Виды ядерного оружия реферат

Обновлено: 05.07.2024

Строение электронной оболочки было достаточно изучено к концу XIX века, но знаний о строении атомного ядра было очень мало, и к тому же, они были противоречивы.
В 1896 году было открыто явление, получившее название радиоактивности (от латинского слова "радиус" - луч). Это открытие сыграло важную роль в дальнейшем излучении строения атомных ядер. Мария Склодовская-Кюри и Пьер Кюри установили, что, кроме урана, еще торий, полоний и химические соединения урана с торием обладает таким же излучением, что и уран.
Продолжая исследования, они выделили в 1898 году из урановой руды вещество в несколько миллионов раз более активное, чем уран, и назвали его радием, что значит лучистый. Вещества, обладающие излучением подобно урану или радию, получили название радиоактивных, а само явление стали называть радиоактивностью.

Содержание

Введение………………………………………………………………3
1. История создания и развития ядерного оружия………………. 4
2. Атомное оружие - оружие массового поражения
2.1 Ядерное оружие…………………………………………………..7
2.2 Виды ядерных зарядов…………………………………………. 9
2.3 Мощность ядерных боеприпасов………………………………..11
2.4 Поражающие факторы ядерного взрыва
2.4.1 Ударная волна…………………………………………………. 13
2.4.2 Световое излучение……………………………………………..16
2.4.3 Проникающая радиация………………………………………. 18
2.4.4 Радиоактивное заражение……………………………………….19
2.4.5 Электромагнитный импульс…………………………………….21
2.5 Виды ядерных взрывов……………………………………………22
Заключение……………………………………………………………..24
Список литературы…………………………………………………….25

Работа содержит 1 файл

ОБЖ1.docx

1. История создания и развития ядерного оружия……………… . 4

2. Атомное оружие - оружие массового поражения

2.2 Виды ядерных зарядов………………………… ………………. 9

2.3 Мощность ядерных боеприпасов…… …………………………..11

2.4 Поражающие факторы ядерного взрыва

2.4.2 Световое излучение……………………………… ……………..16

2.4.3 Проникающая радиация………………………… ……………. 18

2.4.4 Радиоактивное заражение………………… …………………….19

2.4.5 Электромагнитный импульс……………… …………………….21

2.5 Виды ядерных взрывов………………………… …………………22

Строение электронной оболочки было достаточно изучено к концу XIX века, но знаний о строении атомного ядра было очень мало, и к тому же, они были противоречивы.

В 1896 году было открыто явление, получившее название радиоактивности (от латинского слова "радиус" - луч). Это открытие сыграло важную роль в дальнейшем излучении строения атомных ядер. Мария Склодовская-Кюри и Пьер Кюри установили, что, кроме урана, еще торий, полоний и химические соединения урана с торием обладает таким же излучением, что и уран.

Продолжая исследования, они выделили в 1898 году из урановой руды вещество в несколько миллионов раз более активное, чем уран, и назвали его радием, что значит лучистый. Вещества, обладающие излучением подобно урану или радию, получили название радиоактивных, а само явление стали называть радиоактивностью.

В XX веке наука сделала радикальный шаг в изучении радиоактивности и применении радиоактивных свойств материалов.

В настоящее время 5 стран имеют в своём вооружение ядерное оружие: США, Россия, Великобритания, Франция, Китай и в ближайшие годы этот список пополниться.

Сейчас трудно оценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой - самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами.

Задачи, стоящие перед современным человечеством - не допустить гонку ядерного вооружения ведь научные знания могут служить и гуманным, благородным целям.

Я считаю выбранную мной тему наиболее актуальной в современном мире, именно поэтому я выбрал ее для более подробного изучения.

1. История создания и развития ядерного оружия

В 1905 Альберт Эйнштейн издал свою специальную теорию относительности. Согласно этой теории, соотношение между массой и энергией выражено уравнением , которое значит, что данная масса (m) связана с количеством энергии (E) равной этой массе, умноженной на квадрат скорости света (c). Очень малое количество вещества эквивалентно к большому количеству энергии. Например, 1 кг вещества, преобразованного в энергию был бы эквивалентен энергии, выпущенной, при взрыве 22 мегатонн тротила.

В 1938 г, в результате экспериментов немецким химикам Отто Хана и Фритца Страссманна, удается разбить атом урана на две приблизительно равных части при помощи бомбардировки урана нейтронами. Британский физик Роберт Фриш, объяснил как при делении ядра атома выделяется энергия.

В начале 1939 года французский физик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии, как обычное взрывное вещество.

Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало на быстрейшее его создание, но тормозом стала проблема наличия большого количества урановой руды для широкомасштабных исследований.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии, понимая, что без достаточного количества урановой руды невозможно вести работы. США в сентябре 1940 года закупили большое количество требуемой руды по подставным документам у Бельгии, что и позволило им вести работы над созданием ядерного оружия полным ходом.

Перед началом Второй мировой войны Альберт Эйнштейн написал письмо президенту США Франклину Рузвельту. В нем якобы говорилось о попытках нацистской Германии очистить Уран-235, что может привести их к созданию атомной бомбы. Сейчас стало известно, что германские учёные были очень далеки от проведения цепной реакции. В их планы входило изготовление "грязной", сильно радиоактивной бомбы.

Как бы то ни было, правительством Соединённых Штатов было принято решение - в кратчайшие сроки создать атомную бомбу. Этот проект вошел историю как "Manhattan Project". Следующие шесть лет, с 1939 по 1945, на проект Манхэттен было потрачено более двух биллионов долларов. В Oak Ridge, штат Теннеси, был построен огромный завод по очистке урана. Был предложен способ очистки в котором газовая центрифуга отделяла легкий Уран-235 от более тяжелого Урана-238.

На территории Соединенных Штатов, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. Над проектом работало множество учёных, главным же был Роберт Оппенгеймер. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в лаборатория, не прекращалась ни на минуту.

В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности английский атомный проект “Tub Alloys”, и Англия добровольно передала США свои разработки и ведущих ученых проекта, что позволило США занять ведущее положение в развитии ядерной физики (создания ядерного оружия).

16 июля 1945 года, яркая вспышка озарила небо над плато в горах Джемеза на севере от Нью-Мехико. Характерное облако радиоактивной пыли, напоминающее гриб, поднялось на 30 тысяч футов. Все что осталось на месте взрыва - фрагменты зеленого радиоактивного стекла, в которое превратился песок. Так было положено начало атомной эре.

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235. "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Утром 6 августа 1945 г. над Хиросимой была сброшена бомба "Малыш".9 августа еще одна бомба была сброшена над городом Нагасаки. Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранение, ожоги, облучились. На площади 12 кв.км были полностью разрушены все строения. Эти бомбардировки потрясли весь мир.

Считается, что эти 2 события положили начало гонке ядерных вооружений.

Но уже 1946 году в СССР были открыты и сразу же стали разрабатываться крупные месторождения урана более высокого качества. В районе г. Семипалатинска был построен испытательный полигон. А 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1". Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия, что положило конец американскому монополизму на владение новым для человечества оружием.

2. Атомное оружие - оружие массового поражения

2.1 Ядерное оружие

Ядерное или атомное оружие - оружие взрывного действия, основанное на использовании ядерной энергии, освобождающейся при цепной ядерной реакции деления тяжёлых ядер или термоядерной реакции синтеза лёгких ядер. Относится к оружию массового поражения (ОМП) наряду с биологическим и химическим.

Ядерный взрыв - это процесс мгновенного выделения большого количества внутриядерной энергии в ограниченном объеме.

Центр ядерного взрыва - точка, в которой происходит вспышка или находится центр огненного шара, а эпицентром - проекцию центра взрыва на земную или водную поверхность.

Ядерное оружие является самым мощным и опасным видом оружия массового поражения, угрожающим всему человечеству невиданными разрушениями и уничтожением миллионов людей.

Если взрыв происходит на земле или довольно близко от ее поверхности, то часть энергии взрыва передается поверхности Земли в виде сейсмических колебаний. Возникает явление, которое по своим особенностям напоминает землетрясение. В результате такого взрыва образуются сейсмические волны, которые через толщу земли распространяется на весьма большие расстояния. Разрушительное действие волны ограничивается радиусом в несколько сот метров.

В результате чрезвычайно высокой температуры взрыва возникает яркая вспышка света, интенсивность которой в сотни раз превосходит интенсивность солнечных лучей, падающих на Землю. При вспышке выделяется огромное количество тепла и света. Световое излучение вызывает самовозгорание воспламеняющихся материалов и ожоги кожи у людей в радиусе многих километров.

При ядерном взрыве возникает радиация. Она продолжается около минуты и обладает настолько высокой проникающей способностью, что для защиты от нее на близких расстояниях требуются мощные и надежные укрытия.

По данным дважды лауреата Нобелевской премии Лайнуса Полинга, еще в 1964 г. общие запасы ядерных боеприпасов составляли 320 миллионов тонн тротилового эквивалента, то есть около 100 тонн тротила на каждого человека земного шара. С тех пор эти запасы, вероятно, еще более возросли.

Причём данные по США и России на 2002-2009 г. г. включают только боеприпасы на развёрнутых стратегических носителях; оба государства располагают также значительным количеством тактического ядерного оружия, которое трудно поддаётся оценке.

2.2 Виды ядерных зарядов

Все ядерные боеприпасы могут быть разделены на категории:

1. Атомные заряды

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и, в отдельных случаях, уран-233).

Уран - очень тяжёлый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран-235 используют в ядерном оружии потому, что в отличие от наиболее распространённого изотопа урана-238, в нём возможна самоподдерживающаяся цепная ядерная реакция.

Плутоний - очень тяжелый серебристый металл, блестящий подобно никелю, когда только что очищен. Это крайне электроотрицательный, химически активный элемент. Вследствие своей радиоактивности, плутоний теплый на ощупь. Чистый изотоп плутония-239 гораздо горячее тела человека. Плутоний-239 также называют "оружейным плутонием", т.к. он предназначен для создания ядерного оружия и содержание изотопа 239Pu должно быть не менее 93,5 %.

Атомы плутония образуются в результате цепи атомных реакций, начинающихся с захвата нейтрона атомом урана-238. Чтобы получать плутоний в достаточном количестве, нужны сильнейшие нейтронные потоки. Такие как раз создаются в атомных реакторах. В принципе, любой реактор является источником нейтронов, но для промышленного производства плутония естественно использовать специально разработанных для этого.

Цепная реакция деления развивается не в любом количестве делящегося вещества, а лишь только в определенной для каждого вещества массе. Наименьшее количество делящегося вещества, в котором возможна саморазвивающаяся цепная ядерная реакция, называют критической массой. Уменьшение критической массы будет наблюдаться при увеличении плотности вещества.

Делящееся вещество в атомном заряде находится в подкритическом состоянии. По принципу его перевода в надкритическое состояние атомные заряды делятся на пушечные и имплозивного типа.

В зарядах пушечного типа две и более частей делящегося вещества, масса каждой из которых меньше критической, быстро соединяются друг с другом в надкритическую массу в результате взрыва обычного взрывчатого вещества (выстреливания одной части в другую). При создании зарядов по такой схеме трудно обеспечить высокую надкритичность, вследствие чего его коэффициент полезного действия невелик. Достоинством схемы пушечного типа является возможность создания зарядов малого диаметра и высокой стойкости к действию механических нагрузок, что позволяет использовать их в артиллерийских снарядах и минах.

В зарядах имплозивного типа делящееся вещество, имеющее при нормальной плотности массу меньше критической, переводится в надкритическое состояние повышением его плотности в результате обжатия с помощью взрыва обычного взрывчатого вещества. В таких зарядах предоставляется возможность получить высокую надкритичность и, следовательно, высокий коэффициент полезного использования делящегося вещества.

Ядерное оружие - это самое опасное оружие массового поражения, известное миру на сегодняшний день. Ядерные ракеты, несущие на себе смертоносный запал, весят тонны, а иногда и десятки тонн. Они обладают огромным запасом топлива, что позволяет им облететь Землю несколько раз и попасть в заданную точку с любого конца нашей планеты. Обладая огромной скоростью, они становятся неуязвимыми для многих систем противоракетной обороны (ПРО) стран мира. Ядерное оружие, как и любое другое, обладает рядом факторов, делающих его универсальным в своем роде.

Поражающий фактор

Данный фактор заключается в площади, которая подвергнется удару и будет заражена радиацией. У каждой ядерной ракеты этот фактор различный. Поражающий фактор напрямую зависит от мощности ядерной ракеты, которая характеризуется в тротиловом эквиваленте.

Рис. 1. Взрыв однофазной ядерной бомбы мощностью 23 кт. Полигон в Неваде. 1953 год

  • Ядерная волна
  • Световое излучение
  • Электромагнитный импульс

Ядерная волна

Данная волна представляет собой движение воздушных масс параллельно поверхности земли. Вызвана она огромным выбросом энергии. Ядерная волна - это один из самых страшных подпунктов поражающего фактора. Даже перед ядерной волной самой маленькой ракеты не устоит ни одно здание. Волна взрыва распространяется на огромные расстояния, начиная с нескольких километров и заканчивая несколькими десятками, в исключительных случаях в радиусе 100 километров не остается ничего живого. Все превращается в прах.

Световое излучение

Второй по мощности подпункт поражающего фактора. Он является кратковременным и возникает только в момент соприкосновения боеголовки с землей. После контакта происходит выброс энергии невероятной силы. Он сопровождается яркой вспышкой света, которая сравнивается с яркостью солнца. Казалось бы, ничего страшного в этом нет. Однако свет такой яркости способен сжечь все вокруг себя в радиусе нескольких десятков километров.

Рис. 2. Тополь-М на Тверской улице Москвы во время репетиции парада Если в момент взрыва человек, находившийся в 15 километрах от него, смотрел в ту сторону, то ему гарантированно сожжет сетчатку глаза. Скорость света огромна - почти 300000000 м/с. С такой же скоростью он распространяется и в момент взрыва. Световой поток состоит из таких излучений, как инфракрасное, видимое и даже ультрафиолетовое.

Излучение радиации (проникающая радиация)

Так как ядерная бомба состоит из химических элементов, которые излучают радиацию, в частности это уран и цезий, соответственно - взрыв такого оружия будет вызывать моментальное распространение радиации на огромные территории. Такая радиация представляет собой поток направленных гамма-лучей, а также нейтронов. Длительность проникающей радиации, как правило, составляет 10-15 секунд. Данный тип радиации опасен тем, что он способен проникать в любые помещения и здания. Однако чем прочнее материал, через который она проходит, тем меньше будет ее сила. Так, например, пройдя через сталь толщиной 2,8 см, сила радиации ослабевает примерно в 2 раза.

Важно! Количество нейтронов в обычных ядерных бомбах составляет около 30% от общей массы. А если бомбы или ракеты нейтронного характера , тогда это число повышается до 70-80%. Для того чтобы обезопасить мирное население в период ядерной войны, создаются специальные сооружения, которые позволяют ослабить проникающую радиацию приблизительно в 5000 раз.

Рис. 3. PC-24 Ярс

Радиоактивное заражение

  1. Зона А . Она располагается дальше всех от эпицентра взрыва. Допустимая доза в ней составляет от 40 до 400 рад. Такая зона называется зоной умеренного заражения.
  2. Зона Б . Статус зоны сильного заражения носит участок, где допустимая радиация находится в промежутке от 400 до 1200 рад.
  3. Зона В. Называется зоной опасного заражения. Допустимые значения радиации на этом участке могут находится от 1200 до 4000 рад.
  4. Зона Г. Считается чрезвычайно опасной. Здесь доза излучения может достигать 7000 рад.

Важно! Смертельная для человека доза составляет от 600 до 1000 рад. При мощности излучения, превышающей отметку в 7000 рад, смерть наступает мгновенно. Человек просто сгорает заживо.

Электромагнитный импульс

Данный импульс возникает в процессе ионизации при гамма-излучении. Его длительность не превышает пару миллисекунд. Однако этот импульс распространяется со сверхзвуковой скоростью. Поэтому нескольких миллисекунд ему хватит, чтобы в радиусе нескольких десятков километров вывести всю электронику из строя.

Именно по этой простой причине вся военная техника оснащена не бензиновыми, а дизельными силовыми агрегатами. Для того, чтобы воспламенилось бензиновое топливо, необходима искра. В двигатель она поступает только в том случае, если повернуть замок зажигания. Но он не сможет выдать необходимое количество электричества, так как электромагнитный импульс вывел его из строя. Дизель же воспламеняется за счет сжатия. Для того чтобы мотор запустился, достаточно просто толкнуть автомобиль.

Рис. 4. Ракета Р-36М Сатана

Вес, длина и способ запуска

  1. Бомбы. Их необходимо сбрасывать непосредственно с авиации.
  2. Ракеты , в том числе и баллистические. Они имеют в своем строении определенный запас топлива, который позволяет летать им очень далеко и долго. В свою очередь они делятся на два класса:
    • Запускаемые с техники , которые может быстро передвигаться и менять место своей дислокации. Однако, для полной боеготовности к запуску таким ракетам требуется время с продолжительностью около 5 минут.
    • Базирующиеся в шахтах . Данный тип ракет уникален тем, что никто, кроме президента и министра обороны не знает их расположение, а также число. Для их развертывания требуется приблизительно столько же времени, но ракеты такого типа могут облететь весь земной шар несколько раз.
  • Тополь-М . Признана самой мобильной ядерной установкой. Производство осуществляется с 1994 года. Вес составляет 46,5 тонн. Длина - 17,5 метра. Является основой ядерного щита России.
  • Ярс РС-24 . Самая защищенная ракета. Масса около 47 тонн. Длина приблизительно 23 метра.
  • Р-36М Сатана . Признана самой тяжелой ядерной ракетой в нашей стране. Ее вес составляет 211 тонн. Длина - 34,3 метра.
  • РС-28 Сармат . Длина составляет 30-35 метров. Вес более 200 тонн.

История применения ядерного оружия

  • Вооруженные силы США сбросили на Хиросиму ядерную ракету “Малыш”, мощность которой составляла около 15 килотонн в тротиловом эквиваленте.
  • На Нагасаки была сброшена бомба “Толстяк”. Ее мощность составила более 21 килотонны тротила.

Важно! За всю длительную историю строения ядерного оружия абсолютным рекордсменом стала советская ракета “Царь-бомба”, чья мощность составляла 101,5 мегатонны.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ООО Учебный центр

Реферат по дисциплине:

Лисунова Наталья Леонидовна

Москва 2018 год

Ядерное оружие. Виды ядерных взрывов …….4

Поражающие факторы ядерного оружия …….6

Список использованной литературы…………10

Наш мир неустойчив и хрупок. Любые природные явления: землетрясения, наводнения, ураганы способны уничтожить его полностью. К сожалению, сам человек зачастую создаёт условия, которые могут уничтожить самого человека. Одним из этих механизмов создания смертельных условий является оружие. А самым опасным из них является оружие ядерное. И это оружие настолько опасно, что может нести смерть разными путями, иметь различные способы создания неблагоприятных условий, так называемые поражающие факторы. Одним из этих факторов является радиоактивное заражение, другим выступает ударная волна. Но это всё первичные способы, а есть вторичные, которые возникают не напрямую от взрыва ядерной бомбы, а проявляются опосредованно.

Во всем мире после трагедий Хиросимы и Нагасаки начали изучать последствия возможной ядерной войны - разрушения от мощнейших взрывов, распространение радиации, биологические поражения. В 80-е годы были предприняты исследования, посвященные и климатическим эффектам, известным теперь как "ядерная зима".

Цель работы – изучение видов, поражающих факторов и последствий применения ядерного оружия.

Задачи: изучить литературу, проанализировать данные, сделать вывод.

Ядерное оружие. Виды ядерных взрывов

Ядерное оружие по своим поражающим свойствам относится к самым мощным. Оно способно в кратчайшее время уничтожить большое количество людей и животных, разрушить здания и сооружения на обширных территория

Поражающее действие ядерного оружия основано на использовании внутриядерной энергии, мгновенно выделяющейся при взрыве[1].

Огненный шар ядерного взрыва сжигает или обугливает объекты на значительном удалении от эпицентра. Около 1/3 энергии взрыва, произошедшего на небольшой высоте, выделяется в виде интенсивного светового импульса. Так, в 10 км от эпицентра взрыва мощностью 1 Мт световая вспышка в первые секунды в тысячи раз ярче солнца. За это время загораются бумага, ткани и другие легко воспламеняющиеся материалы. Человек получает ожоги третьей степени. Возникающие очаги пламени (первичные пожары) частично гасятся мощной воздушной волной взрыва, но разлетающиеся искры, горящие обломки, брызги горящих нефтепродуктов, короткие замыкания в электросети вызывают обширные вторичные пожары, которые могут продолжаться много дней.

Когда множество независимых пожаров объединяются в один мощный очаг, образуется "огненный смерч", способный уничтожить огромный город. Интенсивное выделение тепла в центре такого "смерча" поднимает вверх громадные массы воздуха, создавая ураганы у поверхности земли, которые подают все новые порции кислорода к очагу пожара. "Смерч" поднимает до стратосферы дым, пыль и сажу, которые образуют тучу, практически закрывающую солнечный свет, наступает "ядерная ночь" и, как следствие, "ядерная зима"[3].

В состав ядерного оружия входят ядерные боеприпасы и средства их доставки к цели. Основу ядерного боеприпаса составляет ядерный заряд, мощность которого принято выражать тротиловым эквивалентом. Под этим понимается количество обычного взрывчатого вещества, при взрыве которого выделяется столько же энергии, сколько ее выделится при взрыве данного ядерного боеприпаса. Его измеряют в десятках, сотнях, тысячах (кило-) и миллионах (мега-) тонн. Средствами доставки боеприпасов к целям являются ракеты (основное средство нанесения ядерных ударов), авиация и артиллерия. Могут применяться и ядерные фугасы[1].

Ядерные взрывы принято подразделять на воздушные, наземные (надводные) и подземные (подводные). Точку, в которой произошел взрыв, называют центром, а ее проекцию на поверхности земли (воды) — эпицентром ядерного взрыва.

Воздушным называют взрыв, светящееся облако которого не касается поверхности земли (воды). В зависимости от мощности боеприпаса он может находиться на высоте от нескольких сотен метров до нескольких километров. Радиоактивное заражение местности при воздушном ядерном взрыве практически отсутствует.

Наземный (надводный) ядерный взрыв осуществляют на поверхности земли (воды) или на такой высоте, когда светящаяся область взрыва касается поверхности земли (воды) и имеет форму полусферы. Радиус поражения его примерно на 20% меньше воздушного. Характерная особенность наземного (надводного) ядерного взрыва — сильное радиоактивное заражение местности в районе взрыва и по следу движения радиоактивного.

Подземным (подводным) называют взрыв, произведенный под землей (под водой). Основной поражающий фактор подземного взрыва — волна сжатия, распространяющаяся в грунте или воде[2].

Ядерный взрыв сопровождается яркой вспышкой, резким оглушительным звуком, напоминающим грозовые раскаты. При воздушном взрыве вслед за вспышкой образуется огненный шар (при наземном — полушарие), который быстро увеличивается, поднимается вверх, остывает и превращается в клубящееся облако, по форме напоминающее гриб.

II . Поражающие факторы ядерного взрыва

Поражающие факторы ядерного взрыва — ударная волна, световое излучение, проникающая радиация, радиоактивное загрязнение и электромагнитный импульс.

Ударная волна — один из основных поражающих факторов ядерного взрыва, так как большинство разрушений и повреждений сооружений, зданий, а также поражений людей обусловлены ее воздействием. В зависимости от характера разрушений в очаге ядерного поражения выделяют четыре зоны: полных, сильных, средних и слабых разрушений. Основной способ защиты от ударной волны — использование укрытий (убежищ).

Световое излучение представляет собой поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи. Его источник — светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 с. Оно способно вызывать ожоги кожи, поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов и объектов. Защитой от светового излучения могут служить различные предметы, создающие тень. Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и предохраняет от ожогов. Лучшие же результаты достигаются при использовании убежищ, укрытий, защищающих одновременно и от других поражающих факторов ядерного взрыва.

Под действием светового излучения и ударной волны в очаге ядерного поражения возникают пожары, горение и тление в завалах. Совокупность пожаров, возникших в очаге ядерного поражения, принято называть массовыми пожарами. Пожары в очаге ядерного поражения продолжаются длительное время, поэтому они могут вызвать большое количество разрушений и нанести ущерб больше, чем ударная волна. Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь, снегопад.

Проникающая радиация — это ионизирующее излучение в виде потока гамма-лучей и нейтронов. Источниками его служат ядерные реакции, протекающие в боеприпасе в момент взрыва, и радиоактивный распад осколков (продуктов) деления в облаке взрыва. Время действия проникающей радиации на наземные объекты составляет 15—25 с. Оно определяется временем подъема облака взрыва на такую высоту (2—3 км), при которой гамма-нейтронное излучение, поглощаясь толщей воздуха, практически не достигает поверхности земли. Проходя через живую ткань, гамма-излучение и нейтроны ионизируют молекулы, входящие в состав живых клеток, нарушают обмен веществ и жизнедеятельность органов, что приводит к лучевой болезни[1].

Радиоактивное загрязнение. Основные его источники — продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате воздействия нейтронов на материалы, из которых изготовлен ядерный боеприпас, и на некоторые элементы, входящие в состав грунта в районе взрыва.

При наземном ядерном взрыве светящаяся область касается земли. Внутрь ее затягиваются массы испаряющегося грунта, которые поднимаются вверх. Охлаждаясь, пары продуктов деления и грунта конденсируются. Образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, а затем со скоростью 25—100 км/ч переносится воздушными массами в ту сторону, куда дует ветер. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного загрязнения (след), длина которой может достигать нескольких сотен километров. При этом заражаются местность, здания, сооружения, посевы, водоемы и пр., а также воздух. Заражение местности и объектов на следе радиоактивного облака происходит неравномерно. Различают зоны умеренного, сильного, опасного и чрезвычайно опасного загрязнения.

Электромагнитный импульс — это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия испускаемых при этом гамма-лучей и нейтронов с атомами окружающей среды. Следствием его воздействия может быть выход из строя отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с проводными линиями. [1].

Частенько в прогнозах будущего звучат слова о всевозможных катастрофах нашей цивилизации и растущей угрозе ядерной войны, в частности.

Суровость ядерной зимы зависит от следующих факторов:

1. Количество сажи, которое возникнет и будет выброшено в тропосферу в случае крупномасштабной ядерной войны.

2. Влияние сажи на температуру Земли.

3. Время нахождения сажи в верхних слоях атмосферы.

4. Влияние похолодания на выживание людей.

Учитывая неопределенность в моделях, а также возможность затяжной ядерной войны и других причин затемнения атмосферы, можно предположить следующие теоретические варианты ядерной зимы:

1. Падение температуры на один градус в год, не оказывающее значительного влияния на человеческую популяцию (как после извержения вулкана Пинатубо в 1991 году).

5. Необратимое глобальное похолодание. Оно может быть следующей фазой ледникового периода (при наихудшем развитии событий). На всей планете на геологически длительное время установится температурный режим, как в Антарктиде, океаны замерзнут, суша покроется толстым слоем льда. Только высокотехнологичная цивилизация, способная строить огромные сооружения подо льдом, может пережить такое бедствие, но такая цивилизация могла бы, вероятно, найти способ обратить вспять этот процесс. Жизнь может уцелеть только около геотермальных источников на морском дне. Последний раз Земля вошла в это состояние примерно 600 млн лет назад, то есть до выхода животных на сушу, и смогла выйти из него только благодаря накоплению С02 в атмосфере.

6. Наконец, в случае, если бы Солнце вообще перестало светить, наихудшим исходом было бы превращение всей атмосферы в жидкий азот.

Этот сценарий подразумевается моделями ядерной зимы. Массовая гибель людей от голода, холода, а также от того, что снег будет накапливаться и образовывать многометровые толщи, разрушающие строения и перекрывающие дороги. Большая часть населения Земли погибнет. Наступит новый ледниковый период.

Ядерное оружие по своим поражающим свойствам относится к самым мощным. Оно способно в кратчайшее время уничтожить большое количество людей и животных, разрушить здания и сооружения на обширных территориях. Массовое применение ядерного оружия чревато катастрофическими последствиями для всего человечества. В настоящее время страны продолжают вести переговоры о снижении уровня ядерных потенциалов. Ведется борьба за полное запрещение его испытаний и производства, уничтожение всех его запасов. Это необходимо для того, чтобы исключить случайную ядерную войну и гарантированное взаимное уничтожение.

Список литературы

Содержание

ВВЕДЕНИЕ 3
1 Ядерное оружие 4
1.1 Характеристика ядерного оружия 4
1.2 Виды ядерных зарядов 4
1.3 Мощность ядерных боеприпасов 5
1.4 Виды ядерных взрывов 5
1.5 Поражающие факторы ядерного взрыва 5
1.6 Очаг ядерного поражения 8
2 Химическое оружие 10
2.1 Отравляющие вещества 10
2.2 Стойкость 10
2.3 Физиологическое воздействие 11
2.4 Средства и способы применения 11
2.5 Характеристика основных отравляющих веществ 12
2.6 Очаг химического поражения 14
3 Биологическое оружие 15
3.1 Способы применения бактериальных средств 15
3.2 Особенности поражения бактериальными средствами 16
3.3 Бактериальные средства 16
3.4 Способы защиты от бактериальных средств 18
3.5 Очаг бактериологического заражения 18
3.6 Обсервация и карантин 18
ЗАКЛЮЧЕНИЕ 20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 21

Прикрепленные файлы: 1 файл

новые виды оружия массового поражения 1.docx

ВВЕДЕНИЕ

На всех этапах развития человек постоянно стремился к обеспечению личной безопасности и сохранению своего здоровья. Это стремления было мотивацией многих его действий и поступков.

Научные знания могут служить как целям гуманным и благородным, так и целям варварским. Все зависит от того, в чьих руках находится наука и добытые ею результаты, кто и по каким соображениям занимается научной деятельностью, каковы моральные устои и социальные воззрения людей науки.

С развитием научно-технического прогресса люди поняли, что должны быть подготовлены и к ликвидации последствий своей деятельности, таких как аварии применения оружия. Обучение населения защите от воздействия оружия массового поражения и других средств нападения противника.

К видам оружия массового поражения (ОМП) относятся ядерное, химическое, биологическое и другие виды, способные уничтожать массы людей и животных, вызывать разрушения, наносить ущерб окружающей среде. В зависимости от вида примененного противником оружия массового поражения могут образовываться очаги ядерного, химического, бактериологического (биологического) поражения и зоны радиоактивного, химического и бактериологического (биологического) заражения. Первичные действия поражающих факторов ОМП и других средств нападения противника могут привести к возникновению взрывов, пожаров, затоплений местности и распространению на ней сильнодействующих ядовитых веществ. При этом образуются вторичные очаги поражения.

Читайте также: