Вирусные энтомопатогенные препараты реферат

Обновлено: 25.06.2024

Вирусные препараты поражают обычно только 1 вид‑мишень вредителей. Вирусные частицы в покоящейся форме устойчивы к неблагоприятным условиям окружающей среды и в виде полиэдров сохраняют активность вне насекомого до 10–15 лет. Заражение происходит только при попадании вирусных полиэдров в кишечник насекомого, где в щелочной среде оболочка полиэдра растворяется и частицы вируса проникают в клетки организма насекомого (рис. 5, 6). Размножаться вирусы могут только в живой ткани, поэтому производство препаратов требует поддержания культуры насекомых. Технология производства виринов состоит из следующих этапов: разведение насекомого‑хозяина на естественном корме или питательной среде, заражение гусениц суспензией вирусных частиц (из больных особей), сбор погибших гусениц (через 7–9 дней) и подсушивание при 33–35 ºС, измельчение гусениц механически с добавлением физиологического раствора или дистиллированной воды, фильтрация взвеси, высушивание фильтрата или применение в жидком виде (рис. 7, 8).


Рисунок 5 — Полиэдры тополевого пилильщика (х15000)


Рисунок 6 — Гусеницы непарного шелкопряда, пораженные вирусом ядерного полиэдроза

Выход вирусных частиц составляет до 30 % от сухой массы гусениц.

При производстве вирина‑ЭКС полиэдры осаждают центрифугированием, из осадка приготовляют суспензию в небольшом количестве дистиллированной воды, добавляют стерильный глицерин до титра 1 млрд. полиэдров в 1 мл. Препарат разливают по флаконам, в объемах, кратных гектарной норме применения.

Формы выпуска виринов— сухой порошок или масляная эмульсия на солярном масле. Титр — 1 млрд полиэдров/г. Применяют для смазывания яйцекладок непарного шелкопряда на штамбах деревьев и для опрыскивания лесов и садов.


Рисунок 7 — Марки виринов, применяемые в защите растений


1 — выращивание кормовых растений для гусениц; 2 — приготовление питательной среды для фитофага; 3 — выращивание гусениц; 4 — заражение гусениц вирусом; 5 — экспозиция и высушивание погибших гусениц; 6 — приготовление жидкого вирина; 7 — высушивание препарата; 8 — применение

Рисунок 8 — Блок‑схема производства вирусных препаратов

Вирусные препараты наиболее эффективны против гусениц младших возрастов. Их применяют методом опрыскивания, желательно в утренние или вечерние часы, чтобы предотвратить гибель вирусных частиц от прямых солнечных лучей.

ЗАКЛЮЧЕНИЕ

Таким образом, можно выделить сильные и слабые стороны биопестицидов.

1) менее токсичны, в сравнении с химическими средствами либо вовсе безопасны для человека и животных;

2) характеризуются избирательным действием;

3) не накапливаются в почве, овощах, плодах. Последняя обработка проводится незадолго до сбора урожая;

4) выступают факторами регулировки роста (фунгициды);

5) проявляют пролонгированное действие (вирусы);

6) не вызывают резистентности (привыкания).

1) срок годности жидких препаратов составляет от 2 недель до 2 месяцев;

2) специальные условия хранения: емкости из темных материалов, низкая температура;

3) частота обработки: 1 раз в 7–20 дней (в зависимости от препарата и фазы развития);

4) в тяжелых случаях поражения растений малоэффективны;

5) невысокая приживаемость искусственно выращенных микроорганизмов в реальных условиях.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Микробные инсектициды как биопрепараты, которые предназначены для защиты растений от насекомых вредителей – биоинсектицид, их классификация и типы. Оценка преимуществ и недостатков использования данных средств, факторы, влияющие на их эффективность.

Рубрика Сельское, лесное хозяйство и землепользование
Вид реферат
Язык русский
Дата добавления 25.12.2015
Размер файла 19,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Микробные инсектициды - биопрепараты, которые предназначены для защиты растений от насекомых вредителей - биоинсектицид. Препараты с успехом используется для защиты сельскохозяйственных, цветочных, лесных и лекарственных культур. Микробные препараты показали хорошие результаты при совместном использовании со стимуляторами роста

Препараты с успехом борются с такими вредителями как колорадский жук (личинки I-III возраста), паутинный клещ, гусеницы капустной совки, капустной и репной белянок, капустной моли, огневки, яблонной и плодовой моли, боярышницы, листоверток, шелкопрядов, пядениц, лугового мотылька и др. Препараты абсолютно безопасны для природы и человека и разрешен для использования в сельском, лесном хозяйствах и на приусадебных участках.

Биопрепараты показали чрезвычайно высокую эффективность в борьбе с насекомыми вредителями. Попадая в организм насекомого, они вызывают нарушение работы кишечника, вызывая массовую гибель насекомых уже на 3-7 сутки. Помимо этого, кроме непосредственного влияния, препараты оказывают опосредованное влияние: нарушает сроки метаморфоз, снижает плодовитость самок и жизнеспособность следующих поколений (антифидантный и метатоксический эффекты). Инсектициды могут применяться в баковых смесях с другими инсектицидами.

· эффективны в отношении вредных чешуекрылых насекомых, паутинного клеща и личинок колорадского жука;

· не обладают фитотоксичностью, не накапливаются в растениях и плодах

· гарантируют получение экологически чистой, безопасной для здоровья продукции (биологическая защита растений);

· применяются в любую фазу развития растений;

· срок ожидания пять дней, что позволяет производить обработку незадолго до сбора урожая;

· совместимы в баковых смесях с химическими пестицидами и биологическими препаратами;

· могут быть использован для решения проблемы резистентности популяций вредных насекомых к химическим пестицидам;

· при применении в рекомендуемых нормах расхода безопасны для человека, теплокровных животных, рыб, гидробионтов, пчел и энтомофагов.

Препараты, попадая в организм насекомого, вызывают нарушение функции кишечника, в результате чего сокращается объем питания.

Биоинсектициды в сублетальных дозах ингибируют питание, нарушают сроки метаморфоз, снижают плодовитость самок и жизнеспособность следующих поколений (антифидантный и метатоксический эффекты).

Наиболее широко в качестве микробиологических средств защиты растений используют продукты на основе различных штаммов энтомопатогенной бактерии Bacillus thuringiensis.

Сегодня до 90% коммерческих инсектицидов - препараты на основе этого патогена. Готовые формы этих препаратов представляют собой споровокристаллический комплекс, содержащий живые споры энтомопатогенного микроорганизма и кристаллический эндотоксин белковой природы, а в ряде препаратов содержится также термостабильный экзотоксин. [1][7]

Бактерии Bacillus thuringiensis продуцируют специфические кристалловидные токсины, которые обладают большой энтомоцидной активностью. В процессе споруляции внутри клеток с помощью обычной микроскопии обнаруживаются живые препараты бактерий, часто называемые параспоральными включениями или эндотоксинами. По окончании процесса спорообразования токсины в свободном виде выделяются в среду. Форма кристаллов - ромбовидная (тетрагональная). Величина кристаллов зависит от вида культур бактерий и варьируется в интервале 1-3 мкм. Энтомоцидные кристаллы представляют собой вещества белковой природы, в состав которых входят 18 аминокислот. Этот белок - термолабильный, при 60°С он разрушается. Кристаллы могут проявлять токсическое действие для чешуекрылых насекомых только при пероральном введении, вызывая паралич средней кишки гусениц. Для гибели насекомых достаточна очень малая концентрация растворов.

Помимо кристалловидных токсинов, некоторые бактерии Bacillus thuringiensis выделяют в окружающую среду энтомоцидные вещества, растворимые в воде. Из них наибольший интерес вызывает термостабильный токсин (бета-экзотоксин). Это вещество, в отличие от энтомоцидных кристаллов, не подвергается разрушению даже при температуре 100 - 120°С. Термостабильный экзотоксин имеет менее специфичное энтомоцидное действие - он проявляет активность по отношению к различным видам насекомых - совки, комары, мухи и некоторые другие вредные насекомые. [4]

Микробиопрепараты на основе Bacillus thuringiensis высокоспецифичны и действуют только на личинок насекомых из классов Lepidoptera и Diptera. [1]

Особенностью этих биопрепаратов является проявление эффективного действия только при высокой пищевой активности вредителей, что наблюдается при температуре не ниже 16°С. бактериальные препараты при воздействии солнечной радиации, температуры и влажности быстро инактивируются в природной среде. [1]

Действие на вредные организмы

По токсическому эффекту эта группа препаратов уступает химическим инсектицидам вследствие своего замедленного действия.

Насекомые, поглощая части растений, обработанных биопрепаратами, заглатывают с кормом споры бактерий и токсические кристаллы(фото). Гибель их наступает как от бактерий, которые постепенно размножаются в кишечнике, так и от токсикоза, вызванного действием токсинов. Причем от токсинов гибель фитофагов отмечается на 3-5-е сутки после обработки и достигает максимума примерно на 10-й день. Сразу после их применения у вредителей снижается активность питания и соответственно вредоносность.

Обладают препараты и выраженным последействием, которое проявляется в гибели насекомых на поздних стадиях развития, а также воздействии на следующие генерации вредителей (снижение плодовитости, появление нежизнеспособного потомства). Все это повышает эффективность обработок биопрепаратами, их биологическая активность сохраняется до 20 дней. [1][4]

Привыкание и иммунитет к действию бактериальных токсинов не отмечается у чувствительных видов насекомых. При проникновении в кишечник достаточной дозы этих соединений наступает 100-процентная гибель вредителей.

Безвредность инсектицидов на основе бактерий для растений дает возможность использовать препараты в любую вегетативную фазу растений. [4][5]

Исследования по воздействию бактериальных препаратов против вредителей леса показывают, что экзотоксины воздействуют на растения. Это проявляется в инициации изменений в пигментном аппарате и процессах фотосинтеза, а также в биометрических показателях растений. Исследования проведены на разных растениях, в том числе на проростках сосны обыкновенной Рinus sylvestris. При этом обнаружено воздействие экзотоксинов на все показатели, связанные с ростом и развитием растений, в частности сосны. Термостабильный экзотоксин и в-2 экзотоксин вызывают снижение всхожести и энергии прорастания семян сосны, роста и развития сеянцев, а токсины в концентрации 0,1 мг/мл вызывают полную гибель проростков. Здесь таится опасность снижения потенциала естественного возобновления леса в очагах, интенсивно обрабатываемых бактериальными препаратами с целью уничтожения фитофагов. [3]

В сельском хозяйстве

Бактерии группы Bacillus thuringiensis проявляют свою активность в отношении порядка 400 видов насекомых, включая вредителей садов, леса, полей и виноградников; наиболее эффективны данные препараты при борьбе с листогрызущими вредителями.

Сегодня известно более ста штаммов Bacillus thuringiensis, которые объединены в тридцать групп по биохимическим и серологическим признакам. Микробиологическая промышленность во многих странах наладила выпуск различных бактериальных препаратов, которые способны образовывать кристаллы, споры и токсические вещества в процессе роста. [2]

Из-за слабого стартового действия микробиопрепаратов их применение экономически оправдано только при средней численности вредителей (не превышает пороговую более чем в 3 раза). Их применяют в борьбе с различными вредными чешуекрылыми, а некоторые, содержащие экзотоксин, - и с отдельными представителями жесткокрылых и клещей. [1]

Сегодня наиболее широко в борьбе с вредителями сада и леса применяются биопрепараты, созданные на основе кристаллообразующих бактерий из групп Bacillus thuringiensis, var. thuringiensis и Bacillus thuringiensis, var. kurstaki.

Токсикологические свойства и характеристики

Препараты на основе относят к инсектицидам нового поколения. В отличие от традиционных инсектицидов они не обладают прямым токсическим действием. Главным преимуществом препаратов на основе бактерий является отсутствие токсичности для энтомофагов и полезной энтомофауны. Они безвредны для растений, медоносной пчелы, рыб и теплокровных животных.

Ученые Новой Зеландии и Австралии исследовали новый способ, которым бактерии пользуются для хранения токсинов. Это открытие может быть использовано для разработки новых биоинсектициды против вредителей сельскохозяйственных культур, а также для создания лекарственных препаратов. Команда во главе с доктором Шоном Лоттом из Университета Окленда и доктором Марком Херстом из Университета Линкольна (Новая Зеландия) сосредоточила внимание на бактерии Yersinia Entomophaga. Микроорганизм способен убивать личинки многих сельскохозяйственных вредителей. В процессе наблюдений ученые обнаружили, что микроб упаковывает токсины в полую белковую оболочку. Причем отравляющее вещество выпускается наружу только тогда, когда оболочка попадает в конкретные условия окружающей среды. А именно, токсины освобождаются в кишечнике сельскохозяйственных вредителей. Это объясняет, каким образом бактерия может производить токсины, не причиняя вреда себе.

Для определения трехмерной структуры упаковочных белков, продуцируемых бактерией, ученые использовали методики рентгеновской кристаллографии и электронной микроскопии. Генетическая последовательность, обеспечивающая производство белковой оболочки, была выявлена у многих других видов, в том числе и у животных. Исследователи полагают, что они обнаружили новый биологический механизм, с помощью которого токсины или другие чувствительные молекулы могут быть сохранены и выпущены в нужное время. На основе этого открытия могут быть созданы новые инсектициды и даже новые медицинские препараты. Бактерия Yersinia Entomophaga была впервые обнаружена доктором Херстом в личинках новозеландского травяного жука (Costelytra zealandica). Впоследствии было установлено, что бактерия влияет и на других насекомых-вредителей, таких, как капустная моль, поражающая сельскохозяйственные растения по всему миру. Потенциал использования Yersinia Entomophaga в качестве новой формы биоинсектицидов вызвал интерес у многих ученых.

Вирусные энтомопатогенные препараты

Из всех энтомопатогенных препаратов вирусные обладают наибольшей специфичностью по отношению к насекомому-хозяину. П?? поражают не более одного вида. Их ярко выраженная специфичность обуславливает практическую безвредность вирусных препаратов для человека, флоры и фауны.

В нашей стране осуществляется выпуск трех вирусных энтомопатогенных препаратов: вирин-ЭКС (против капустной совки), ЭНШ (против непарного шелкопряда) и АББ (против американской белой бабочки).

Производство любого из вирусных препаратов начинают с разведения насекомого-хозяина на искусственных питательных средах, обеспечивающих их физиологически здоровое состояние. На определенной стадии развития (обычно на стадии гусеницы) насекомых заражают, добавляя вирусную суспензию к корму. При этом инокулят предварительно получают от нескольких больных личинок. После заражения насекомых выдерживают в строго определенных условиях, обеспечивающих максимальное накопление вируса в тканях. Через 7-9 суток собирают мертвые и отмирающие личинки, подсушивают при температуре 33-35 о С, измельчают механическим способом для вывода телец-включений из тканей. К полученной массе добавляют физиологический раствор или дистиллированную воду из расчета 1 мл на гусеницу, взвесь полученных тканей фильтруют.

При производстве вирин-ЭКС полиэдры осаждают из фильтрата центрифугированием. Осадок суспендируют в минимальном количестве дистиллированной воды и добавляют простерилизованный глицерин до титра 1 млрд. полиэдров в 1 мл. Готовый препарат разливают во флаконы. При производстве вирин-ЭНШ в фильтрат добавляют лактозу, а после перемешивания ацетон в соотношении 4:1 к объему суспензии. После отстаивания осадочную жидкость сливают, осадок подсушивают до полного удаления ацетона. В случае если препарат планируется выпускать в виде порошка, то сухой осадок смешивают с мелкодисперсным наполнителем (каолином, к примеру) до получения титра полиэдров 1 млрд. полиэдров в 1 грамме.

микробный инсектицид растение вредитель

Подобные документы

Анализ агроклиматических условий Енбекшиказахского района. Характеристика вредителей и выбор инсектицида, болезней и выбор фунгицидов, сорных растений и выбор гербицидов. Регламент и применение средств защиты растений, их гигиеническая классификация.

курсовая работа [2,3 M], добавлен 19.03.2015

Изучение роли вредителей и болезней растений в производстве растениеводческой продукции. Характеристика вредителей, их классификации и типов повреждения растений. Строение и развитие вредителей (насекомых, клещей, нематод). Биология вредителей клевера.

курсовая работа [261,4 K], добавлен 11.06.2010

Характеристика природных условий района. Биологические особенности развития вредителей, возбудителей болезней и сорняков. Выбор инсектицидов, фунгицидов, гербицидов для уничтожения вредных организмов. План мероприятий по химической защите растений.

курсовая работа [57,7 K], добавлен 03.08.2015

Агроклиматические и почвенные условия. Сведения о вредителях, о сорных растениях и болезнях защищаемых культур. Обоснование выбора инсектицидов, фунгицидов и гербицидов. Способы применения средств защиты растений от вредителей, болезней и сорных растений.

курсовая работа [143,9 K], добавлен 23.04.2013

Прогнозирование появления и вредоносность организма. Обоснование использования химических средств защиты. Состояние интегрированной системы защиты капусты от вредных организмов. Расчет экологической нагрузки используемых средств химической защиты капусты.

Вопросы охраны природы и сохранения полезных насекомых предопределяют ограничение применения пестицидов в народном хозяйстве. Доказано, что длительное применение химических средств приводит к появлению устойчивых популяций вредных видов насекомых и клещей, число которых в настоящее время возрастает. Накапливаясь в природе, применяемые пестициды вызывают нежелательные мутации живых организмов даже через многие годы. Подобные явления представляют опасность не только ныне живущему, но и последующим поколениям людей. В связи с этим поиски экологически безвредных, в частности, микробиологических методов регуляции численности насекомых и клещей, имеют большое теоретическое и практическое значение.

Объектами исследования служили пробы воды естественных водоемов (рек и озер), различных типов почв и растений, а также насекомые, клещи и позвоночные животные. В результате многолетних исследований бактериологическому анализу подвергнуто 1500 проб воды, 2000 - проб почвы, 900 экземпляров растений 20-ти видов, 830 особей насекомых (в основном фитофагов), 204 особи слепней, 162 особи пухоедов диких птиц, 122 особи кровососущих клопов, 478 клещей - кровососов (Argas persicus, Dermanyssus gallinae и т.д.), 169 особей рыб, 33 особей амфибий, 212 особей диких птиц, 65 особей грызунов (мыши суслики и т.д.) и45 голов с/х животных (овцы, свиньи, коровы).

Из вышеприведенных объектов выделено 218 штаммов, в том числе var. Thuringiensis -83(38%) var. galleriae- 40 (18,3%) var. Dendrolimus- 29(13,3%) и 15 культур (6,8%) не идентифицированы. Редко встречающимися разновидностями оказались: var. morrisoni, var. kenyae, var. kurstaki. Эти бактерии были выделены от перелетных птиц и их эктопаразитов.

Биоценотические связи кровососущих членистоногих (слепни, клопы, клещи) с позвоночными животными по - видимому, определяют перенос и сохранение бактерий данной группы в различных экологических условиях. Пухоеды, собранные с перелетных птиц, оказались зараженными неспецифическими для данного региона штаммами, что свидетельствует о возможности трансконтинентальной миграции бацилл кристаллообразуещих бактерий. Частое выделение var. thuringiensis из внутренних органов позвоночных животных (в том числе и из печени) заслуживает особого внимания в плане выяснения путей заражения и проникновения микробов в кровяное русло животных. По - видимому, не исключена возможность трансмиссивной передачи этих микроорганизмов, поскольку установлена спонтанная зараженность эктопаразитов, трофически и топически связанных с позвоночными животными. Хотя коррелятивной связи в приуроченности отдельных сероваров к определенным ландшафтным зонам не наблюдается, тем не менее, отмечается, что var. finitimus встречается в высокогорье (нами он был выделен из почвы на высоте 4300м.над ур. моря на китайской границе). Наибольшее распространение имеет первый серовар, который выделен во всех ландшафтных зонах, в том числе в высокогорье (например, в бассейне реки Сары-Джаз на высоте более 4000м.)

На основании выделенных в различных экосистемах штаммов кристаллообразуещих бактерий нами предложено для использования в борьбе с вредными членистоногими 10 изолятов. Один из них(№4) признан изобретением (авторское свидетельство №1141605), штамм №341 комисионно испытан при ВНИИ прикладной микробиологии (г. Серпухов) и рекомендован в качестве продуцента экзотоксинсодержащих препаратов. При изучении патогенности штаммов для кровососущих насекомых и клещей установлена высокая чувствительность гамазовых клещей Dermanyssus gallinae к кристаллообразующим бактериям и их метаболитам. Менее чувствительны клещи Argas persicus, Argas vulgaris, Alveonasus lahorensis. По нашим данным и данным других авторов высокая чувствительность к бактериальным препаратам обнаружена у следующих видов чешуекрылых.

Таблица 1. Чешуекрылые, личинки которых чувствительны к бактериальным препаратам

Incurvariidae

Mоли минно - чехликовые

Энтомопатогенные препараты на основе микроскопических грибов вызывают у насекомых микозы. Грибы обладают рядом особенностей:

- поражение происходит через кутикулу;

- насекомые поражаются в фазе развития куколки и имаго;

- большая скорость роста и огромная репродуктивная способность, в виде спор могут длительное время находится в природе без снижения энтомопатогенной активности;

- высокая специфичность, вирулентность сильно зависит от штамма гриба.

Действие грибного препарата на насекомое начинается с проникновения споры в полость тела через кожные покровы. Попав в тело, спора прорастает в гифу, затем разрастается мицелий, от которого отчленяются конидии. Оказавшись в теле, конидии циркулируют в гемолимфе. Уже на этой стадии возможно поражение насекомого вследствие выделения некоторыми штаммами значительного количества токсинов. В отсутствие токсина мицелий постепенно заполняет все тело насекомого, прежде всего поражается мышечная ткань. Рост гриба продолжается до тех пор, пока все ткани не будут разрушены. Могут образовываться конидиеносцы, прорывающие кутикулу и обволакивающие мертвую личинку.

В промышленном производстве используются отдельные штаммы в основном трех родов: Beaveria, Metarrhizium, Entomophtora. В нашей стране освоено промышленное производство препарата боверина на основе B.bassiana. Готовый препарат - порошок кремового или белого цвета, содержащий в 1 г от 1.5 до 6 млрд. конидиоспор. Препарат безвреден для теплокровных животных и человека, не вызывет ожогов у растений.

Получать боверин можно используя как поверхностное, так и глубинное культивирование. Первый способ более трудоемок и длителен, поэтому имеет ограниченное значение. Производство конидиоспор при выращивании его в жидкой среде также непростая задача. Основная трудность в том, что при этом способе культивирования гриб размножается вегетативно, образуя гонидии. Гонидии по вирулентности не уступают конидиям, однако неустойчивы к высоким температура на стадии высушивания. При традиционной распылительной сушке погибает 90% гонидиоспор и 20-50% конидиоспор. Проблема решается подбором питательной среды и условий ферментации, обеспечивающих переход 90% выращенных клеток в конидиоспоры.

Технология получения боверина методом глубинного культивирования включает обычные стадии. Питательная среда содержит в процентах: дрожжи кормовые - 2, крахмал - 1, хлорид натрия - 0.2, хлорид марганца - 0.01, хлорид кальция - 0.05. Последний компонент обеспечивает устойчивость конидий к неблагоприятным факторам, поэтому его содержание может сильно варьировать (до 5%). Культивируют при рН 4.5-5.6, температуре 25-28 о С 3-4 суток в условиях постоянного перемешивания и аэрации. В среде необходимо также наличие аминного азота, так как его недостаток снижает скорость роста культуры и процент образования конидиоспор, избыток ведет к образованию гонидий. Культуральную жидкость подвергают сепарации и фильтрованию, после чего пасту сушат на распылительной сушке.

Технология получения вирусных энтомопатогенных препаратов

Из всех энтомопатогенных препаратов вирусные обладают наибольшей специфичностью по отношению к насекомому-хозяину. Они поражают не более одного вида. Их ярко выраженная специфичность обуславливает практическую безвредность вирусных препаратов для человека, флоры и фауны.

Вирусы отличает высокая устойчивость к неблагоприятным факторам окружающей среды, они способны сохранять активность в течение 10-15 лет, находясь вне насекомого. Заражение вирусом происходит при питании вредителя. Попавшие в кишечник тельца-включения при щелочных значениях рН разрушаются. Освобожденные вирионы проникают через стенку кишечника в клетки, где в ядрах происходит репликация вирусов. Высвободившиеся вирусы заражают другие клетки, что в итоге приводит к гибели насекомого. Отличительной особенностью вирусов является то, что они могут размножаться только в живой ткани. Это создает определенные трудности в организации промышленного производства, так как технология размножения вирусов должна быть связана с использованием живых насекомых-хозяев.

В нашей стране осуществляется выпуск трех вирусных энтомопатогенных препаратов: вирин-ЭКС (против капустной совки), ЭНШ (против непарного шелкопряда) и АББ (против американской белой бабочки).

Производство любого из вирусных препаратов начинают с разведения насекомого-хозяина на искусственных питательных средах, обеспечивающих их физиологически здоровое состояние. На определенной стадии развития ( обычно на стадии гусеницы) насекомых заражают, добавляя вирусную суспензию к корму. При этом инокулят предварительно получают от нескольких больных личинок. После заражения насекомых выдерживают в строго определенных условиях, обеспечивающих максимальное накопление вируса в тканях. Через 7-9 суток собирают мертвые и отмирающие личинки, подсушивают при температуре 33-35 о С, измельчают механическим способом для вывода телец-включений из тканей. К полученной массе добавляют физиологический раствор или дистиллированную воду из расчета 1 мл на гусеницу, взвесь полученных тканей фильтруют.

При производстве вирин-ЭКС полиэдры осаждают из фильтрата центрифугированием. Осадок суспендируют в минимальном количестве дистиллированной воды и добавляют простерилизованный глицерин до титра 1 млрд. полиэдров в 1 мл. Готовый препарат разливают во флаконы. При производстве вирин-ЭНШ в фильтрат добавляют лактозу, а после перемешивания ацетон в соотношении 4:1 к объему суспензии. После отстаивания надосадочную жидкость сливают, осадок подсушивают до полного удаления ацетона. Если препарат планируется выпускать в виде порошка, то сухой осадок смешивают с мелкодисперсным наполнителем (каолином, например) до получения титра полиэдров 1 млрд. полиэдров в 1 грамме.

Масляную форму препарата получают путем диспергирования осадка в стерильном 50% растворе глицерина до титра 2 млрд. полиэдров в 1 мл, а затем добавляют равный объем солярового масла, перемешивают и разливают по флаконам. Вирусные энтомопатогенные препараты применяют путем внесения полиэдров в плотные популяции насекомых-вредителей с целью возникновения в них эпизоотий. Данный способ обработки предполагает внесение небольших количеств препарата. В другом случае опрыскивание или опыление производят на зараженных участках в период рождения личинок или на ранних стадиях их развития.

Препараты, производимые для сельского хозяйства, делятся на 3 группы:

Энтомопатогенные препараты

Отечественное биотехнологическое производство выпускает 3 группы энтомопатогенных препаратов:

1. Бактериальные препараты на основе Bacillus thuringiensis - энтобактерин-3, дендробациллин, инсектин, токсобактерин.

2. Грибной препарат боверин на основе гриба Beauveria bassiana.

3. Препараты на основе вирусов ядерного полиэдра (вирин-ЭНШ, вирин-ЭКС и др.).

Все микробные патогены выпускаются в виде смачивающих порошков, паст, реже - гранул, эмульсии спор и кристаллов. При непосредственном применении предполагается использование различных добавок в виде растворителей, прилипателей, способствующих повышению их эффективности. Технология получения бактериальных энтомопатогенных препаратов Наибольшее распространение среди промышленно выпускаемых микробных патогенов получили бактериальные препараты. Их отличительными особенностями являются высокая вирулентность по отношению к насекомым-вредителям, безопасность для окружающей флоры и фауны, достаточно высокая скорость воздействия на вредителей и др. В настоящее время производятся препараты против более 160 видов насекомых.

Из всех энтомопатогенных бактерий наиболее исследованы грамположительные бактерии Bac.thuringiensis. Она не только разрушает насекомое, попадая внутрь, но и продуцирует ряд токсичных продуктов. Среди этих токсичных продуктов выделяют 4 компонента:

- α-экзотоксин, или фосфолипаза С, - продукт растущих клеток бактерий. Токсическое действие фермента связывают с индуцируемым им распадом незаменимых фосфолипидов в ткани насекомого, что приводит к гибели последнего.

- β-экзотоксин - накапливается в культуральной жидкости при росте клеток. Считают, что молекула β-токсина состоит из нуклеотида, связанного через рибозу и глюкозу с аллослизевой кислотой. Его действие, видимо, обусловлено ингибированием нуклеотидазы и ДНК-зависимой РНК-полимеразы, связанных с АТФ, что приводит к прекращению синтеза РНК. По сравнению с другими токсинами действует медленнее, в основном при переходе от одного цикла развития к другому. По наблюдениям, β-экзотоксин - мутаген, поражающий генетический аппарат особей.

- γ-экзотоксин - малоизученный компонент, неидентифицированный фермент (или группа ферментов) .

В зависимости от реакции на кристаллы насекомые делятся на три группы:

характерен общий паралич;

паралич среднего отдела кишечника;

реакция на препарат в целом: гибель в результате прорастания спор и последующего размножения бактерий.

Бактерии Bac. thuringiensis антагонистичны к 130 видам насекомых. Наибольший эффект достигается при применении препаратов этой группы против листогрызущих вредителей. Наиболее распространенные препараты на основе различных вариаций Bac. thuringiensis: энтобактерин, инсектин, алестин, экзотоксин, токсобактерин, дендробациллин, битоксибациллин.

Конечный продукт - смачивающий порошок или стабилизированная паста. Первый получают путем высушивания увлажненной пасты на распылительной сушке. Готовый препарат фасуют по 20 кг в четырехслойные крафт-мешки с полиэтиленовым вкладышем. Вторую - внесением в пату КМЦ. При смешении молекулы КМЦ сорбируют белковые кристаллы и споры, заряжая их отрицательно, что способствует равномерному распределению активного начала по всему объёму и увеличению срока хранения. Готовый препарат - вязкая жидкость кремового или светло-серого цвета, без запаха, не замерзающую при хранении. Препарат предназначен для борьбы с садово-огородными вредителями, эффективен против 60 видов насекомых. Применяют путем опрыскивания растений водной эмульсией в период активного роста вредителя. Основная масса вредителей погибает в течение 2-10 дней. На 1 га расходуют: для овощных культур 1-3 кг, садовых - 3-5 кг.

Грибные энтомопатогенные препараты

Энтомопатогенные препараты на основе микроскопических грибов вызывают у насекомых микозы. Грибы обладают рядом особенностей:

поражение происходит через кутикулу;

насекомые поражаются в фазе развития куколки и имаго;

большая скорость роста и огромная репродуктивная способность, в виде спор могут длительное время находится в природе без снижения энтомопатогенной активности;

высокая специфичность, вирулентность сильно зависит от штамма гриба.

Действие грибного препарата на насекомое начинается с проникновения споры в полость тела через кожные покровы. Попав в тело, спора прорастает в гифу, затем разрастается мицелий, от которого отчленяются конидии. Оказавшись в теле, конидии циркулируют в гемолимфе. Уже на этой стадии возможно поражение насекомого вследствие выделения некоторыми штаммами значительного количества токсинов. В отсутствие токсина мицелий постепенно заполняет все тело насекомого, прежде всего поражается мышечная ткань. Рост гриба продолжается до тех пор, пока все ткани не будут разрушены. Могут образовываться конидиеносцы, прорывающие кутикулу и обволакивающие мертвую личинку.

В промышленном производстве используются отдельные штаммы в основном трех родов: Beaveria, Metarrhizium, Entomophtora. В нашей стране освоено промышленное производство препарата боверина на основе B.bassiana. Готовый препарат - порошок кремового или белого цвета, содержащий в 1 г от 1.5 до 6 млрд. конидиоспор. Препарат безвреден для теплокровных животных и человека, не вызывет ожогов у растений.

Получать боверин можно используя как поверхностное, так и глубинное культивирование. Первый способ более трудоемок и длителен, поэтому имеет ограниченное значение. Производство конидиоспор при выращивании его в жидкой среде также непростая задача. Основная трудность в том, что при этом способе культивирования гриб размножается вегетативно, образуя гонидии. Гонидии по вирулентности не уступают конидиям, однако неустойчивы к высоким температура на стадии высушивания. При традиционной распылительной сушке погибает 90% гонидиоспор и 20-50% конидиоспор. Проблема решается подбором питательной среды и условий ферментации, обеспечивающих переход 90% выращенных клеток в конидиоспоры.

Технология получения боверина методом глубинного культивирования включает обычные стадии. Питательная среда содержит в процентах: дрожжи кормовые - 2, крахмал - 1, хлорид натрия - 0.2, хлорид марганца - 0.01, хлорид кальция - 0.05. Последний компонент обеспечивает устойчивость конидий к неблагоприятным факторам, поэтому его содержание может сильно варьировать (до 5%). Культивируют при рН 4.5-5.6, температуре 25-28оС 3-4 суток в условиях постоянного перемешивания и аэрации. В среде необходимо также наличие аминного азота, так как его недостаток снижает скорость роста культуры и процент образования конидиоспор, избыток ведет к образованию гонидий. Культуральную жидкость подвергают сепарации и фильтрованию, после чего пасту сушат на распылительной сушке.

Вирусные энтомопатогенные препараты

Из всех энтомопатогенных препаратов вирусные обладают наибольшей специфичностью по отношению к насекомому-хозяину. Они поражают не более одного вида. Их ярко выраженная специфичность обуславливает практическую безвредность вирусных препаратов для человека, флоры и фауны.

Вирусы отличает высокая устойчивость к неблагоприятным факторам окружающей среды, они способны сохранять активность в течение 10-15 лет, находясь вне насекомого. Заражение вирусом происходит при питании вредителя. Попавшие в кишечник тельца-включения при щелочных значениях рН разрушаются. Освобожденные вирионы проникают через стенку кишечника в клетки, где в ядрах происходит репликация вирусов. Высвободившиеся вирусы заражают другие клетки, что в итоге приводит к гибели насекомого. Отличительной особенностью вирусов является то, что они могут размножаться только в живой ткани. Это создает определенные трудности в организации промышленного производства, так как технология размножения вирусов должна быть связана с использованием живых насекомых-хозяев.

В нашей стране осуществляется выпуск трех вирусных энтомопатогенных препаратов: вирин-ЭКС (против капустной совки), ЭНШ (против непарного шелкопряда) и АББ (против американской белой бабочки).

Производство любого из вирусных препаратов начинают с разведения насекомого-хозяина на искусственных питательных средах, обеспечивающих их физиологически здоровое состояние. На определенной стадии развития ( обычно на стадии гусеницы) насекомых заражают, добавляя вирусную суспензию к корму. При этом инокулят предварительно получают от нескольких больных личинок. После заражения насекомых выдерживают в строго определенных условиях, обеспечивающих максимальное накопление вируса в тканях. Через 7-9 суток собирают мертвые и отмирающие личинки, подсушивают при температуре 33-35оС, измельчают механическим способом для вывода телец-включений из тканей. К полученной массе добавляют физиологический раствор или дистиллированную воду из расчета 1 мл на гусеницу, взвесь полученных тканей фильтруют.

При производстве вирин-ЭКС полиэдры осаждают из фильтрата центрифугированием. Осадок суспендируют в минимальном количестве дистиллированной воды и добавляют простерилизованный глицерин до титра 1 млрд. полиэдров в 1 мл. Готовый препарат разливают во флаконы. При производстве вирин-ЭНШ в фильтрат добавляют лактозу, а после перемешивания ацетон в соотношении 4:1 к объему суспензии. После отстаивания надосадочную жидкость сливают, осадок подсушивают до полного удаления ацетона. Если препарат планируется выпускать в виде порошка, то сухой осадок смешивают с мелкодисперсным наполнителем (каолином, например) до получения титра полиэдров 1 млрд. полиэдров в 1 грамме.

Масляную форму препарата получают путем диспергирования осадка в стерильном 50% растворе глицерина до титра 2 млрд. полиэдров в 1 мл, а затем добавляют равный объем солярового масла, перемешивают и разливают по флаконам. Вирусные энтомопатогенные препараты применяют путем внесения полиэдров в плотные популяции насекомых-вредителей с целью возникновения в них эпизоотий. Данный способ обработки предполагает внесение небольших количеств препарата. В другом случае опрыскивание или опыление производят на зараженных участках в период рождения личинок или на ранних стадиях их развития.

Читайте также: