Виды датчиков давления реферат

Обновлено: 07.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:

Однако для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.

Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п..

Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.

С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных.

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления, которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.

Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

Подобно температурным оптические датчики отличаются большим разнообразием и массовостью применения по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических. Фотогальваническая эмиссия, или внешний фотоэффект,0 - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна1hc/л0 (где1h0 - постоянная Планка,1с0 - скорость света,1л0 - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэффект,0 - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости,- ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).

Фотогальванический эффект 0 заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Пироэлектрические эффекты 0 - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики. Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне.

Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра. Основные преимущества перед датчиками других типов:

2. Возможность (при соответствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми размерами.

4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые), обеспечивающей малые размеры и большой срок службы.

5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д. Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры(при полупроводниковой основе).

В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.

В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с 1 n 0-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие 1p 0-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается.

Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы. Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.

Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности , или устройства, работающие по принципу каталитического горения. При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.

Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам. Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.

Электрические измерительные приборы состоят из датчика и указателя (приемника), соединенных между собой проводами. Датчик устанавливается в месте измерения и преобразует измеряемую физическую величину в электрический сигнал. В приемнике этот сигнал испытывает обратное преобразование с помощью стрелки и шкалы, отградуированной в единицах физической измеряемой величины.

Электронные измерительные системы расширяют возможности как в количестве контролируемых параметров, так и в способах отображения информации. В частности, в таких системах приборный щиток может быть заменен дисплеем.

Обязательным элементом датчика давления является мембрана – плоская или гофрированная пластина, выполненная из бронзы или какого-либо иного упругого материала, жестко зажатая по краям. Герметичная полость, расположенная под мембраной, должна соединяться через штуцер с полостью измерения давления. В большинстве случаев мембрану снабжают жестким центром, на котором укрепляют устройство, связывающее мембрану с передающим механизмом. С изменением давления мембрана прогибается и ее жесткий центр перемещается. Связь перемещения жесткого центра hс величиной измеряемого давления Р. как показано на рис. 1, а. нелинейна, причем гофрированная мембрана при прочих равных условиях более чувствительна к изменению давления, чем плоская Отличие датчиков давления друг от друга в основном состоит в том. как в них перемещение жесткого центра преобразуется в электрический сигнал. Это зависит от системы измерения, в которой используется датчик. На рис. 1, 6, изображен датчик давления масла, снабженный реостатным датчиком. Толкатель, закрепленный в жестком центре мембраны, через качалку воздействует на ползунок реостата, который при этом поворачивается вокруг своей оси.


Рис. 1. Мембранные датчики давления

а - зависимость переме- щения жесткого центра мембраны hот давления Р; б - реостатный датчик; в - датчик импульсной систе-мы; г – датчик сигнали-затора; 1 - штуцер; 2 - мембрана; 3 - реостат; 4 - ползунок 5 - упругая пластина с неподвижным контактом; 6 – термо-биметалл со спиралью и подвижным контактом; 7 - регулятор; 8 - неподвижный контакт; 9 - подвижный контакт

Второе плечо П-образной биметаллической пластины закреплено на упругом держателе, положение которого можно изменить поворотом воздействующего на него регулятора. Это позволяет осуществлять настройку датчика, изменяя первоначальное усилие прижатия контактов друг к другу. Изменение давления перемещает жесткий центр мембраны, при этом меняется усилие прижатия контактов друг к другу и соответственно изменяется относительное время нахождения их в замкнутом состоянии.

Датчик сигнализатора аварийного давления (рис. 1, г) имеет простую конструкцию. На жесткий центр мембраны опирается рычаг выключателя, который и замыкает контакты, если давление превышает заданные пределы или, в зависимости от назначения датчика, если давление падает ниже допустимых пределов.

Датчики электронных информационных систем

Применение электроники позволяет расширить класс датчиков, используемых в информационных системах.

Для замера давления используются кремниевые датчики. Путем травления по тонкопленочной технологии на поверхности кристалла кремния формируется круглая диафрагма, на которую методом диффузии наносятся пленочные резисторы. Если к диафрагме прикладывается давление, сопротивление одних резисторов увеличивается, других уменьшается, что и формирует с помощью мостовой схемы сигнал с датчика. Температурная зависимость сигнала таких датчиков требует компенсации.

Пьезорезистивный эффект заключается в изменении проводимости при механическом напряжении в кристалле полупроводника, что связано с изменением подвижности носителей электричества в кристаллической решетке. Коэффициент тензочувствительности у кремния достигает значений от 1 до 150. Как правило, пьезорезисторы формируются в кремниевой диафрагме сразу в виде мостовой схемы, совмещенной с электронным усилителем (интеллектуальный датчик давления). В зависимости от толщины диафрагмы и способа передачи информации эти датчики могут измерять давление в диапазоне 1…10000 Па и до температур порядка 250°С. Точность порядка ±3% (фирма Honeywell). В микроисполнениии (диаметр датчика до 5 мм) они могут сочетаться с чипами, передающими информацию о давлении в шинах. Типовая чувствительность порядка 3 мВ/кПа

В качестве магнитоэлектрических указателей на автомобилях наиболее распространены трехобмоточные логометры. Логометр имеет две обмотки L1 и L2, расположенные соосно, но намотанные встречно. Третья обмотка L3 перпендикулярна первым двум (рис. 2, а). Применение трех обмоток позволяет повысить точность логометра, так как расширяет возможности его шкалы до 120-160 градусов.

Рядом с обмотками располагается постоянный магнит, способный поворачиваться на своей оси. он устанавливается в направлении действия суммарной магнитодвижущей силы всех трех обмоток. Магнит соединен со стрелкой прибора.

датчик автомобиль магнитоэлектрический указатель


Рис 2. Логометрический указатель:

а - электрическая схема; б - векторная диаграмма магнитодвижущих сил обмоток; 1 - подвижный магнит; 2 - неподвижный магнит; 3 – стрелка.

Величина силы тока 12 в обмотках L2 и L3 постоянна, сила тока Ijв обмотке L1 изменяется с изменением сопротивления датчика Магнитодвижущие силы (МДС) обмоток F1 f F2 и F3 равны произведению сил тока соответствующих обмоток на число витков обмоток. МДС по вертикальной оси Fy создается только обмоткой L3 Fy = F3 ; МДС по горизонтальной оси Fx определяется разностью МДС F) и F2 , так как зти обмотки включены встречно Fx = F1 - F2 . МДС F, по направлению которой устанавливается постоянный магнит, равна геометрической сумме Fy и Fx . На рис. 2, б представлена векторная диаграмма МДС для случаев, когда МДС Ft больше F2 (сопротивление датчика мало, ток lt велик) и F2 больше F^ (велико значение и мало значение Ц). По векторным диаграммам видно, что суммарная МДС Fповорачивается относительно горизонтальной оси в зависимости от величины сопротивления датчика влево или вправо, т.е. угол поворота магнита и связанной с ним стрелки прибора стремится к 180°. Все более находят распространение логометры с переключением обмоток электронной схемой, позволяющим расширить шкалу прибора почти до 360°.


К особым достоинствам логометра следует отнести независимость его показаний от величины напряжения питания, так как с ростом напряжения, напри мер, токи всех оомоток, и следовательно, и их МДС возрастают пропорционально, так что суммарная МДС остается прежней. Сопротивление температурной компенсации R,. Выполняется из провода с малым температурным коэффициентом сопротивления (константан, манганин), оно практически не меняется с изменением темпера-туры, и поскольку его величина значительно превышает сум-марную величину сопротивления обмоток 1_2 и L3 , ток и, следовательно, МДС этих обмоток становятся мало зависимы от температуры. Если обмотки выполнены из провода, сопротивление которого мало реагирует на температуру, то RT отсутствует. На рис. 3. представлена конструкция логометра. Магнит может поворачиваться вокруг своей оси, на корпус которой закреплена стрелка. Обмотки намотаны на пластмассовый каркас. Магнитный экран предотвращает влияние внешних полей на показания прибора. Возврат стрелки в нулевое положение при отключении прибора происходит за счет силы притяжения магнита к небольшому неподвижному магниту, встроенному в нижнюю половину каркаса.

1. Чижков Ю.П., Акимов А.В. Электрооборудование автомобилей. – М.: За рулем, 1999.

2. Асмолов Г.И., Рожков В.М., Соколов В.Г. Виды информации и датчики в системах транспортной телематики: Учебное пособие/ МАДИ. – М., 2008.-74с

3. Данов Б.А., Рогачев В.Д. Электронные приборы автомобилей. – М.: Транспорт, 1994.

Датчик давления -- устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код. Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода. Основным отличием одних приборов от других является точность регистрации давления, которая зависит от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, емкостной, индуктивный, резонансный, ионизационный.

Файлы: 1 файл

давление.docx

Датчик давления -- устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газы, пар). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический сигналы или цифровой код. Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент и приемник давления, схемы вторичной обработки сигнала, различных по конструкции корпусных деталей и устройства вывода. Основным отличием одних приборов от других является точность регистрации давления, которая зависит от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, емкостной, индуктивный, резонансный, ионизационный.

Основные методы измерения

Тензометрический метод: чувствительные элементы датчиков базируются на принципе измерения деформации тензорезисторов, припаянных к титановой мембране, которая деформируется под действием давления.

Пьезорезистивный метод: основан на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую временную и температурную стабильности. Для измерения давления чистых неагрессивных сред применяются, так называемые, Low cost -- решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем. Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостной метод: ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток -- нелинейная зависимость емкости от приложенного давления.

Резонансный метод: в основе метода лежат волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора. К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод: основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Ионизационный метод: в основе лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды. Лампа оснащена двумя электродами: катодом и анодом, -- а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов. Преимуществом таких ламп является возможность регистрировать низкое давление -- вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Сигналы с датчиков давления являются медленноменяющимися. Это значит, что их спектр лежит в области сверхнизких частот. Для того чтобы с высокой точностью оцифровать такой сигнал необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях. Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи. Интегрирующие АЦП выпускают многие зарубежные фирмы (Texas Instruments, Analog Devices и др).

Действительно, датчик Метран-100 был лучшим отечественным прибором в свое время, была разработана целая гамма измерительных преобразователей давления: это и коррозионностойкие для нефтегазовой промышленности, и низкопредельные для металлургии и энергетики, и датчики атомного исполнения. Появление первого серийного интеллектуального микропроцессорного датчика Метран-100 значительно упрочило лидерские позиции компании на российском рынке датчиков давления.

Емкостный метод используется дивизионом Rosemount компании Emerson Process Management уже более 30 лет. Впервые емкостный метод был применен в датчиках давления Rosemount 1151, ставших бестселлерами среди датчиков давления. За долгие годы развития емкостный метод постоянно совершенствовался.

Стабильность метрологических характеристик позволяет сократить эксплуатационные затраты.

Во-вторых, датчики давления Метран-150 обладают высокой перегрузочной способностью. Сравним максимальное давление перегрузки штуцерных моделей (датчики для измерения избыточного и абсолютного давления). Если традиционные датчики выдерживают максимальное давление перегрузки всего, лишь в 1,5 раза превышающее верхний диапазон измерений, датчики Метран-150 могут выдерживать 25-и кратную перегрузку. Если говорить о датчиках измерения разности давления, то критичным для них является одностороннее воздействие на камеру высокого или низкого давления. Например, для датчиков давления диапазонов 2, 3 и 4, способных измерять разность давлений от 1,25кПа до 1,6МПа, предельно допускаемое рабочее избыточное давление составляет 25МПа. Подадим одностороннюю перегрузку равную 25МПа, которая в 15,6 раз превышает максимальный диапазон измерения. После снятия перегрузки корректировка нуля не требуется, и погрешность остается в рамках заявленной, т.е. ± 0,075%. Отсюда можно сделать вывод, что, обладая колоссальной перегрузочной способностью, Метран-150 не просто стабильно работает, но и значительно сокращает риски остановов технологических процессов и аварий, которые влекут за собой убытки, исчисляемые миллионами рублей.

В-третьих, Метран-150 способен работать, работать и еще раз работать при любых погодных условиях. В многих районах нашей страны нередко столбик термометра может опускаться ниже -50єС. Метран-150 способен работать и за полярным кругом, и на экваторе, в снежную пургу и песчаную бурю. Диапазон рабочих температур составляет от -55єС до +80єС, а степень защиты от воздействия пыли и влаги - IP 66, что означает полную пыленепроницаемость и стабильную работоспособность даже при сильном воздействии струи жидкости. Дополнительная герметичность достигается за счет двухсекционного корпуса (рис. 1), обеспечивающего изоляцию между отсеком электроники и клеммным отсеком. Это защищает электронику от попадания пыли и влаги, например, в процессе монтажа или в случае выхода из строя кабельного ввода.

Рис. 1 - Двухсекционный корпус электронного преобразователя

Возможность поворота корпуса электронного преобразователя на ± 180° и защита от проворота и обрыва шлейфа, возможность поворота индикатора на 360° с фиксацией через 90° (рис. 2) для удобства считывания показаний;

Понятие давления первоначально основывалось на работе Евангелиста Торричелли, который некоторое время был учеником Галилея. Поставив в 1643 году эксперимент с блюдцами, заполненными ртутью, он сделал вывод, что атмосфера оказывает давление на Землю. Другой великий физик Блэйз Паскаль в 1647 году вместе со своим зятем Перье провели еще один опыт: они измеряли высоту ртутного столба у подножия и на вершине горы Puy de Dome. При этом они обнаружили, что давление действующее на столбик ртути зависит от высоты подъема.

Содержимое работы - 1 файл

давление.docx

1. Общие понятия о давлении

Понятие давления первоначально основывалось на работе Евангелиста Торричелли, который некоторое время был учеником Галилея. Поставив в 1643 году эксперимент с блюдцами, заполненными ртутью, он сделал вывод, что атмосфера оказывает давление на Землю. Другой великий физик Блэйз Паскаль в 1647 году вместе со своим зятем Перье провели еще один опыт: они измеряли высоту ртутного столба у подножия и на вершине горы Puy de Dome. При этом они обнаружили, что давление действующее на столбик ртути зависит от высоты подъема. Свой прибор, который они использовали в этом эксперименте, Паскаль назвал барометром. В 1660 году Роберт Бойль сформулировал закон: «Для заданной массы воздуха при известной температуре произведение давления на объем является постоянной величиной. В общем виде, все материалы можно разделить на твердые тела и жидкие среды. Под термином жидкая среда здесь понимается все, что способно течь. Это могут быть как жидкости, так и газы, поскольку между ними не существует серьезных различий. При изменении давления жидкости превращаются в газы и наоборот. К жидким средам невозможно приложить давление ни в каком другом направлении, кроме перпендикулярного к поверхности. При любом угле кроме 90° жидкость будет просто соскальзывать или стекать. Для жидкой среды в стационарных условиях давление можно выразить через отношение силы F, действующей перпендикулярно поверхности, к площади этой поверхности А :

Давление имеет механическую природу, и поэтому для его описания можно использовать основные физические величины: массу, длину и время. Хорошо известен факт, что давление сильно меняется вдоль вертикальной оси, тогда как на одинаковой высоте оно постоянно во всех направлениях. При увеличении высоты давление падает, что можно выразить следующим соотношением:

dp = -wdh ,

где w — удельный вес среды, dh — изменение высоты, a dp — соответствующее ему изменение давления.

Давление жидкой среды в замкнутом объеме не зависит от формы сосуда, поэтому при разработке датчиков давления такие параметры как форма и размеры часто бывают не очень существенными. Если на одну из сторон сосуда с жидкостью или газом действует внешнее давление, оно передается по всему объему без уменьшения его значения.

Кинетическая теория газов утверждает, что давление является мерой полной кинетической энергии молекул:

где КЕ — кинетическая энергия, V— объем, С 2 среднее значение квадрата скоростей молекул, — плотность, N - число молекул в единице объема, R — универсальная газовая постоянная, а T— абсолютная температура.

В этом уравнении предполагается, что давление и плотность газов связаны линейной зависимостью, т.е. увеличение давления приводит к пропорциональному росту плотности. Например, при температуре 0°С и давлении 1 атм плотность воздуха составляет 1.3 кг/м 3 , в то время как при той же температуре, но давлении 50 атм — его плотность уже будет 65 кг/м 3 , т.е. в 50 раз больше. В отличие от газов плотность жидкостей мало меняется в широком диапазоне давлений и температур. Например, для воды при температуре 0°С и давлении 1 атм плотность составляет 1000 кг/м 3 , в то время как при той же температуре и давлении 50 атм — плотность равна 1002 кг/м 1 , а при температуре 100°С и давлении 1 атм — плотность равна 958 кг/м 3 .

1.1 Единицы измерения давления

В системе СИ единицей измерения давления является паскалъ: 1 Па=1Н/м 2 . Это значит, что давление 1 паскаль равно силе, равномерно распределенной по поверхности площадью 1 квадратный метр. Иногда в качестве технической единицы измерения давления применяется единица, называемая атмосфера, обозначаемая 1 атм. Одна атмосфера это давление, которое оказывает столб воды высотой 1 метр на площадку 1 квадратный сантиметр при температуре +4°С и нормальном гравитационном ускорении.

В промышленности применяется другая единица давления, называемая торр (это название дано в честь физика Торричелли), которая определяется как давление, создаваемое столбиком ртути высотой 1 мм при 0°С, нормальном атмосферном давлении и нормальной гравитации. Идеальное давление атмосферы Земли, равное 760 торр, называется технической атмосферой:

1атм = 760торр = 101.325Па .

1.2 Классификация.

Датчики давления классифицируются в зависимости от выбора опорного давления:

  • датчики абсолютного давления: давление измеряется относительно вакуума;
  • дифференциальные датчики давления: измеряют разность давлений в двух точках системы;

- манометры: измеряют давление, избыточное по отношению к атмосферному.

Датчики давления бывают трех типов, позволяющих измерять абсолютное, дифференциальное и манометрическое давление. Абсолютное давление, например, барометрическое, измеряется относительно давления в эталонной вакуумной камере, которая может быть как встроенной (рис. 2А), так и внешней. Дифференциальное давление, например, перепад давления в дифференциальных расходомерах, измеряется при одновременной подаче давления с двух сторон диафрагмы. Манометрическое давление измеряется относительно некоторого эталонного значения. Примером может служить, измерение кровяного давления, которое проводится относительно атмосферного давления. Манометрическое давление по своей сути является разновидностью дифференциального давления. Во всех трех типах датчиков используются одинаковые конструкции диафрагм и тензодатчиков, но все они имеют разные корпуса. Например, при изготовлении дифференциального или манометрического датчика, кремниевый кристалл располагается внутри камеры, в которой формируются два отверстия с двух сторон кристалла (рис. 1Б). Для защиты устройства от вредного влияния окружающей среды внутренняя часть корпуса заполняется силиконовым гелем, который изолирует поверхность кристалла и места соединений, но позволяет давлению воздействовать на диафрагму. Корпуса дифференциальных датчиков могут иметь разную форму (рис. 2). В некоторых случаях при работе с горячей водой, коррозионными жидкостями и т.д. необходимо обеспечивать физическую изоляцию устройства и гидравлическую связь с корпусом датчика. Это может быть реализовано при помощи дополнительных диафрагм и сильфонов. Для того чтобы не ухудшались частотные характеристики системы, воздушная полость датчика почти всегда заполняется силиконовой мазкой типа Dow Corning DS200.

Рис. 1.Устройство корпусов датчиков: А - абсолютного, Б - дифференциального давлений (напечатано с разрешения Motorola Inc)

Рис. 2. Примеры корпусов дифференциальных датчиков давления. (Напечатано с разрешения Motorola Inc)

2. Чувствительные элементы датчиков давления.

Принцип действия любого датчика давления заключается в преобразовании давления, испытываемого чувствительным элементом. В конструкцию практически всех преобразователей давления входят сенсоры, обладающие известной площадью поверхности, чья деформация или перемещение, возникающие вследствие действия давления, и определяются в процессе измерений. Таким образом, многие датчики давления реализуются на основе детекторов перемещения или силы, причиной возникновения которой является тоже перемещение. Чтобы подобный датчик давления имел практическую значимость, движение должно быть достаточно малым, чтобы оставаться в рамках предела упругости материала, но достаточно большим, чтобы его можно было определить с достаточным разрешением. Следовательно, тонкие гибкие компоненты используются при низком давлении и более толстые и жесткие при высоких давлениях

Чувствительные элементы, входящие в состав датчиков давления, являются механическими устройствами, деформирующимися под действием внешнего напряжения. Такими устройствами могут быть трубки Бурдона (С-образные, спиральные и закрученные), гофрированные и подвесные диафрагмы, мембраны, сильфоны и другие элементы, форма которых меняется под действием на них давления.

На рис. 3А показан сильфон, преобразующий давление в линейное перемещение, которое может быть измерено при помощи соответствующего датчика. Таким образом, сильфон выполняет первый этап преобразований давления в электрический сигнал. Он обладает относительно большой площадью поверхности, что дает возможность получать довольно существенные перемещения даже при небольших давлениях. Жесткость цельного металлического сильфона пропорциональна модулю Юнга материала и обратно пропорциональна внешнему диаметру и количеству изгибов на нем. Жесткость сильфона также связана кубической зависимостью с толщиной его стенок.

На рис. 3.Б показана диафрагма, применяемая в анероидных барометрах для преобразования давления в линейное отклонение. Диафрагма, формирующая одну из стенок камеры давления, механически связана с тензодатчиком, который преобразует ее отклонения в электрический сигнал. В настоящее время большинство датчиков давления такого типа изготавливаются с кремниевыми мембранами, методами микротехнологий.

Мембрана — это тонкая диафрагма, радиальное растяжение которой S измеряется в Ньютонах на метр (рис. 4.Б). Коэффициентом жесткости при изгибе здесь можно пренебречь, поскольку толщина мембраны гораздо меньше ее радиуса (по крайней мере в 200 раз). Приложенное давление к одной из сторон мембраны сферически выгибает ее. При низких значениях давления р отклонение центра мембраны zm и ее механическое напряжение т являются квазилинейными функциями давления (напряжение измеряется в Н/м 2 ):

где r — радиус мембраны, а g — ее толщина. Механическое напряжение мембраны считается постоянным по всей ее поверхности.

Наименьшая собственная частота мембраны:

где — плотность материала мембраны.

Рис. 3. А — стальной сильфон, используемый в датчиках давления (Servometer Corp., Cedar Grove, NJ), Б — металлическая гофрированная диафрагма, применяемая для преобразования давления в линейное перемещение

Рис. 4. Деформация мембраны под действием давления р

В данных уравнениях предполагается, что разрабатываемый датчик давления будет измерять отклонения мембраны. Поэтому далее необходимо выбрать метод преобразования полученного отклонения в электрический сигнал.

3. Методы измерения давления.

Давление, исходя из самых общих позиций, может быть определено как путем его непосредственного измерения, так и посредством измерения другой физической величины, функционально связанной с измеряемым давлением.

В первом случае измеряемое давление воздействует непосредствен но на чувствительный элемент прибора, который передает информацию о значении давления последующим звеньям измерительной цепи, преобразующим ее в требуемую форму. Этот метод определения давления яв ляется методом прямых измерений и получил наибольшее распростране ние в технике измерения давления.

На нем основаны принципы действия большинства манометров и измерительных преобразователей давления.

Во втором случае непосредственно измеряются другие физические величины или параметры, характеризующие физические свойства измеряемой среды, значения которых закономерно связаны с давлением ( температура кипения жидкости, скорость распространения ультразву ка, теплопроводность газа и т. д.). Этот метод является методом косвен ных измерений давления и применяется, как правило, в тех случаях, ког да прямой метод по тем или иным причинам неприменим, например, при измерении сверхнизкого давления (вакуумная техника) или при изме рении высоких и сверхвысоких давлений.

Читайте также: