удаления воды из трубопровода.

Критическими параметрами при хранении и распределении воды очищенной являются:

  • температура;
  • движение воды и ее скорость;
  • давление;
  • материалы трубопроводов и емкости для хранения.

Распределение и хранение воды очищенной согласно правилам GMP должно осуществляться при температурах, препятствующих росту микроорганизмов - выше 80 о С или ниже 15 о С. Системы, использующие холодную воду, должны быть оборудованы УФ-установками для контроля уровня микроорганизмов в воде.

Движение воды в трубопроводе должно быть турбулентным со скоростью от 1,5 до 3 м/с, при этом ни одна часть трубопровода не должна находиться в горизонтальном положении, а точки отбора воды должны быть оборудованы мембранными вентилями (санитарного исполнения) и спроектированы с учетом правила шестикратного диаметра.

Строение тройника в точке отбора воды

При правильном проектировании системы распределения критическим является правильный выбор оборудования для достижения необходимого давления воды в сети и в точках разбора. При этом необходимо учитывать потери давления при трении воды о стенки трубопровода, потери в местах соединений, поворотов, подъемов распределительной петли и др. Необходимо учитывать среднесуточное, среднечасовое и пиковое потребление воды. При увеличении пиковых расходов воды необходимо организовывать семафорную систему разбора.

Одной из ключевых проблем является правильный выбор материала для системы хранения и распределения воды очищенной. Материал конструкций не должен ухудшать качества воды и соответствовать требованиям и условиям фармацевтического производства.

Основными используемыми материалами являются:

  • полимерные материалы, подобные PP и PVDF (от англ. Polypropylene - полипропилен, Polyvinylidenefluoride – поливинилиденфторид) и др., наиболее часто используемые при проектировании холодных контуров распределения воды очищенной;
  • нержавеющая сталь марки 316 L с шероховатостью поверхности не более 0,8 Ra . Из-за высокой стоимости нержавеющая сталь используется в настоящее время для систем распределения воды для инъекций, чтобы обеспечить паровую стерилизацию трубопровода и постоянную циркуляцию при температуре более 80 о С.

Технология фильтрации играет важнейшую роль в системах обработки воды. Выпускается широкий диапазон конструкций фильтрующих устройств для различного применения. Эффективность отсеивания частиц значительно различается, начиная от грубых фильтров (гранулированный антрацит, кварц, песок (многослойные или песчаные фильтры) и заканчивая мембранными фильтрами для удаления мельчайших частиц. Устройства и конфигурации систем широко варьируют по типам фильтрующей среды и месту использования в технологическом процессе.

Современные фильтрующие системы представляют собой установки с 3-х или 5-ти цикловым режимом работы с возможностью как автоматического (с помощью программируемого контроллера) так и ручного управления.

При З-х цикловом режиме работы фильтрационной установки предусмотрены: получение очищенной воды, обратная промывка и прямая промывка фильтрующей среды. Данный режим используется в установках с засыпкой, не требующей регенерации (многослойные фильтры, фильтры обезжелезивания на основе Birm , фильтры с активированным углем).

5-ти цикловый режим работы подразумевает: получение очищенной воды, обратную промывку, регенерацию/медленную промывку, быструю промывку и наполнение солевого бака. Данный режим используется для фильтрационных установок, в которых необходимо проведение регенерации фильтрующей среды (фильтры обезжелезивания на основе марганцевого цеолита, фильтры умягчения).

1.1. Использование многослойных фильтров является одной из первоначальных стадий предварительной подготовки воды. Их применение целесообразно при высокой мутности воды и высоком содержании механических, коллоидных частиц. Комбинации фильтрующих сред варьируют в зависимости от качества исходной воды, но чаще всего представлены гидроантрацитом, гранатом, кварцем и поддерживающей засыпкой в виде протравленного гравия.

При использовании многослойных фильтров необходимо обеспечить минимальную скорость фильтрации воды - 5-10 м/час и высокую скорость обратной промывки – 35-40 м/час. Исходя из этого, важным критерием является правильный выбор насоса для обеспечения надлежащих скоростей фильтрации и обратной промывки.

1.2. Фильтры обезжелезивания на основе фильтрующих сред Birm и марганцевого цеолита применяются для удаления присутствующих в воде примесей железа и марганца. Кроме того, с помощью марганцевого цеолита удаляется растворенный в воде сероводород. В результате процессов химического каталитического окисления на поверхности фильтрующей среды, растворенное железо и марганец переходят в нерастворимую форму (гидроксид) и в виде хлопьевидного осадка путем обратной промывки выводится из фильтра.

Читайте также: