Уровень доверия и проверка значимости реферат

Обновлено: 30.06.2024

Математическая теория проверки гипотез, в которой критерии появляются как решения точно поставленных оптимальных проблем, была создана Ю. Нейманом и Э. Пирсоном в 30-х годах XX века и с тех пор получила значительное развитие. Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия решения о том, противоречит ли рассматриваемая статистическая гипотеза наблюдаемой выборке данных.

Содержание работы

Введение. 2
Глава 1. Основные понятия теории проверки статистических гипотез. 3
§1. Статистическая гипотеза. Статистические критерии. 3
§2. Критическая область и критические точки. 4
§3. Дополнительные сведения о выборе критической области. 8
Глава 2. Проверка некоторых статистических гипотез. 10
§1. Сравнение двух дисперсий нормальных генеральных совокупностей. 10
§2. Критерий согласия Пирсона. 12
§3. Проверка псевдослучайных последовательностей. 15
Заключение. 17
Список литературы. 18

Содержимое работы - 1 файл

курсовая работа Дерябин Максим.doc

Федеральное агентство по образованию Российской Федерации

Ставропольский Государственный Университет

Кафедра математического анализа

студент 4 курса ФМФ

очной формы обучения

специальность математика группа А

Ставрополь, 2011 г.
Содержание.

Математическая теория проверки гипотез, в которой критерии появляются как решения точно поставленных оптимальных проблем, была создана Ю. Нейманом и Э. Пирсоном в 30-х годах XX века и с тех пор получила значительное развитие. Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия решения о том, противоречит ли рассматриваемая статистическая гипотеза наблюдаемой выборке данных.

Статистическая проверка гипотез является одним из важнейших разделов математической статистики. Методы математической статистики позволяют проверить предположения о законе распределения некоторой случайной величины (генеральной совокупности), о значениях параметров этого закона, о наличии корреляционной зависимости между случайными величинами, определенными на множестве объектов одной и той же генеральной совокупности. Пусть по некоторым данным имеются основания выдвинуть предположения о законе распределения или о параметре закона распределения случайной величины (или генеральной совокупности, на множестве объектов которой определена эта случайная величина). Задача заключается в том, чтобы подтвердить или опровергнуть это предположение, используя выборочные (экспериментальные) данные. Гипотезы о значениях параметров распределения или о сравнительной величине параметров двух распределений называются параметрическими гипотезами.

Глава 1.
Основные понятия теории проверки статистических гипотез.

§1. Статистическая гипотеза. Статистические критерии.

Часто необходимо знать закон распределения генеральной совокупности. Если закон распределения неизвестен, но имеются основания предположить, что он имеет определенный вид A, выдвигается гипотеза: генеральная совокупность распределена по закону A. Таким образом, в этой гипотезе речь идет о виде предполагаемого распределения.

Возможен случай, когда закон распределения известен, а его параметры неизвестны. Если есть основания предположить, что неизвестный параметр b равен определенному значению b0, выдвигают гипотезу: b = b0. Таким образом, в этой гипотезе речь идет о предполагаемой величине параметра одного известного распределения.

Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и многие другие.

Статистической называют гипотезу о виде неизвестного распределения, или о параметрах известных распределении.

Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то имеет место противоречащая гипотеза. По этой причине эти гипотезы целесообразно различать. Нулевой (основной) называют выдвинутую гипотезу H0. Конкурирующей (альтернативной) называют гипотезу H1, которая противоречит нулевой.

Простой называют гипотезу, содержащую только одно предположение. Сложной называют гипотезу, которая состоит из конечного или бесконечного числа простых гипотез.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т. е. могут быть допущены ошибки двух родов:

  • ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза;
  • ошибка второго рода состоит в том, что будет принята неправильная гипотеза;

Подчеркнем, что последствия этих ошибок могут оказаться весьма различными.

Таким образом, правильное решение может быть принято также в двух случаях:

  • гипотеза принимается, причем и в действительности она правильная;
  • гипотеза отвергается, причем и в действительности она неверна.

Вероятность совершить ошибку первого рода принято обозначать через ; ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости равный 0,05, то это означает, что в пяти случаях из ста есть риск допустить ошибку первого рода (отвергнуть правильную гипотезу).

Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Статистическим критерием (или просто критерием) называют случайную величину K, которая служит для проверки нулевой гипотезы. Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин, и таким образом получают частное (наблюдаемое) значение критерия. Наблюдаемым значением Kнабл назначают значение критерия, вычисленное по выборкам.

§2. Критическая область и критические точки.

После выбора определенного критерия, множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается, а другое – при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают. Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых гипотезу принимают.

Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области – гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы – гипотезу принимают.

Поскольку критерий K, введенный в прошлом пункте, – одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами и, следовательно, существуют точки, которые их разделяют.

Критическими точками (границами) kкр называют точки, отделяющие критическую область от области принятия гипотезы. Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

Правосторонней называют критическую область, определяемую неравенством K > kкр, где kкр – положительное число. Левосторонней называют критическую область, определяемую неравенством K k2, где k2 > k1.

Для определенности начнем с нахождения правосторонней критической области, которая определяется неравенством

kкр > 0. Видно, что для отыскания правосторонней критической области достаточно найти критическую точку.

С этой целью задаются достаточно малой вероятностью – уровнем значимости . Затем ищут критическую точку kкр, исходя из требования, чтобы, при условии справедливости нулевой гипотезы, вероятность того, что критерий К примет значение, большее kкр, была равна принятому уровню значимости:

Для каждого критерия имеются соответствующие таблицы, по которым и находят критическую точку, удовлетворяющую этому требованию. Когда критическая точка уже найдена, вычисляют по данным выборок наблюденное значение критерия и, если окажется, что Kнабл > kкр, то нулевую гипотезу отвергают, Kнабл

Данное правило вытекает из того, что вероятность события K > kкр мала ( – малая вероятность), такое событие, при справедливости нулевой гипотезы, в силу принципа практической невозможности маловероятных событий, в единичном испытании не должно наступить [1]. Если все же оно произошло, т. е. наблюдаемое значение критерия оказалось больше kкр, то это можно объяснить тем, что нулевая гипотеза ложна и, следовательно, должна быть отвергнута. Таким образом, требование (1) определяет такие значения критерия, при которых нулевая гипотеза отвергается, а они и составляют правостороннюю критическую область.

Наблюдаемое значение критерия может оказаться большим kкр не потому, что нулевая гипотеза ложна, а по другим причинам (малый объем выборки, недостатки методики эксперимента и др.). В этом случае, отвергнув правильную нулевую гипотезу, совершают ошибку первого рода. Вероятность этой ошибки равна уровню значимости .

Пусть нулевая гипотеза принята; ошибочно думать, что тем самым она доказана. Действительно, известно, что один пример, подтверждающий справедливость некоторого общего утверждения еще не доказывает его. Поэтому считается, что в этом случае данные наблюдений согласуются с нулевой гипотезой и, следовательно, не дают оснований ее отвергнуть.

На практике для большей уверенности принятия гипотезы, ее проверяют другими способами, или повторяют эксперимент, увеличив объем выборки.

Отвергают гипотезу более категорично, чем принимают. Действительно, известно, что достаточно привести один пример, противоречащий некоторому общему утверждению, чтобы это утверждение отвергнуть. Если оказалось, что наблюдаемое значение критерия принадлежит критической области, то этот факт и служит примером, противоречащим нулевой гипотезе, что позволяет ее отклонить.

Отыскание левосторонней и двусторонней критических областей сводится (так же, как и для правосторонней) к нахождению соответствующих критических точек. Левосторонняя критическая область определяется неравенством , kкр

Двусторонняя критическая область определяется неравенствами K k2, k2 > k1. Критические точки находят, исходя из требования, чтобы, при справедливости нулевой гипотезы, сумма вероятностей того, что критерий примет значение меньшее k1, или большее k2, была равна принятому уровню значимости:

Ясно, что в данном случае критические точки могут быть выбраны бесчисленным множеством способов.

Если же распределение критерия симметрично относительно нуля и имеются основания выбрать симметричные относительно нуля точки –kкр и kкр (kкр > 0), то

Понятие доверительного интервала и доверительной вероятности. Доверительный интервал для математического ожидания (пример задачи). Распределение Стьюдента. Принятие решения о параметрах генеральной совокупности, проверка статистической гипотезы.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 15.02.2011
Размер файла 64,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Проверка статистических гипотез

1. Доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра. Однако оценка является приближенным значением параметра генеральной совокупности, которая при разных выборках одного и того же объема будет принимать разные значения, поэтому в ряде задач требуется найти не только подходящее значение параметра а, но и определить его точность и надежность.

Для этого в математической статистике используется два понятия - доверительный интервал и доверительная вероятность. Пусть для параметра а из опытных данных получена несмещенная оценка Требуется определить возможную при этом величину ошибки и вероятность того, что оценка не выскочит за пределы этой ошибки (надежность).

Зададимся некоторой вероятностью (например, = 0,99) и найдем такое значение > 0, для которого

Представим это выражение в виде

Это значит, что с вероятностью точное значение параметра а находится в интервале l

Здесь параметр а - неслучайная величина, а интервал l является случайным, так как - случайная величина. Поэтому вероятность лучше толковать, как вероятность того, что случайный интервал l накроет точку а. Интервал l называют доверительным интервалом, а вероятность - доверительной вероятностью (надежностью).

Пример. Если при измерении какой-то величины Х указывается абсолютная погрешность х, то это, по существу, означает, что погрешность измерения, являясь случайной величиной, равномерно распределена в интервале (-х, х) и где Х* - измеренная величина, а х - ее точное значение. Здесь = 1, = х и l = (x*- х, x* + х).

1.1 Доверительный интервал для математического ожидания

В качестве еще одного примера рассмотрим задачу о доверительном интервале для математического ожидания. Пусть проведено n независимых опытов измерения случайной величины Х с неизвестным математическим ожиданием mx и дисперсией 2 . На основании опытных данных Х1, Х2, . , Хn построим выборочные оценки

Требуется построить (найти) доверительный интервал l , соответствующий доверительной вероятности , для среднего генерального mx.

Так как среднее выборочное представляет сумму n независимых одинаково распределенных случайных величин то при достаточно большом объеме выборки согласно центральной предельной теоремы ее закон близок к нормальному. Существует эмпирическое правило, по которому при объеме выборки n 30 выборочное распределение можем считать нормальным.

Ранее было показано, что Найдем теперь такую величину () > 0, для которой выполняется равенство

Считая случайную величину нормально распределенной, имеем

После замены имеем

По табличным значениям функции Лапласа Ф*(z) находим аргумент, при котором она равна . Если этот аргумент обозначить Z , то тогда

Среднее квадратичное значение приближенно можно заменить

Таким образом, доверительный интервал для среднего генерального равен:

Если пользоваться табличными значениями интеграла вероятностей

то доверительный интервал принимает вид

1.2 Распределение Стьюдента

При малом объеме выборки (n 2 n 2 . Введем центрированную и нормированную величину

Утверждение о том, что среднее выборочное напряжение эквивалентно утверждению, что случайная величина

Найдем вероятность того, что гауссовская случайная величина Z с mz = 0 и z = 1 принимает значения больше zo:

Эта величина должна равняться доверительной вероятности 0,99. Тогда и по таблицам значений функции находим аргумент zo = -2,33. Вычислим теперь наблюдаемое значение случайной величины Z:

Мы видим, что наблюдаемое значение z = - 2,5 нe принадлежит интервалу [-2,33;), поэтому гипотезу нужно отвергнуть.

Приведем пример гипотезы с двухсторонней оценкой. Пусть фирма, выпускающая стабилитроны определенного типа, утверждает, что номинальное напряжение стабилизации стабилитронов равно 10 В. Естественно, что отклонение напряжения стабилизации в меньшую или большую стороны одинаково нежелательно. Выдвинем гипотезу, что генеральное среднее напряжение стабилизации равно 10 В, а затем проверим эту статистическую гипотезу по результатам наблюдения.

Пусть при испытании 100 стабилитронов среднее выборочное равно 10,3 В, а несмещенное выборочное среднее квадратичное отклонение равно 1,2 В. Можно ли с доверительной вероятностью 0,95 считать выдвинутую гипотезу справедливой? Так как объем выборки больше 30, то можно, как и в предыдущем примере, ввести гауссовскую случайную величину Z. Найдем

и приравняем правую часть полученного соотношения 0,95. Тогда и zo =1,96. Это значит, что наблюдаемое значение z должно принадлежать интервалу (-1,96; 1,96). Поскольку не попадает в указанный интервал, то гипотеза отвергается.

На практике мы всегда имеем дело с ограниченным числом измерений, и задача, которая всегда стоит перед оператором, состоит в том, как оценить точность измерений, т.е. найти его меру приближения к истинному значению на основании группы результатов наблюдения.

В результате отдельных измерений мы получаем некоторые строго фиксированные результаты (точки) измеряемой величины. Их значения являются случайными с некоторым распределением. Случайная погрешность измерения образуется под влиянием большого числа факторов, сопутствующих процессу измерения. Важно зафиксировать отклонения и, при использовании полученных результатов, использовать подход, который будет учитывать такие флуктуации. Подходящим решением является введение понятий доверительного интервала и доверительной вероятности.

2. Основная часть

2.1.1 Понятие о доверительных интервалах.

После получения точечной оценки и * желательно иметь данные о надежности такой оценки. Особенно важно иметь сведения о точности оценок для небольших выборок (поскольку с возрастанием объема п выборки несмещенность и состоятельность основных оценок гарантируется утверждениями математической статистики). Поэтому точечная оценка может быть дополнена интервальной оценкой -- интервалом (и1, и 2), внутри которого с наперед заданной вероятностью г находится точное значение оцениваемого параметра и. Задачу определения такого интервала называют интервальным оцениванием, а сам интервал -- доверительным интервалом. При этом г называют доверительной вероятностью или надежностью, с которой оцениваемый параметр и попадает в интервал (и 1, и 2).

Зачастую для определения доверительного интервала заранее выбирают число б = 1 -- г, 0 * , такие, что

Рисунок 1 - Распределение параметра и

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки п и надежности г (уровня значимости г= 1 - б). При увеличении величины п длина доверительного интервала уменьшается, а с приближением надежности г к единице -- увеличивается. Выбор б (или г = 1 - б) определяется конкретными условиями. Обычно используется б=0,1; 0,05; 0,01, что соответствует 90, 95, 99%-м доверительным интервалам.

Общая схема построения доверительного интервала:

1. Из генеральной совокупности с известным распределением f(x, и) случайной величины X извлекается выборка объема п, по которой находится точечная оценка и * параметра и.

2. Строится случайная величина Y(и), связанная с параметром и и имеющая известную плотность вероятности f(у, и).

3. Задается уровень значимости б.

4. Используя плотность вероятности случайной величины Y, определяют два числа с1 и с2 такие, что

Значения с1 и с2 выбираются как правило, из условий

Неравенство с1 2 и неизвестным математическим ожиданием M(Х~N(т, у)). Построим доверительный интервал для т.

1. Пусть для оценки т извлечена выборка х1, х2, . хп объема n. Тогда

2. Составим случайную величину . Нетрудно показать, что случайная величина u имеет стандартизированное нормальное распределение, т.е. u~N(0,1) ().

3. Зададим уровень значимости б.

4. Применяя формулу нахождения вероятности отклонения нормальной величины от математического ожидания, имеем:

Это означает, что доверительный интервал накрывает неизвестный параметр т с надежностью 1- б. Точность оценки определяется величиной [6].

Отметим, что число определяется по таблице значений функции Лапласа из равенства (рис. 2) [2].

Рисунок 2 - Стандартизированное нормальное распределение случайной величины

Пример 1. На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что стандартное отклонение веса пакетов у = 10 г. Взвешено 25 пакетов, при этом их средний вес составил = 244 г. В каком интервале с надежностью 95 % лежит истинное значение среднего веса пакетов?

Логично считать, что случайная величина X имеет нормальный закон распределения: Х~N(m, 10). Для определения 95%-го доверительного интервала найдем критическую точку = u0,025 из приложения 1 по соотношению

Тогда по формуле (3) построим доверительный интервал:

2.1.3Доверительный интервал для математического ожидания

нормальной случайной величины при неизвестной дисперсии.

В реальности истинное значение дисперсии исследуемой случайной величины, скорее всего, известно не будет. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение.

Пусть X ~ N(m, у 2 ), причем т и у 2 -- неизвестны. Необходимо построить доверительный интервал, накрывающий с надежностью г = 1 - б истинное значение параметра т.

Для этого из генеральной совокупности случайной величины X извлекается выборка объема п: х1, х2, . хп.

1. В качестве точечной оценки математического ожидания т используется выборочное среднее , а в качестве оценки, дисперсии у 2 -- исправленная выборочная дисперсия , которой соответствует стандартное отклонение .

2. Для нахождения доверительного интервала строится статистика , имеющая в этом случае распределение Стьюдента с числом степеней свободы v = п - 1 независимо от значений параметров т и у 2 .

3. Задается требуемый уровень значимости б.

4. Применяется следующая формула расчета вероятности

где -- критическая точка распределения Стьюдента, которая находится по соответствующей таблице [5]. Тогда

Это означает, что интервал накрывает неизвестный параметр m с надежностью 1 - б.

Пример 2. Найти доверительный интервал для оценки неизвестного математического ожидания нормально распределенного признака, если известны: у = 2; = 5,4; n = 10; г = 0,95.

2Ф(t) = 0,95, Ф(t) = 0,5*0,95=0,475.

Найдя t = 1,96, получим .

(- д; + д) = (5,4-1,24; 5,4+1,24)=(4,16; 6,64).

Пример 3. Найти минимальный объем выборки, при котором с надежностью 0,95 точность оценки математического ожидания нормально распределенного признака по выборочной средней будет равна 0,2, если среднее квадратическое отклонение равно 2.

Дано: г = 0,95; д = 0,2; у = 2. Найти n.

Из формулы находим. Из условия 2Ф(t) = 0,95 находим t = 1,96. Тогда .

Пример 4. По заданным значениям характеристик нормально распределенного признака найти доверительный интервал для оценки неизвестного математического ожидания:

г = 0,95, n =12, S = 1,5. = 16,8.

По данным г и n находим t = 2,20, тогда .

Доверительный интервал: (16,8 - 0,95; 16,8 + 0,95) = (15,85; 17,75).

2.1.4 Доверительный интервал для дисперсии нормальной

случайной величины.

Пусть X ~ N(т, у 2 ), причем т и у 2 -- неизвестны. Пусть для оценки у 2 извлечена выборка объема п: : х1, х2, . хп .

1. В качестве точечной оценки дисперсии D(X) используется исправленная выборочная дисперсия которой соответствует стандартное отклонение .

2. При нахождении доверительного интервала для дисперсии в этом случае вводится статистика , имеющая -распределение с числом степеней свободы v = п - 1 независимо от значения параметра у 2 .

3. Задается требуемый уровень значимости б.

4. Тогда, используя таблицу критических точек распределения, нетрудно указать критические точки , для которых будет выполняться следующее равенство:

Подставив вместо соответствующее значение, получим

Неравенство может быть преобразовано в следующее:

Таким образом, доверительный интервал () накрывает неизвестный параметр с надежностью 1- б. А доверительный интервал () с надежностью 1 - б накрывает неизвестный параметр [7].

2.2 Генеральная совокупность.

Генеральной совокупностью называется множество всех возможных значений или реализаций исследуемой случайной величины при данном реальном комплексе условий.

Выборкой называют часть генеральной совокупности, отобранную для изучения.

Изучение всей генеральной совокупности во многих случаях либо невозможно, либо нецелесообразно в силу больших материальных затрат, поэтому на практике часто приходится иметь дело с выборками небольшого объема п 2 и доли р их точечными оценками (или ) или w, так как в силу закона больших чисел (состоятельности оценок) эта замена возможна лишь при больших п [4].

2.2.1 Построение доверительного интервала для генеральной

средней по малой выборке.

Задача построения доверительного интервала для генеральной средней может быть решена, если в генеральной совокупности рассматриваемый признак имеет нормальное распределение.

Теорема. Если признак (случайная величина) X имеет нормальный закон распределения с параметрами , x 2 = 2 , т.е. , то выборочная средняя при любом n имеет нормальный закон распределения

Если в случае больших выборок из любых генеральных совокупностей нормальность распределения обусловливалась суммированием большого числа одинаково распределенных случайных величин /n (теорема Ляпунова), то в случае малых выборок, полученных из нормальной генеральной совокупности, нормальность распределения вытекает из того, что распределение суммы (композиция) любого числа нормально распределенных случайных величин имеет нормальное распределение. Формулы числовых характеристик для получены ранее.

Таким образом, если бы была известна генеральная дисперсия , то доверительный интервал можно было бы построить аналогично изложенному выше и при малых n. Заметим, что в этом случае нормированное отклонение выборочной средней имеет стандартное нормальное распределение N(0; 1), т.е. нормальное распределение с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Действительно, используя свойства математического ожидания и дисперсии, получим, что

Представим статистику t в виде:

Числитель выражения (8) имеет стандартное нормальное распределение N(0; 1). Можно показать, что случайная величина имеет -распределение с н = n - 1 степенями свободы. Следовательно, статистика t имеет t-распределение Стьюдента с н=п - 1 степенями свободы. Указанное распределение не зависит от неизвестных параметров распределения случайной величины X, а зависит лишь от числа н, называемого числом степеней свободы.

Выше отмечено, что t-распределение Стьюдента напоминает нормальное распределение, и действительно при н >? как угодно близко приближается к нему.

Число степеней свободы к определяется как общее число n наблюдений (вариантов) случайной величины X минус число уравнений l, связывающих эти наблюдения, т.е. н = п - l.

3ная t-распределение Стьюдента, можно найти такое критическое значение что вероятность того, что статистика не превзойдет величину (по абсолютной величине), равна:

Функция , где - плотность вероятности t-распределения Стьюдента при числе степеней свободы н табулирована. Эта функция аналогична функции Лапласа Ф(t), но в отличие от нее является функцией двух переменных -- t и н = п-1. При н >? функция неограниченно приближается к функции Лапласа Ф(t)[4].

Формула доверительной вероятности для малой выборки может быть представлена в равносильном виде:

- предельная ошибка малой выборки. Доверительный интервал для генеральной средней, как и ранее, находится по формуле:

Пример 5. Для контроля срока службы электроламп из большой партии было отобрано 17 электроламп. В результате испытаний оказалось, что средний срок службы отобранных ламп равен 980 ч, а среднее квадратическое отклонение их срока службы -- 18 ч. Необходимо определить: а) вероятность того, что средний срок службы ламп во всей партии отличается от среднего срока службы отобранных для испытаний ламп не более чем на 8 ч (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключен средний срок службы ламп во всей партии.

Имеем по условию п = 20, = 980(ч), S = 18 ч.

а) Зная предельную ошибку малой выборки = 8 (ч), найдем из соотношения (9):

Теперь искомая доверительная вероятность

, а находится по таблице значений при числе степеней свободы = 16.

Итак, вероятность того, что расхождение средних сроков службы электроламп в выборке и во всей партии не превысит 8 ч (по абсолютной величине), равна 0,906.

б) Учитывая, что = 0,95 и t0,95;16 =2,12, по (11) найдем предельную ошибку малой выборки (ч). Теперь по (12) искомый доверительный интервал или (ч), т.е. с надежностью 0,95 средний срок службы электроламп в партии заключен от 970,5 до 989,5 ч.

2.2.2 Построение доверительного интервала для генеральной доли

по малой выборке.

Если доля признака в генеральной совокупности равна р то вероятность того, что в повторной выборке объема п т элементов обладают этим признаком, определяется по формуле Бернулли: , где q = 1 - р, т.е. распределение повторной выборки описывается биномиальным распределением. Так как при р?0,5 биномиальное распределение несимметрично, то в качестве доверительного интервала для р берут такой интервал (p1, p2), что вероятность попадания левее р1 и правее p2 одна и та же и равна (1 - г)/2:

где - фактическое число элементов выборки, обладающих признаком.

Рисунок 3 - Генеральная доля для г=0,9

Решение таких уравнений можно упростить, если использовать специальные графики, позволяющие при данном объеме выборки п и заданной доверительной вероятности г определить границы доверительного интервала для генеральной доли р. В качестве примера на рисунке 3 приведены такие графики для г = 0,9.

Пример 6. Опрос случайно отобранных 15 жителей города показал, что 6 из них будут поддерживать действующего мэра на предстоящих выборах. Найти границы, в которых с надежностью 0,9 заключена доля граждан города, которые будут поддерживать на предстоящих выборах действующего мэра.

Выборочная доля жителей, поддерживающих мэра, w = т/п = 6/15 = 0,4 . По рисунку 3 для г = 0,9 находим при w = 0,4 и для п = 15 по нижнему графику p1=0,23, а по верхнему -- р2 = 0,60, т.е. доля жителей города, поддерживающих мэра, с надежностью 0,9 заключена в границах от 0,23 до 0,60. Очевидно, что более точный ответ на вопрос задачи может быть получен при увеличении объема выборки п.

2.2.3Построение доверительного интервала для генеральной

Пусть распределение признака (случайной величины) X в генеральной совокупности является нормальным N(, 2 ). Предположим, что математическое ожидание М(Х) = (генеральная средняя) известно. Тогда выборочная дисперсия повторной выборки X1, X2, …, Xn:

ее не следует путать с выборочной дисперсией

если S характеризует вариацию значений признака относительно генеральной средней , то и -- относительно выборочной средней [3].

Учитывая, M(Xi) =, D(Xi)=у 2 , (i = 1, 2, …, n) нетрудно показать, что М(t) = 0 и .

Выше отмечено, что распределение суммы квадратов п независимых случайных величин , каждая из которых имеет стандартное нормальное распределение N(0;l), представляет распределение 2 с н = п степенями свободы.

Таким образом, статистика имеет распределение 2 с н = п степенями свободы.

Распределение 2 не зависит от неизвестных параметров случайной величины X, а зависит лишь от числа степеней свободы н.

Плотность вероятности распределения имеет сложный вид и интегрирование ее является весьма трудоемким процессом. Составлены таблицы для вычисления вероятности того, что случайная величина, имеющая 2 - распределение с н степенями свободы, превысит некоторое критическое значение , т.е.

В практике выборочного наблюдения математическое ожидание , как правило, неизвестно, и приходится иметь дело не с , а с S 2 или . Если Х1, X2. Xn -- повторная выборка из нормально распределенной генеральной совокупности, то, как уже сказано выше, случайная величина (или ) имеет распределение 2 с н = п--1 степенями свободы. Поэтому для заданной доверительной вероятности г можно записать:

(графически это площадь под кривой распределения и рис. 4).

Рисунок 4 - Кривая распределения 2

Очевидно, что значения и определяются неоднозначно при одном и том же значении заштрихованной площади. Обычно и выбирают таким образом, чтобы вероятности событий были одинаковы, т. е.

Преобразовав двойное неравенство в равенстве (13) к равносильному виду , получим формулу доверительной вероятности для генеральной дисперсии:

а для среднеквадратического отклонения:

При использовании таблиц вероятностей необходимо учесть, что поэтому условие

Таким образом, значения и находим из равенств:

Пример 7. На основании выборочных наблюдений производительности труда 20 работниц было установлено, что среднее квадратическое отклонение суточной выработки составляет 15 м ткани в час. Предполагая, что производительность труда работницы имеет нормальное распределение, найти границы, в которых с надежностью 0,9 заключены генеральные дисперсия и среднее квадратическое отклонение суточной выработки работниц.

Имеем г = 0,9; (1 - г)/2 = 0,05; (1 +г)/2 = 0,95.

При числе степеней свободы н = n - 1=20 - 1=19 в соответствии с (16) и (17) определим и для вероятностей 0,95 и 0,05, т.е. = 10,1 и = 30,1. Тогда доверительный интервал для у 2 по (14) можно записать в виде:

или и для у по (15):

или 12,2 30 можно считать, что случайная величина имеет стандартное нормальное распределение N(0; l). Поэтому для определения и следует записать, что

откуда и, после преобразований,

- таким образом, при расчете доверительного интервала надо полагать , .

Пример 8. Решить задачу, приведенную в примере 7, при п = 100 работницам.

При Ф(t) = 0,9 t = 1,645, поэтому

Далее решение, аналогичное примеру 7, приводит к доверительным интервалам для у 2 : 183,1 2

Часто делают выборку, чтобы определить аргумен­ты против гипотезы относительно популяции (генеральной совокупности). Этот процесс известен как проверка гипотез (проверка статистических гипотез или проверка значимости), он представляет количественную меру аргументов про­тив определенной гипотезы.

Установлено 5 стадий при проверке гипотез:

  1. Определение нулевой ( ) и альтернативной гипотезы ( ) при исследовании. Определение уровня значимости критерия.
  2. Отбор необходимых данных из выборки.
  3. Вычисление значения статистики критерия, отвечающей .
  4. Вычисление критической области, проверка статистики критерия на предмет попадания в критическую область.
  5. Интерпретация достигнутого уровня значимости р и результатов.

Определение нулевой и альтернативной гипотез, уровня статистической значимости

При проверке значимости гипотезу следует формулировать независимо от используемых при ее проверке данных (до проведения проверки). В таком случае можно получить действительно продуктивный результат.

Всегда проверяют нулевую гипотезу ( ), которая отвергает эффект (например, разница средних равняется нулю) в популяции.

Например, при сравнении показателей курения у мужчин и женщин в популяции нулевая гипотеза означала бы, что показатели курения одинаковые у женщин и мужчин в популяции.

Затем определяют альтернативную гипотезу ( ), которая принимается, если нулевая гипотеза неверна. Альтернативная гипотеза больше относится к той теории, которую собираются исследовать. Итак, на этом примере альтернативная гипотеза заключается в утверждении, что показатели курения различны у женщин и мужчин в популяции.

Разницу в показателях курения не уточнили, т.е. не установили, имеют ли в популяции мужчины более высокие или более низкие показатели, чем женщины. Такой подход известен как двусторонний критерий, потому что учитывают любую возможность, он рекомендуется постольку, поскольку редко есть уверенность заранее в направлении какого-либо различия, если таковое существует.

В некоторых случаях можно использовать односторонний критерий для гипотезы , в котором направление эффекта задано. Его можно применить, например, если рассматривать заболевание, от которого умерли все пациенты, не получившие лечения; новый препарат не мог бы ухудшить положение дел.

Уровень значимости. Важным этапом проверки статистических гипотез является определение уровня статистической значимости , т.е. максимально допускаемой исследователем вероятности ошибочного отклонения нулевой гипотезы.

Получение статистики критерия, определение критической области

После того как данные будут собраны, значения из выборки подставляют в формулу для вычисления статистики критерия (примеры различных статистик критериев см. ниже). Эта величина количественно отражает аргументы в наборе данных против нулевой гипотезы.

Критическая область. Для принятия решения об отклонении или не отклонении нулевой гипотезы необходимо также определить критическую область проверки гипотезы.

Выделяют 3 вида критических областей:

двусторонняя гипотеза

левосторонняя гипотеза

правосторонняя гипотеза

- заданный исследователем уровень значимости.

Если наблюдаемое значение критерия (K) принадлежит критической области (Kкр, заштрихованная область на рис.1-3), гипотезу отвергают, если не принадлежит - не отвергают.

Для краткости можно записать и так:

| K | > Kкр - отклоняем H0

| K | 0,05, то аргументов недостаточно, чтобы отвергнуть нулевую гипотезу. Не отвергая нулевую гипотезу, можно заявить, что результаты не значимы на 5% уровне. Данное заключение не означает, что нулевая гипотеза истинна, просто недостаточно аргументов (возможно, маленький объем выборки), чтобы ее отвергнуть.

Уровень значимости (т.е. выбранная "граница отсечки") 5% задается произвольно. На уровне 5% можно отвергнуть нулевую гипотезу, когда она верна. Если это может привести к серьезным последствиям, необходимо потребовать более веских аргументов, прежде чем отвергнуть нулевую гипотезу, например, выбрать значение = 0,01 (или 0,001).

Определение результата только как значимого на определенном уровне граничного значения (например 0, 05) может ввести в заблуждение. Например, если р = 0,04, то нулевую гипотезу отвергаем, но если р = 0,06, то ее не отвергли бы. Действительно ли они различны? Мы рекомендуем всегда указывать точное значение р, обычно получаемое путем компьютерного анализа.

Проверка гипотез против доверительных интервалов

Доверительные интервалы и проверка гипотез тесно связаны. Первоначальная цель проверки гипотезы состоит в том, чтобы принять решение и предоставить точное значение р.

Доверительный интервал (ДИ) количественно определяет изучаемый эффект (например, разницу в средних) и дает возможность оценить значение результатов. ДИ предоставляют интервал вероятных значений для истинного эффекта, поэтому его также можно использовать для принятия решения даже без точных значений р.

Читайте также: