Виды миграции химических элементов в ландшафтах реферат

Обновлено: 07.07.2024

В условиях ландшафта миграция элемента определяется внутренними и внешними факторами миграции. К внутренним факторам относятся: особенности ионов, форма в которой присутствует элемент, химические свойства элемента, его способность давать соединения различной растворимости, летучести, твердости, поглощаться организмами и т.д.

Миграция химических элементов во многом определяется внешними факторами, т.е. от той обстановки, в которой мигрируют атомы – от солнечной радиации, температуры, давления, щелочно-кислотных (рН) и окислительно-восстановительных (Еh) условий и т.д.

Все многообразие миграции можно свести к четырем основным видам в зависимости от формы движения материи, с которой связано перемещение атомов – механической, физико-химической, биогенная и техногенная. Виды миграции не существуют в ландшафте изолировано. Они тесно связаны друг с другом и взаимообусловлены. Однако ведущее значение имеет высший, более сложный вид миграции.

Механическая миграция химических элементов в ландшафтах

Механическая миграция (или механогенез) обусловлена работой рек, ветра, ледников, вулканов, тектонических сил и других факторов. Характерная черта механогенеза – раздробление горных пород и минералов, ведущее к увеличению степени их дисперсности, растворимости, развитию сорбции и других поверхностных явлений. При диспергировании резко увеличивается суммарная поверхность частиц, а, следовательно, и их поверхностная энергия. Увеличивается при диспергировании и растворимость некоторых минералов. Многие минералы при этом разлагаются. Так, сульфиды при диспергировании (истирании) частично разлагаются на металл и серу. Гидратные минералы выделяют воду.

В результате механической миграции в ландшафте образуются делювий, пролювий, аллювий, морена и прочие кластические отложения. Процессы, основными агентами которых служат сила тяжести, текучая вода, ветер, лед, подчиняются законам механики и не зависят непосредственно от химических свойств элементов. Основное значение здесь приобретает величина, плотность и форма частиц. Частицы близкого размера и близкой плотности осаждаются вместе. Известно, что чем дальше участок расположен от вершины склона, чем меньше его крутизна, тем более тонкий материал накапливается на склоне. Поэтому в горных и холмистых районах, сложенных скальными породами, в верхней части склона развиты более грубые, а в нижней – более тонкие по гранулометрическому составу делювиальные осадки. Аналогично – ближе к аридным горам пролювий представлен грубообломочным материалом, а в удалении – лессовидным суглинком. В речных долинах русловые фации часто представлены галечниками, гравием, песками, а пойменные – суглинками и глинами. Данные процессы называются механической дифференциацией.

Механическая миграция приводит к глубоким изменениям в ландшафте, так как частицы разной крупности и плотности имеют различный химический состав. Глинистые фракции почв и пород по сравнению с песчаными обычно содержат больше Fe, Al, Mn, Mg, K, V, Cr, Ni, Co, Cu и меньше SiO2. Это объясняется тем, что в процессе выветривания соединения Fe и Al образуют коллоиды, в том числе глинистые минералы, в состав которых входят Mg и K. V, Cr, Ni, Co, Cu легко адсорбируются коллоидами. Минералы Ti, Zr, Sn, W, Pt имеют большую плотность и трудно поддаются выветриванию. Они преимущественно входят в состав песчаной фракции.

В результате песчаные, пылеватые, глинистые и прочие отложения имеют различный химический состав. Пески, как правило, обогащены SiO2 и бедны Fe, Al и Mg, и многими редкими элементами. С другой стороны, в песках часто концентрируются Ti, Zr, Sn, Au, Pt, W. Поэтому в районе, сложенном одним комплексом пород (например, гранитоидами), за счет механической дифференциации образуются отложения различного химического состава, определяющие своеобразие приуроченных к ним геохимических ландшафтов.

Механическая миграция на склонах обязана таким процессам, как дефлюкция (сползание вязкого или пластичного течения), солифлюкция (течение переувлажненной массы на мерзлом основании), крип (перемещение при совместном действии силы тяжести и других факторов).

При вулканических извержениях в атмосферу поступают многие кубические километры пепла. Так, в 1883 г. при извержении вулкана Кракатау в атмосферу было выброшено около 18 км 3 рыхлого материала. Облако пепла поднялось в стратосферу, пыль и пепел распределились по площади 82 700 км 2 , мельчайшая пыль достигла Европы. В прошлые геологические эпохи подобные явления были еще грандиознее, запыление атмосферы, вероятно, оказывало большое влияние на климат, а через него и на биогенную миграцию (похолодание и др.).

Механическая денудация характеризуется двумя показателями. Сток – расход взвешенных частиц, проходящих через створ реки в год (т∙год или чаще 10 6 т∙год -1 ). Модуль стока – сток взвешенных наносов, отнесенных к площади континента, региона или речного бассейна. Он измеряется в тхкм 2 год (т∙км -2 ∙год -1 ).

Глобальная механическая денудация по различным оценкам изменяется в широких пределах. Реки ежегодно поставляют в океан в среднем около 15-16 млрд.т наносов и 3,2-3,5 млрд.т растворенных веществ. Воздушная миграция и вулканическая деятельность обеспечивают поступление соответственно 2,3-6,6 и 2-3 млрд.т твердых частиц. Около 2 млрд. т дает биогенное осадкообразование. Таким образом, суммарный приток твердого вещества в океан составляет 20-25 млрд. т в год.

Интенсивность механической миграции (денудации) связана с зональностью, она зависит также от геологического строения и рельефа. Основная масса материала (около 76 %) поступает в океан из гумидных экваториальных ландшафтов. Умеренные гумидные зоны дают около 12 %, а ледовые и аридные ландшафты – по 6 %.

По континентам сток взвешенных наносов уменьшается в ряде Азия – Океания, Австралия – Южная Америка – Северная. и Центральная .Америка – Африка – Европа. Основные резервуары – Тихий и Атлантический океаны, где фиксируется соответственно 45,3 и 37,1 % общей массы терригенного материала. Максимальное накопление наблюдается в прибрежной зоне, особенно на устьевых взморьях рек.

Большая часть химических элементов активно мигрирует в ландшафте. По преобладающему способу миграции активные мигранты могут быть разделены на воздушные и водные.

Воздушные мигранты – кислород, углевод, азот и водород – играют ведущую роль во всех ландшафтах, их миграция и накопление определяют важнейшие геохимические особенности ландшафта и являются необходимыми условием его существования. Эти элементы составляют большую часть массы живых организмов и природных вод. Воздушные мигранты также мигрируют с водными растворами, но для них особенно характерна миграция в газообразном состоянии, в виде летучих соединений, в то время как водные мигранты, как правило, не мигрируют или слабо вигрируют в газообразном состоянии.

Миграция элементов в атмосфере

Наземная атмосфера ландшафта в основном состоит из азота (78,09%) и кислорода (20,95%), значительно меньше в ней аргона (0,98%) и углекислого газа (в среднем 0,03%). Содержание остальных газов крайне невелико. Это инертные газы – гелий (5,2*10 -5 ), неон (1,8*10 -4 ), криптон (1*10 -4 ), и ксенон (8*10 -6 ), водород (10*10 -5 ), метан ( -6 ), окислы азота, аммиака, озон, пары йода и ртути, летучие вещества, выделяемые растениями (фитонциды), радон (n*10 -21 ) и др.

Атмосфера ландшафта содержит также различное количество водяных паров (от 4 до 0, 0n%), иногда жидкую и твердую воду, пыль, микроорганизмы. Атмосфера обладает свойствами коллоидных систем; это аэрозоль.

Если содержание О2 и N2 в тропосфера в общем одинаково во всех ландшафтах, то содержание СО2 , водяных паров, пыли, летучих органических веществ (фитонцидов), некоторых микрокомпонентов (озона, йода, радона и др.) подвержено значительным колебаниям.

Подземная атмосфера ландшафта (почвенный и грунтовый воздух) по составу значительно отличается от надземной: в ней больше СО2 , часто выше влажность, иное содержание микрокомпонентов. Углекислых газ образуется в почвенном воздухе за счет дыхания корней, живых, микроорганизмов, его содержание колеблется от 0,15 до 0,65%, может достигать 2% и более.

Плотность (г/см 3 )

(лат. Carboneum), химический элемент IV группы периодической системы Менделеева. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких температурах соединяется с многими элементами (сильный восстановитель). Содержание углерода в земной коре 6,5.1016 т. Значительное количество углерода (ок. 1013 т) входит в состав горючих ископаемых (уголь, природный газ, нефть и др.), а также в состав углекислого газа атмосферы (6.1011 т) и гидросферы (1014 т). Главные углеродсодержащие минералы карбонаты. Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии органической химии. Углерод биогенный элемент; его соединения играют особую роль в жизнедеятельности растительных и животных организмов (среднее содержание углерода 18%). Углерод широко распространен в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

Оксид углерода (СО), называемый в быту угарным газом, - самая распространенная и наиболее значительная (по массе) примесь атмосфера. В естественных условиях содержание СО в атмосфере очень мало: оно колеблется от сотых долей до 0,2 млн -1 (напомним, что содержание диоксида углерода в среднем составляет 325 млн -1 ). Основная масса СО образуется в процессе сжигания ископаемого топлива. При этом двигатели внутреннего сгорания являются главными источниками оксида углерода. В США, например, автомашины ежегодно выбрасывают свыше 120 Мт этого газа. Максимальное количество СО образуется в период прогревания двигателя, а также в случае переобогащенной смеси. Объем углерода может достигать 10% объема выхлопных газов.

Общая масса СО, выбрасываемая в атмосферу, оценивается (по состоянию на 1988г) примерно в 380Мт, при этом за счет сжигания бензина – около 270 Мт, угля – 15Мт, дров – 15Мт, промышленных отходов – 35 Мт и лесных пожаров – 15Мт.

Содержание СО в крупных городах колеблется от 1 до 250 млн при среднем значении около 20 млн. Наиболее высокое содержание СО (значительно превышающее ПДК – некоторую нормативно установленную концентрацию загрязняющего вещества, при которой оно не оказывает значительно отрицательно воздействия на организм и условия (качество) жизни человека. Различают разовую и суточную ПДК, характеризующее степень кратковременного (обычно не более 20-30 мин) и длительного влияния вещества на организм человека) наблюдается на улицах и площадях городов с интенсивным движением автотранспорта, особенно в автомобильных пробках.

Углеводороды

Основным естественным источником углеводородов являются растения (на из долю приходиться около 1 Гт в год), а антропогенным – автотранспорт (двигатели внутреннего сгорания и топливные баки автомобилей). В США из 32Мт углеводородов, ежегодно выбрасываемых в атмосферу, больше половины приходится на двигатели внутреннего сгорания (в которых топливо не полностью сгорает), около 14% - на промышленные выбросы и около 27% - на остальные источники. При неполном сгорании происходит к тому же образование (синтез) опасных канцерогенных углеводородов содержится в гудронах и саже, выбрасываемых дизельными двигателями и отопительными системами. Хотя путем хорошей регулировки двигателя и умелого управления автомобилем можно добиться некоторого снижения выбросов, дизельныи дв

Геохимия ландшафтов изучает закономерности миграции химических элементов и формы их нахождения в геосистемах Земли. Геохимия ландшафтов, изучая кругооборот элементов в сложных системах, состоящих из природных компонентов, позволяет установить сущность материальных взаимосвязей природных компонентов.

Виды миграций химических элементов

Все многообразие миграции может быть разделено в зависимости

от формы движения материи, с которой связано перемещение атомов,

на четыре основных вида.

Механическая миграция– передвижение обломков горных пород

различных размеров без изменения их химических свойств. Это наиболее простой вид миграции, подчиняющийся законам механики(образование россыпей, ветровая и водная эрозия и т.д.). Механическая миграция зависит преимущественно от величины частиц минералов и пород,

их плотности, скорости движения вод, ветра; химические свойства элементов не имеют значения.

Физико-химическая миграция– перемещение элементов в ионной и

молекулярной формах в результате химических реакций. Она определяется сложными процессами, сущность которых определяется законами

физики и химии– диффузией, растворением, осаждением, сорбцией, десорбцией и т.д. Лучше всего изучена миграция веществ в водных растворах в виде ионов(ионная миграция), зависящая от растворимости

солей, pH, окислительно-восстановительного потенциала.

Биогенная миграция– вид миграции элементов, в которой принимают участие живые организмы. Это очень сложный вид миграции, потому как организмы существуют в особом информационном поле, для

них характерны процессы управления и переработки информации, отсутствующие в неживой природе. Биогенная миграция имеет большие

масштабы, подсчеты показывают, что только процессы фотосинтеза

ежегодно приводят к миграции около480 млрд. т вещества, большую

часть которого составляют биофильные элементы– углерод, кислород,

водород, азот. Живые организмы не только принимают непосредственное участие в миграции элементов, но и оказывают на нее значительное

косвенное влияние, так как в процессе жизнедеятельности они часто определяют условия среды, в которой происходит миграция.

Техногенная миграция– перемещение элементов в любой форме

нахождения или ее изменение под воздействием человеческой деятельности. Это самый сложный вид миграции, связанный с общественными

процессами(отработка месторождений полезных ископаемых, экспорт

и импорт продовольствия и пр.). Техногенная миграция определяется

социальными закономерностями, ее роль непрерывно и постоянно возрастает, что является закономерностью, отражающей современное развитие процессов в верхних оболочках Земли.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Выполнила: Першикова Ольга
Содержание

1.Миграция элементов в атмосфере

Большая часть химических элементов активно мигрирует в ландшафте. По преобладающему способу миграции активные мигранты могут быть разделены на воздушные и водные.

Воздушные мигранты – кислород, углевод, азот и водород – играют ведущую роль во всех ландшафтах, их миграция и накопление определяют важнейшие геохимические особенности ландшафта и являются необходимыми условием его существования. Эти элементы составляют большую часть массы живых организмов и природных вод. Воздушные мигранты также мигрируют с водными растворами, но для них особенно характерна миграция в газообразном состоянии, в виде летучих соединений, в то время как водные мигранты, как правило, не мигрируют или слабо вигрируют в газообразном состоянии.
Миграция элементов в атмосфере
Наземная атмосфера ландшафта в основном состоит из азота (78,09%) и кислорода (20,95%), значительно меньше в ней аргона (0,98%) и углекислого газа (в среднем 0,03%). Содержание остальных газов крайне невелико. Это инертные газы – гелий (5,2*10 -5 ), неон (1,8*10 -4 ), криптон (1*10 -4 ), и ксенон (8*10 -6 ), водород (10*10 -5 ), метан ( 5*10 -6 ), окислы азота, аммиака, озон, пары йода и ртути, летучие вещества, выделяемые растениями (фитонциды), радон ( n *10 -21 ) и др.

Атмосфера ландшафта содержит также различное количество водяных паров (от 4 до 0, 0 n %), иногда жидкую и твердую воду, пыль, микроорганизмы. Атмосфера обладает свойствами коллоидных систем; это аэрозоль.

Если содержание О2 и N 2 в тропосфера в общем одинаково во всех ландшафтах, то содержание СО2 , водяных паров, пыли, летучих органических веществ (фитонцидов), некоторых микрокомпонентов (озона, йода, радона и др.) подвержено значительным колебаниям.

Подземная атмосфера ландшафта (почвенный и грунтовый воздух) по составу значительно отличается от надземной: в ней больше СО2 , часто выше влажность, иное содержание микрокомпонентов. Углекислых газ образуется в почвенном воздухе за счет дыхания корней, живых, микроорганизмов, его содержание колеблется от 0,15 до 0,65%, может достигать 2% и более.
Углерод


Атомная масса

12,011

Плотность (г/см 3 )

3,51

tпл o C

3550

tкип. o C

4830

Оксид углерода

Общая масса СО, выбрасываемая в атмосферу, оценивается (по состоянию на 1988г) примерно в 380Мт, при этом за счет сжигания бензина – около 270 Мт, угля – 15Мт, дров – 15Мт, промышленных отходов – 35 Мт и лесных пожаров – 15Мт.

Содержание СО в крупных городах колеблется от 1 до 250 млн при среднем значении около 20 млн. Наиболее высокое содержание СО (значительно превышающее ПДК – некоторую нормативно установленную концентрацию загрязняющего вещества, при которой оно не оказывает значительно отрицательно воздействия на организм и условия (качество) жизни человека. Различают разовую и суточную ПДК, характеризующее степень кратковременного (обычно не более 20-30 мин) и длительного влияния вещества на организм человека) наблюдается на улицах и площадях городов с интенсивным движением автотранспорта, особенно в автомобильных пробках.


Можно говорить о живом веществе всей планеты, отдельных материков, стран, морей, ландшафтов. При таком подходе геохимическая деятельность организмов вполне сравнима с действием других, хорошо изученных в науках о Земле факторов. "Прилагая новую мерку изучения жизни, совершенно отличную от обычной, мы подходим к явлениям и перспективам до сих пор невиданным", — писал ученый. Понятие о живом веществе — главное в гениальных построениях В.И. Вернадского. С этим понятием связан переворот в науках о Земле, создание учения о биосфере. Науку о влиянии жизни на геохимические процессы Вернадский назвал биогеохимией. Первые десятилетия она развивалась медленно, встречала и возражения.

Одна из причин была связана с исключительной дисперсностью жизни, ничтожностью геологической роли отдельного организма по сравнению с работой рек, ледников, ветра, вулканов, моря и т.д. Казалось, удел организмов — приспосабливаться к обстановке, создаваемой этими могучими силами природы. Чтобы оценить геологическое значение жизни, понадобилось к работе организмов подойти с другой меркой, рассмотреть работу живого вещества в целом. Идеи Вернадского получили широкое распространение только в современную эпоху в связи с остро вставшей проблемой загрязнения окружающей среды. Выяснилось, что биогеохимия — одна из теоретических основ решения данной проблемы.

По В.И. Вернадскому, живое вещество, захватывая энергию Солнца, создает химические соединения, при распаде которых эта энергия освобождается в форме производящей химическую работу. Это и привело ученого к выводу, что живые организмы не второстепенные участники геологических процессов, лишь оказывающие влияние на общий ход неорганических явлений в земной коре, а главный фактор миграции химических элементов: ". все бытие земной коры, по крайней мере 90% по весу массы ее вещества, в своих существенных, с геохимической точки зрения, чертах обусловлено жизнью", — писал он в 1934 г.

Геологический эффект деятельности отдельного организма бесконечно мал, но так как число организмов бесконечно велико и действуют они практически в течение бесконечно большого промежутка времени, то в итоге получается величина конечная и к тому же грандиозная. Преобразуя энергию солнечных лучей в потенциальную, а затем и кинетическую энергию геохимических процессов, организмы изменили химический состав земной коры. Эта их работа в наибольшей степени сосредоточена в ландшафтах суши и поверхностных слоях моря.

Биогенная миграция химических элементов в ландшафте определяется двумя противоположными и взаимосвязанными процессами:

1) образованием живого вещества из элементов окружающей среды; 2) разложением органических веществ. В совокупности эти процессы образуют единый биологический круговорот атомов — бик.

Образование живого вещества

Образование живого вещества из неорганических соединений окружающей среды происходит преимущественно в результате фотосинтеза зеленых растений по следующей суммарной реакции:

СО2 + Н2О + световая энергия и хлорофилл [СН2О] + 02-

Из СО2 и Н2О под влиянием хлорофилла или другого пигмента, играющего роль катализатора, и солнечной энергии зеленые растения синтезируют углеводы и другие органические соединения, условно изображаемые как [СН2О]. Одновременно в результате разложения воды выделяется свободный 02- Исходные вещества фотосинтеза — СО2 и Н2О на земной поверхности не являются ни окислителями, ни восстановителями. В ходе фотосинтеза эта "нейтральная среда" раздваивается на противоположности: возникает сильный окислитель — свободный кислород и сильные восстановители — органические соединения (вне организмов растений разложение СО2 и Н2О возможно только при высоких температурах, например, в магме, в доменных печах). С и Н органических соединений, а также выделившийся при фотосинтезе свободный О "зарядились" солнечной энергией, поднялись на более высокий энергетический уровень, стали "геохимическими аккумуляторами".

Углеводы и другие продукты фотосинтеза, передвигаясь из листьев в стебли и корни, вступают в сложные реакции, в ходе которых создается все разнообразие органических соединений растений. Однако растения состоят не только из С, Н и О, но также из N, Р, К, Са, Fe и других химических элементов, которые они получают в виде сравнительно простых минеральных соединений из почв или водоемов. Поглощаясь растениями, эти элементы входят в состав сложных богатых энергией органических соединений (N и S — в белки, Р — в нуклеопротеиды и т.д.) и также становятся геохимическими аккумуляторами. Данный процесс называется биогенной аккумуляцией минеральных соединений, благодаря которой элементы переходят в менее подвижное состояние, т.е. миграционная способность их понижается. Все остальные организмы — животные, подавляющая часть микроорганизмов и бесхлорофильные растения (например, грибы) являются гетеротрофа- ми, т.е. они не способны создавать органические вещества из минеральных и необходимые органические соединения получают от зеленых растений.

В 1890 г. С.Н. Виноградский (1856—1953) открыл микроорганизмы Nitro- somanos (1) и Nitrobacter (2), способные окислять аммиак и не нуждающиеся в органических соединениях как источнике энергии:

1) 2NH3 + 302 = 2HN02 + 2Н20 + 660,7 кДж

2) 2HN02 + 02 = 2HN03 + 180,6 кДж

Энергия, выделяющаяся при окислении, используется микроорганизмами для синтеза органических веществ из С02 и Н20, минеральных солей. Позднее были обнаружены и другие аналогичные автотрофные микроорганизмы, окисляющие S и H2S, Fe^+, Mn2+, Sb3+, Н2, СНф Эти процессы названы хемосинтезом.

Ранее считалось, что жизнедеятельность микроорганизмов ограничена температурой около ЮО^С, так как при более высоких температурах денатурируется белок — основа жизни. Однако в 1977—1979 гг. на дне Тихого океана в местах выхода гидротерм были открыты бактерии хемосинтетики, живущие при 300°С. Это открытие исключительно важно и раздвигает границы биосферы.

Хемосинтез играет определенную роль в круговороте ряда химических элементов, но его значение в образовании живого вещества по сравнению с фотосинтезом ничтожно.

Рассмотрим образование живого вещества и с информационных позиций. В растениях синтезируется огромное количество различных органических соединений — углеводов, белков, жиров и др. Животные, некоторые растения и микроорганизмы, не способные создавать органические соединения из С02 и Н20, используя белки, жиры, углеводы и другие вещества растений, синтезируют новые белки, жиры, углеводы своего тела. Так образуются сотни тысяч органических соединений. Это приводит к резкому росту химической информации — "информационному взрыву". Напомним, что число известных природных неорганических соединений — минералов измеряется тысячами и вряд ли намного превысит 10 ООО. Еще важнее, что при образовании живого вещества происходит качественное изменение информации, возникает более сложный ее вид — биологическая информация. Она еще более разнообразна, так как известны сотни тысяч видов растений и миллионы видов животных.

Итак, при образовании живого вещества происходит аккумуляция энергии, увеличивается разнообразие, растет информация, возникает новый более сложный ее вид — биологическая информация, увеличиваются упорядоченность, сложность, организация природы, растет негэнтропия, уменьшается информационная и термодинамическая энтропия.

Для многих элементов в органических соединениях характерны ковалентные и другие неионные связи, в то время как в неорганических соединениях более типичны ионные связи. Поэтому поведение Са, Mg, К, Fe и других элементов в живом веществе и вне его резко различно.

За миллиарды лет растения практически очистили земную атмосферу от СО2 и обогатили ее кислородом. "Воздух, которым мы дышим, создан жизнью" — писал В.И. Вернадский. В образовании О2 и поглощении СО2 заключается кислородно- углекислотная биогеохимическая функция живого вещества. Важное значение имеет и биохимическая функция, связанная с процессами, протекающими внутри организмов. Например, в результате размножения живое вещество быстро распространяется в пространстве, занимая все пригодные для жизни участки. Это Вернадский назвал "давлением жизни" и сравнил его с давлением газа. Скорость "растекания" жизни исключительно велика. Для холерного вибриона, например, она составляет 33 ООО см/с и даже для наиболее медленного слона 0,1 см/с.

Количество живого вещества

В живом веществе ландшафта абсолютно преобладает фитомасса, много меньше зоомассы и микроорганизмов. Обычно зоомасса не превышает 2% от массы растений и лишь изредка достигает 10%. В связи с этим энергетическая роль животных по сравнению с растениями мала, но, как отметил Г.Ф. Хильми, значение животных существенно в явлениях саморегулирования ландшафта. В зоомассе в 10—100 раз больше беспозвоночных, чем позвоночных, травоядные животные (фитофаги) в сотни и тысячи раз преобладают над хищниками. Так как зоомасса составляет незначительный процент биомассы, во всех дальнейших расчетах используются данные только о фитомассе.

По Н.И. Базилевич, общее количество фитомассы (Б) на Земле равно 2,4.10^ т сухого вещества (без воды). Расчет сделан на "восстановленный растительный покров", т.е. без учета вырубки лесов, распашки степей, орошения пустынь и т.д. Подавляющая часть фитомассы сосредоточена на материках, где она распределена крайне неравномерно: ее много в тропических лесах (6500 ц/га), меньше в южной тайге (около 3000 ц/га), еще меньше в черноземных степях (около 100 ц/га) и совсем мало в некоторых пустынях. Большая часть живого вещества представлена лесами (82% от фитомассы суши), среди которых преобладают леса тропиков (1,03.10^2 т). Фитомасса океана составляет лишь 1,7.1()8 т, т.е. 0,007% от всей фитомассы, зоомасса и микробиомасса — 3,3. 109 т. По количеству живого вещества на 1 га океан близок к пустыням, но и в нем есть сгущения жизни, к которым относятся, например, коралловые рифы, Саргассово море, выходы термальных вод, зона апвеллинга — подъема к поверхности глубинных вод, богатых Р и другими биоэлементами.

Важным геохимическим параметром является и ежегодная продукция живого вещества П, которая для Земли в целом составляет 2,3.10^1 т, причем на материках продуцируется 1,7.10^1 т, в океане — 6.10Ю т. В океане живого вещества меньше, но оно образуется и разлагается быстрее, чем на суше. За год его создается не намного меньше, чем на суше: на материках средняя годичная продукция фитомассы равна 115 ц/га, в океане — 17 (для планеты в целом — 45). Следовательно, в океане годичная продукция живого вещества П в 3000 раз больше фитомассы Б (на суше П

Читайте также: