Умные строительные материалы реферат

Обновлено: 05.07.2024

Детский налобный пленочный термометр – недорогой и удобный в использовании инструмент для измерения температуры, принцип которого основан на поверхностной реакции материалов слоистой пленки.

Стимул, воздействующий на материал, представлен в виде электрической энергии и может активироваться при подаче компьютерного сигнала. Данное свойство может использоваться в робототехнике и промышленной автоматизации.

Например, открытие движущихся частиц под воздействием температуры было совершено на основе исследования термометра Галилея, изобретенного в 1600-х годах. Это удивительное открытие показало, что движение частиц основано на плотности объекта и смещении жидкости. Изменение температуры отображается в автономном устройстве регистрации и отображения температуры. Данное изобретение, невероятное для своего времени, по-прежнему ценно для науки. Однако в сегодняшнем мире высоких технологий мы не считаем его чем-то необычным.

Многие научные открытия устаревают с течением времени, и в результате этого изобретения и открытия, которые когда-то считались невероятными и впечатляющими, не используются в современной промышленности.

Другим примером научного принципа, который все еще широко используется, является принцип смещения биметаллов под воздействием температуры. Данный принцип был использован для разработки термостата (рисунок 1).


Итак, в каком направлении развивается мир открытий, и какие "умные" материалы следует рассматривать в качестве значимых для будущего?

  • Полимеры
  • Керамика
  • Формы углерода
  • Смешанные материалы

Достижения в области химии полимеров стали частью повседневной жизни. Смазывающие полоски из водорастворимых полимеров на станках для бритья позволяют наносить смазывающий состав перед каждым бритьем. Для многих пользователей смазывающая полоска на станке воспринимается как волшебный пластик, поскольку при простом смачивании она способна обеспечить постоянное увлажнение в течение сотен или тысяч процедур (рисунок 2).


Рисунок 2. Смазочные полоски на бритвах демонстрируют достижения в области химии полимеров, которые стали частью повседневной жизни.

Материал в виде молекул полимера образует цепи, которые переносятся из полоски на кожу, обеспечивая гладкое покрытие для лезвия и уменьшая боль во время бритья.


Данная технология лежит в основе работы детского налобного термометра, и она также может быть использована для создания предметов с изменяющимся цветом, подобно кольцам-определителям настроения, популярным в 1970-х годах.

Сегодня данная технология может быть использована для обесцвечивания частиц полимера при повышении или падении температуры. Она может использоваться для создания знаков, вывесок и надписей и в строительных материалах, которые могут изменять цвет или обесцвечиваться.


Пьезоэлектрические элементы в виде пленки, пластин или кристаллических частиц могут использоваться в качестве датчиков и приводов (рисунок 5).


Рисунок 5. Пьезоэлектрические элементы в виде пленки, пластин или кристаллических частиц могут использоваться в качестве датчиков и приводов.

Физические свойства поверхности позволяют перемещаться в зависимости от уровня напряжения и полярности поверхности кристалла. Это свойство можно использовать для совершения движения, подачи сигналов или оповещения. Другим интересным свойством материала является то, что возможно обратное действие: одно и то же устройство оповещения может действовать как микрофон или как датчик виброперемещения. Он также может создавать небольшое количество энергии во время вибрации для аккумулирования энергии.

Один из принципов материи заключается в том, что во всей вселенной существует температура.

Данный принцип знакомит нас с необычным свойством устройства, известным как элемент Пельтье или термоэлектрический охладитель. Основная функция специального кремниевого перехода заключается в обеспечении потенциала напряжения и тока, создающего одновременный эффект охлаждения на одной стороне устройства и нагрева на другой стороне (рисунок 6). Элемент может также генерировать небольшое количество энергии при обеспечении температурного перепада, высокой температуры и дельты температуры. Еще один "волшебный" пример потенциального аккумулирования энергии.


Рисунок 6. Специальный кремниевый p-n-переход элемента Пельтье обеспечивает потенциал напряжения и ток, создающий одновременный эффект охлаждения на одной стороне устройства и нагрева на другой стороне.

Органические светодиоды могут обеспечивать электрический стимул на стыке материалов и передачу света на специально запрограммированной длине волны (или цвета) (рисунок 7). Интересным свойством данного материала является возможность управления частицами для создания неплоской или гибкой поверхности. Данное свойство может быть использовано в производстве экранов и рекламных вывесок.


Рисунок 7. Органические светодиоды могут обеспечивать электрический стимул на стыке материалов и передачу света на специально запрограммированной длине волны (или цвета).

Электронная пленка изготовлена в виде сетки электрически программируемых частиц размером менее 100 мкм которые могут использоваться для создания гибких знаков, этикеток и дисплеев. Одним из уникальных свойств частиц является отражение или поглощение света; они также могут оставаться в текущем состоянии без дополнительного питания. Электрические сигналы в виде импульсных сигналов используются для перехода частиц в дискретно заданные цвета (черный, белый или красный) (рисунок 8).


Рисунок 8. Электронная пленка изготовлена в виде сетки электрически программируемых частиц размером менее 100 мкм, которые могут использоваться для создания гибких знаков, этикеток и дисплеев.

Экранная пленка обладает гибкостью и может быть перепрограммирована до уровня пикселей. Существуют также сегментные и блочные режимы для изменения цветов или тепловых свойств, например, тепловые коллекторы излучения отражающих или черных тел.

Термочувствительные частицы полимеров можно использовать для покрытия поверхности, например, битумной черепицы, для изменения цвета частиц под воздействием температуры. На рисунке 9 показан пример запрограммированных частиц, активированных при воздействии 90° F, которые отражают свет летом и становятся черными в более прохладные месяцы для поглощения тепла.


Рисунок 9. Термочувствительные частицы полимеров можно использовать для покрытия поверхности, например, битумной черепицы, для изменения цвета частиц под воздействием температуры.

Покрытие наносится для модификации существующих способов производства и обеспечения разнообразия смесей цветов и образцов. Используя данный метод, можно создавать строительные материалы для постройки внутренних стен, потолков и прочих поверхностей. В некоторых случаях сам материал можно изготавливать литьем под давлением или штамповкой для получения функционального композитного материала.


Рисунок 10. Суспензия УНТ, которую можно использовать в качестве покрытия, краски или клея при смешении с соответствующим исходным материалом.

Основные материалы, такие как силиконовый каучук, эпоксидные смолы и акриловые краски, могут образовывать решетчатые структуры, которые повышают эластичность, ударопрочность и резонансную устойчивость, например, демпфирующие свойства.

Электропроводящие свойства углеродных добавок позволяют создавать гибридный материал, который может использоваться для создания датчиков и приводов для настройки или нарушения настройки резонансных колебаний.

Пластиковые и эпоксидные материалы изготавливаются и формуются в зависимости от их применения или для использования физических характеристик вибрации на основе структурно сформированных сигналов, используемых для смещения материала. Они могут использоваться для звукового демпфирования и активного шумоподавления. Эластичный силиконовый клей, прокладки, шайбы и уплотнительные кольца могут быть сформированы для программируемого ответа на колебания, давление, температуру или другие электромагнитные свойства.

Можно изготовить заглушку с внешним питанием, которая может уменьшить запотевание стеклянных поверхностей во влажной среде или способствовать разморозке поверхностей в холодной среде.

Углеродные нанотрубки и графен могут быть одновременно структурированы в решетчатую конструкцию, которая может образовывать электрические сенсорные сети, включая функциональный полевой транзистор (рисунок 11).


Рисунок 11. Углеродные нанотрубки и графен могут быть одновременно структурированы в решетчатую конструкцию, которая может образовывать электрические сенсорные сети.

Фото: Sergey Nivens/shutterstock

Кирпичи из переработанного пластика и углекислого газа, прозрачная древесина, способная пропускать свет и сохранять тепло, светящийся цемент — далеко не полный список строительных материалов, которые разработали ученые и исследователи со всего мира.

Главное, что их объединяет, — экологичность, экономичность и умные технологии. Рассказываем о некоторых из них.

Что такое инновационные стройматериалы

К инновационным можно отнести материалы, которые имеют уникальную технологию производства, состав и чья новизна подтверждена патентами. Сюда можно отнести материалы с переработанной составляющей либо подтвержденные экологическим сертификатом, то есть произведенные в таких условиях, которые не наносят вред окружающей среде.

Бетон, пропускающий электричество

Инженеры Дальневосточного федерального университета (ДВФУ) совместно с коллегами из Восточно-Сибирского государственного университета технологий и управления (ВСГУТУ) недавно разработали сверхпрочный карбоновый бетон, способный проводить электричество. Об этом рассказали в пресс-службе ДВФУ.

Часть цемента в новом бетоне заменили на зольные и шлаковые отходы энергетических производств и отходы обработки гранита. За счет этого производство нового бетона экономичнее и экологичнее. Для электропроводимости вместо дорогих карбоновых нанотрубок в смесь добавили обычные карбоновые наночастицы. Они стали побочным продуктом переработки угля электрическими разрядами в плазменном реакторе по специальной технологии, разработанной профессором Сергеем Буянтуевым из ВСГУТУ.

Фото:ДВФУ

Фото:ДВФУ

В перспективе из нового бетона можно делать дорожное полотно, от которого автомобили и электромобили будут получать энергию бесконтактным образом. Чтобы осуществить эти планы, ученым еще предстоит решить задачу стабильности карбоновых частиц в бетонной смеси.

Фото:Maksim Safaniuk/shutterstock

Кирпичи из переработанного пластика

Австралийские ученые из Университета Флиндерса этой весной заявили о создании кирпичей, которые получены из пластиковых отходов, растительного волокна и песка.

Ученые переработали пластиковые отходы и растительное сырье. Из полученной субстанции они изготовили порошкоподобный каучук, который стал основой для создания кирпичей и цемента. Полученное вещество можно нагревать, сжимать и растягивать. Данные свойства позволяют использовать новый кирпич не только в строительстве, но и при ремонте автомобилей. Полученный каучук можно смешивать с наполнителями, создавая новые композитные материалы, а также многократно измельчать и перерабатывать.

В настоящее время строительная отрасль приносит около 20% выбросов углекислого газа. Большинство из этих выбросов связаны с созданием и использованием строительных материалов. Новая технология позволяет сократить вредное воздействие на окружающую среду.

В прошлом году сотрудники Королевского технологического института в Стокгольме разработали прозрачную древесину, которая позволяет заменить привычное стекло.

Исследования заняли несколько лет, ученым пришлось доказать, что прозрачная древесина по своим теплоизоляционным характеристикам превосходит стекло. Исследователи удалили из древесины лигнин — компонент клеточных стенок, поглощающий свет. После чего материал пропитали акрилом. В результате ученые получили прозрачную древесину, способную пропускать солнечный свет. Затем дерево пропитали специальным полимером, который аккумулирует тепло.

В итоге они получили материал, который пропускает свет и помогает сохранять тепло. Днем прозрачная древесина будет поглощать тепло и охлаждать помещение. Ночью полимер, входящий в состав дерева, начнет затвердевать и отдавать накопленную за день энергию.

Фото:newscientist.com

Материал также может выдерживать высокие нагрузки и является биоразлагаемым, что облегчает его утилизацию. Проблема может возникнуть с акрилом, но его ученые планируют заменить другим материалом. Сейчас разработчики занимаются масштабированием технологии, чтобы запустить массовое производство прозрачной древесины. Применять новый материал в строительстве планируется в ближайшие пять лет.

Строительные блоки из морской соли

Впервые использовать полученные после опреснения запасы соли в качестве строительного материала предложил Нидерландский архитектор Эрик Джоберс.

Его изобретение основано на процессе извлечения соли из морской воды с использованием энергии солнца. Из смеси соли с крахмалом получают блоки, которые похожи на кирпичи. Для большей надежности поверхность соляных блоков покрывают материалом на основе эпоксидной смолы.

Фото:via inhabitat.com

Разработанная технология делает процесс опреснения морской воды безотходным и может использоваться в районах с засушливым климатом. Сейчас соляные кирпичи применяют в облицовке саун и бань, они способны выдерживать высокие температуры.

Архитектор разработал проект строительства небольшого города в Катаре с применением соляных блоков. В регионе существует дефицит строительных материалов — в пустыне нет ни дерева, ни глины, кроме того, существуют проблемы с водой. Материал для соляных кирпичей планируется добывать из вод Персидского залива.

Фото:via inhabitat.com

Фото:via inhabitat.com

Ученые из Колорадского университета в США разработали экологически чистый бетон, который способен размножаться. Новый строительный материал представляет собой биоминерализованную гидрогелево-песчаную субстанцию, которая благодаря работе бактерий превращает песок в кирпичи.

Фото:CU Boulder College of Engineering and Applied Science

Материал так же прочен, как и обычный бетон, утверждают ученые. Исследователи уверены, что у нового бетона большие возможности применения от привычного строительства до использования его в космосе.

Мексиканский ученый Хосе Карлос Рубио несколько лет назад разработал светоизлучающий цемент. Он изменил микроструктуру цемента, добавив в материал флуоресцентные компоненты, способные поглощать солнечную энергию и возвращать ее в окружающую среду в виде излучающего света. В результате получился строительный материал, который в течение дня может поглощать солнечную энергию, а затем излучать ночью.

Новый флуоресцирующий цемент обладает высокой устойчивостью к ультрафиолетовым лучам и имеет расчетную срок службы около 100 лет. Кроме того, он является экологически более чистым, так как изготавливается с использованием природных материалов, мела и глины. Единственным побочным продуктом производства цемента является водяной пар.

Светящийся цемент можно использовать при строительстве дорог и тротуаров — он сможет освещать их в темное время суток, что позволит снизить потребность в электроэнергии. Ученый уже разработал цемент с излучением синего и зеленого цветов, при этом интенсивность света можно регулировать во избежание ослепления водителей или велосипедистов.

Фото:via archspeech.com

Вера Бурцева, руководитель рабочей группы по разработке экологического стандарта GREEN ZOOM:

— Российские застройщики с осторожностью используют инновационные материалы, это объясняется тем, что строительная отрасль всегда была консервативной. При этом в девелоперской среде есть интерес к экологичным материалам — они влияют на качество будущей среды, а следовательно, на здоровье. Но, по нашим данным, только каждый десятый объект, который проходит сертификацию по системе устойчивого развития GREEN ZOOM, использует ощутимый процент инновационных материалов.

Ксения Лукьященко, руководитель отдела экологической сертификации EcoStandard group:

— Долю использования инновационных материалов в строительстве сложно оценить, все-таки массовое строительство пользуется стандартными решениями, изредка пробуя какие-то инновации.

Тут важен масштаб инновации и экономическая эффективность. В значительной части случаев инновационные материалы или решения дороже, поэтому их распространение по понятным причинам ограничено. Кроме того, зачастую проблемой на пути их использования является отсутствие нормативной базы, допускающей или косвенно ограничивающей их применение.

Крупные производители ежегодно вкладывают часть средств в разработки материалов, инновационных продуктов. Часто это продукт для узких случаев использования.

С древних времен человек строит себе жилье для защиты от непогоды, стараясь создать для себя максимальный комфорт и уют. Выбор материалов для конструкций стен, окон, крыш и других элементов во многом определяется климатом той местности, где возводится дом.

Содержание

Глава 1. Новые строительные технологии
1.1. Теплоотражающие стекла
1.2. Прозрачная теплоизоляция
1.3. Материалы с изменяющейся прозрачностью
1.4. Светоуправляющие оптические элементы
Глава 2. Новые отделочные материалы
2.1. Внутренняя отделка
2.2. Наружная отделка
Список использованных источников

Глава 1. Новые строительные технологии

С древних времен человек строит себе жилье для защиты от непогоды, стараясь создать для себя максимальный комфорт и уют. Выбор материалов для конструкций стен, окон, крыш и других элементов во многом определяется климатом той местности, где возводится дом.

На протяжении всей истории строительства – вплоть до последнего десятилетия – самой уязвимой частью зданий с точки зрения теплоизоляции были окна, или, говоря техническим языком, светопрозрачные ограждающие конструкции. Их особенностью является то, что они выполняют две противоположные функции: с одной стороны, они должны пропускать в помещения как можно больше света, а с другой стороны, они должны защищать от холода, ветра, дождя…

Удорожание энергоносителей и, как следствие этого, стремление к их экономии стало побудительным мотивом многочисленных исследований в сфере строительных технологий. Усилия лучших научных центров Европы и Америки были направлены в последние десятилетия на решение этой проблемы, в научные разработки было инвестировано огромное количество средств. Причем основной акцент исследований был сделан именно на светопрозрачных конструкциях, как на наиболее теплотехнически слабых элементах зданий. И если говорить о прогрессе в области строительных технологий, то самые впечатляющие открытия сделаны именно в этом направлении.

На сегодняшний день развитие технологий достигло такого уровня, что через окна и стеклянные фасады можно больше получать энергии и тепла от солнца, чем терять.

Какими же будут технологии ХХI века? О некоторых из них рассказ в нашей статье.

1.1. Теплоотражающие стекла

Конструкция стеклопакета в его первоначальном виде – два простых оконных стекла с осушенным воздухом между ними – в настоящее время не соответствует европейским нормативам по теплоизоляции и является вчерашним днем. В России в ряде регионов тоже приняты уже более жесткие нормативы, практически соответствующие европейским, общероссийские находятся в стадии согласования и утверждения Гостроем.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В современном европейском строительстве применяются для стеклопакетов стекла с теплоотражающими покрытиями.

Физические основы процесса сбережения тепла в эффективных стеклопакетах таковы.

Тепловой поток через стеклопакеты состоит из трех частей:

  1. Лучистый теплообмен между стеклами (инфракрасное излучение);
  2. Теплопроводность газа между стеклами (теплопередача);
  3. Конвекция газа между стеклами (движение и перемешивание газа).

На лучистую составляющую теплового потока приходится 2/3 переносимого тепла, и только 1/3 – на два других фактора! Этой особенностью и воспользовались ученые. С помощью нанесения на стекла тончайших металлических покрытий они научились направлять лучистую составляющую теплового потока обратно, внутрь помещения.

Поверхность стекла с селективным покрытием должна быть в стеклопакете третьей по счету со стороны улицы – только при таком расположении оно имеет реальный смысл. Теплоотражающее покрытие имеет малую прочность на истирание, но стекло, установленное покрытием внутрь пакета, не надо подвергать очистке, так как благодаря герметичности стеклопакета стекло не загрязняется со стороны межстекольного пространства.

Потеря прозрачности (светопропускания) стеклопакета с теплоотражающим стеклом по сравнению с обычным составляют всего 5-7%, в то время как при использовании двухкамерных стеклопакетов (с тремя стеклами) их прозрачность уменьшается на 21,5%!

Однако только лишь селективное покрытие теплотехнические качества стеклопакета улучшает незначительно, так как возрастает разница температур между внутренним и наружным стеклом, что увеличивает конвекцию воздуха внутри стеклопакета, и, соответственно, потери тепла. Но если стеклопакет с теплоотражающим стеклом наполнен инертным газом, например, аргоном, то такой стеклопакет держит тепло уже лучше, чем стены в наших типовых панельных домах!

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Теплоотражающие стекла получают в результате нанесения на поверхность стекла тонких пленок из металлов и оксидов металлов распылением, химическим осаждением, электрохимической обработкой или термическим разложением. В Европе, где стекла с селективным напылением стали стандартом, в промышленности выпускаются стекла с теплоотражающими покрытиями из золота, серебра, никеля, меди, алюминия, хрома, титана и их оксидов. Наилучшими теплоотражающими свойствами обладают стекла с покрытием из золота, но из-за их высокой стоимости они не получили широкого применения. Очень эффективно использование теплоотражающих стекол с окисно-металлическими покрытиями.

В России производство таких стекол начато в Москве и С.-Петербурге.

1.2. Прозрачная теплоизоляция

Во всяком ином доме это было бы наоборот. Но у Вильгельма Шталя в г.Фрайбурге наружные стены дома теплые, а внутренние – прохладные. Ученый–физик живет в доме, который отапливается только солнцем, светом и воздухом. Это происходит без капли нефти, газа или электрического тока. Одной из волшебных формул этого дома является TWD (transperente Waermedaemmung), или прозрачная теплоизоляция (ПТИ).

Понятие ПТИ включает в себя обширную группу светопрозрачных материалов, например, акриловую пену, капиллярное стекло, сотовый поликарбонат. Кроме прозрачности, общими свойствами этих материалов являются: пористая или трубчатая структура – они примерно на 95% состоят из воздуха, благодаря чему они обладают великолепной теплоизоляцией; очень мелкий размер пор, из-за чего в них практически отсутствует конвекция воздуха; и эти материалы непрозрачны для теплового излучения. Слой такого материала толщиной 20мм в 3 раза лучше сохраняет тепло, чем толстая кирпичная стена толщиной 510мм традиционного российского дома!

Наилучшими свойствами обладают материалы, называемые аэрогелями, в частности, силикагель – материал на основе кремниевой кислоты. Этот материал был изобретен немецким ученым Кистлером в 1931 году, однако практическое применение он получил лишь в последние годы. Размер микропор в силикагеле намного меньше длины волны видимого света, и вследствии малого рассеивания образцы толщиной 12мм на 10% прозрачнее, чем двухслойное остекление! На просвет силикагель имеет чуть желтоватый оттенок.

Исходя из технологии производства и ради избежания загрязнений ПТИ заключают между двумя стеклами в рамах из различных материалов, то есть, по сути дела, в стеклопакет. Используется в строительстве ПТИ двояким образом.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Еще одним из экспериментальных объектов, на которых была проверена ПТИ была Паул–Робертсон–школа в Лейпциге. Проведенные измерения показали, что после реконструкции школы с ее утеплением, прозрачной теплоизоляцией расходы на отопление снизились от 225кВТчас/м2 до 58кВТчас/м2, что означает уменьшение потерь энергии на 70%.

Второй вариант использования ПТИ – наружные стены, сочетающие в себе обычные окна и ПТИ, что значительно увеличивает их светопропускание. Многих наших туристов на Западе вводят в заблуждение кристаллы зданий, когда все наружные стены кажутся состоящими из стекла. На самом деле, как правило, это – навесные стеклянные фасады, за которыми скрываются массивные стены с окнами обычного размера. И лишь ПТИ дает реальную возможность без ущерба для сохранения тепла и теплового комфорта людей делать стены практически полностью прозрачными, открывая архитекторам новые, неизвестные ранее возможности.

1.3. Материалы с изменяющейся прозрачностью

Для защиты помещений от яркого солнечного света и от перегрева можно использовать материалы с изменяющейся светопрозрачностью. Такие материалы изменяют свои свойства под воздействием света (фотохромные), тепла (термохромные) или электрического поля (электрохромные).

Одним из новейших материалов этого рода является гель TALD, разработанный в институте строительной физики в Штутгарте. TALD является термохромным материалом и основан на органических метериалах.

Тонкий слой (0,3мм) TALD размещается между двумя стеклами. В зависимости от температуры нагрева стекла под воздействием солнечных лучей материал переходит из прозрачного состояния в непрозрачное: чем выше температура, тем больше в материале выстраивается молекулярных цепочек, размер которых больше длины световой волны и которые не пропускают свет. При уменьшении температуры материал возвращается снова в прозрачное состояние. В прозрачном состоянии TALD пропускает 80% солнечной радиации, в непрозрачном эта величина снижается до 10-40%.

При использовании таких материалов отпадает необходимость использования в зданиях затеняющих устройств. Большое преимущество имеют материалы с изменяющейся прозрачностью по сравнению с тонированными солнцезащитными стеклами, которые значительно уменьшают светопропускание и не обладают способностью к саморегуляции.

1.4. Светоуправляющие оптические элементы

Окна неравномерно распределяют свет в помещениях. Чем дальше от окна находится рабочее место, тем меньше света оно получает. При пасмурной погоде в глубине комнат недостаточно света, а при солнце возникает слепящая игра света и тени.

Решением этой проблемы занялись ученые из Института Света и Строительной техники (ILB) в Кельне.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Они разработали систему, которая способна успешно решить проблему. Неравномерность освещения в значительной мере может быть устранена с помощью светоуправляющих оптических элементов. Они представляют собой определенным образом изогнутые тонкие полоски из акрилового или гидрокарбонатного стекла, которые располагаются внутри стеклопакетов в верхней части окна. Эти элементы перенаправляют рассеянный и солнечный цвет из зенита в глубину помещения и на потолок. В подвесном потолке монтируются отражательные элементы, которые имеют специальную рассеивающую структуру из микро-пирамидок. Ослепления солнечным светом при этой системе никогда не наступает, так как отражение лучей отводит их от уровня глаз и рассеивает благодаря отражающим устройствам на на потолке.

Верхняя светоуправляющая часть окна никогда не затеняется солнцезащитными устройствами, в то время как нижние части окон оборудуется затенением, которым, при необходимости, можно воспользоваться.

Уже осуществленные на практике дома со светоуправляющими голлограммами в Кельне показали полную правильность теоретических выкладок исследователей. Качество и продолжительность естественного освещения стали значительно лучше, помещения глубиной более 7м не требовали искусственного освещения. Ощущение комфорта и работоспособность сотрудников офиса ощутимо улучшились. Замеренный в условиях Германии расход электроэнергии на освещение уменьшился по сравнению с обычными окнами на 80%!

В настоящее время ученые ведут разработку интегрированных систем естественного и искусственного освещения, когда светоуправляющие голлограммы будут автоматически дополняться искусственным светом при уменьшении естественной освещенности в помещениях.

Все чаще и чаще в Европе, когда речь идет о современных строительных технологиях, используется новый термин: интеллегентные строительные системы. Под этими словами ученые и инженеры понимают энергоэффективные, саморегулирующиеся, автоматические системы.

Сегодня в Европе нет сомнений в том, что будущее в строительстве принадлежит именно интеллегентным системам.

Хотелось бы только, чтобы это будущее как можно скорее пришло и к нам, в Россию.

Глава 2. Новые отделочные материалы

2.1. Внутренняя отделка

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Мы же, как и обещали вам раньше, шагнем немного вперед и подробно рассмотрим отделочный материал следующего поколения — стекломагнезитовый лист (СМЛ).

СМЛ — продукт, который за короткое время практически вытеснил гипсокартон в США и с азиатских рынков. В Японии, Китае, Южной Корее, США 70 % всех отделочных работ выполнено с применением СМЛ, и только 30 — с применением традиционного гипсокартона. СМЛ огнеупорен, обладает низкой теплопроводностью, морозостоек и водонепроницаем, не боится ударов и выдерживает значительные нагрузки. Все компоненты СМЛ экологически безвредны и не выделяют токсичных веществ. Листы не подвергаются поражению плесневого грибка и гниению. Не воспринимают воздействие кислот и щелочей.

Обе стороны СМЛ рабочие, причем одна из сторон гладкая, другая же по структуре напоминает очень мелкую рогожку.

Технические характеристики СМЛ:

  • Звукоизоляция — даже 6мм СМЛ гасит наружный звук в 2 раза. Коэффициент звукоизоляции 44 Дб (у ГКЛ 35 Дб);
  • Влагонепроницаемость — не теряет своих свойств после 100 дней полного погружения в воду;
  • СМЛ на 40% легче ГКЛ;
  • Огнеупорность 1200°C. Класс горючести А (ГОСТ 30244);
  • Теплоизоляция. Коэффициент теплопроводности в 6 раз ниже, чем у ГКЛ ( 0,21 против 1,45 у ГКЛ);
  • Прочность и гибкость. Прочность на изгиб в сухом состоянии 16 Мра, во влажном 22 Мра (у ГКЛ — 2 в сухом и 0,1 во влажном). Прочность и гибкость превосходит все стеновые материалы;
  • Лист не меняет геометрических размеров при изменении наружной температуры. СМЛ можно монтировать при любой температуре;
  • Легкость и удобство в работе — нет аналогов. Легко сверлится, режится ножом, прибивается пневмопистолетом;
  • СМЛ можно применять как для внутренних, так и для наружних работ.

Почему мы применяем СМЛ и рекомендуем это вам? Потому что СМЛ:

2.2. Наружная отделка

О доме судят, как и о человеке — по одежде. С первого взгляда, конечно. С течением времени, когда мы узнаем людей или дома, мы понимаем, что внутри, но это будет потом. А пока мы поговорим о фасаде дома.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Так, как любая стеновая конструкция (кроме кирпичной) должна закончиться теплоизоляционным материалом, в нашем случае пенополистиролом, безусловно, напрашивается самый распространенный и достаточно не дорогой способ облицовки фасада — штукатурка. Мы все видим ее с детства на множестве различных зданий, но с приходом новых строительных технологий на смену старым, штукатурка стала иметь несколько другую внутреннюю структуру, нежели ранее. Хотя внешний вид ее от этого не изменился.

Существует несколько методов оштукатуривания фасадов с пенополистирольным покрытием. Самый распространенный из них — штукатурка по пластиковой сетке. Суть ее в том, что на пенополистиольную поверхность посредством клеевой массы фиксируется капроновая мелкоячеистая сетка, специально изготовленная для этих целей, затем поверх производится непосредственно оштукатуривание и декоративная покраска. Технология достаточно простая, к тому же очень хорошо отработана мировым лидером в данном направлении — компанией КНАУФ.

  1. Несущая стена (строительное основание)
  2. Клеевой слой (КНАУФ — Севенер)
  3. Цокольный опорный профиль
  4. Дюбель для крепления цокольного профиля
  5. Утеплитель
  6. Защитный слой (КНАУФ — Севенер) армированный стеклосеткой
  7. Дюбель для крепления плит утеплителя
  8. Грунтовка КНАУФ — Изогрунд
  9. Декоративный – защитный слой (КНАУФ — Диамант)

Для получении полной информации вы можете перейти на сайт КНАУФ здесь.

Стоимость такой штукатурки колеблется от 600 до 1000 руб., в зависимости от качества используемых материалов и уровня специалистов, выполняющих работы. Что, безусловно, вполне естественно. После окончания фасадных работ мы получаем дом с подобным внешним видом:

Отделка фасада СМЛ

ФЦП — совершенное решение фасадов зданий любого назначения. Он относится к категории навесных фасадов, как например, американский виниловый сайдинг, с таким бумом используемый с 1995 года, навесные керамогранитные или металлопластиковые панели, пришедшие на российский рынок несколько лет спустя. Но, безусловно, ФЦП — революционное решение фасадов настоящего и будущего, так как технические характеристики этих панелей позволяют получить фасад с совершенно новыми характеристиками. Итак, что же такое — ФЦП?

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

ФЦП — это размерная панель, изготовленная из цемента на волокнистой основе, имеющая снаружи более 1000 вариантов текстурных и цветовых решений, дающих Вам возможность создать совершенно оригинальный фасад не уступающий по художественной ценности фасаду из дорогих природных материалов.

Плиты ФЦП закаляются в специальных автоклавах. Такую же обработку проходит многослойное декоративное покрытие. В результате поверхность плит приобретает очень высокую стойкость к выцветанию. Гарантия неизменности цвета для большинства панелей достигает 25 лет.

Поверхность ФЦП обладает очень высокой стойкостью к воздействию фазовых переходов воды. Пониженная чувствительность покрытия объясняется наличием в его составе пластичных микрогранул, которые пассируют давление льда в микротрещинах. И тем самым препятствуют разрушению декоративной поверхности плиты.

Одним из достижений разработчиков покрытия ФЦП является свойство отторжения поверхностного загрязнения. Практически любая грязь (пыль, сажа) смывается с декоративной поверхности ФЦП обычным дождем. Некоторые виды плит обладают фотокерамическим эффектом, который отторгает с поверхности даже мазут.

Наличие дополнительных элементов, улучшающих качество монтажа и внешний вид фасада (угловые элементы, скобы, герметик, корректировочная краска, разделительные, стартовые и завершающие планки, декоративные элементы) позволят вам реализовать на вашем фасаде любые ваши замыслы с высочайшим качеством работ.

Список использованных источников


1. Наноматериалы
2. Материалы активные и умные
3. НаноБетон
4. Наноматериалы и стали
5. Наноматериалы и древесина
6. Наноматериалы и стекло
7. Настоящее будущее наноматериалов в строительстве
8. Нанотехнологии в медицине
9. Использование углеродных наноматериалов как биосовместимого модификатора медицинских имплантатов
10. Заключение
11. Список литературы

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.
Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.
Фуллерены — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.
Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах.
Нанокристалл — отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку, характеризующийся анизотропией свойств и имеющий размеры (хотя бы один) ≤ 100 нм. Вообще говоря, любой материал с характерными размерами менее 1 микрометра следует относить к наночастицам, а не к нанокристаллам. Например, любую частицу, в которой присутствует упорядоченная область, следует относить к наночастице или нанокластеру в зависимости от количества измерений в пространстве. В случае трехмерного расположения атомов в пространстве элемента твёрдого вещества логично вытекает название — нанокристалл. Эти материалы имеют большой технологический потенциал, так как многие их электрические и термодинамические свойства зависят от их размеров, и, следовательно, могут контролироваться во время технологического процесса. Кристаллические наночастицы, образуя монокристаллические системы, интересны для изучения макроскопических кристаллов из-за отсутствия дефектов и межзеренных границ. Полупроводниковые нанокристаллы с размерами менее 10 нм также известны как квантовые точки. Кристаллические наночастицы, изготовленные из цеолита используются в качестве фильтра для перевода сырой нефти в дизельное топливо на очистительном заводе ExxonMobil в Луизиане. Данный метод дешевле, чем конвекционный. Основы из кристаллических наночастиц используются в качестве новых типов солнечных батарей (SolapPly компании Nanosolar). Данные панели дешевле других типов панелей, более гибкие, а также утверждается, что их эффективность составляет 12% (конвекционные недорогие органические солнечные панели преобразуют 9% солнечного тепла в электричество).
Аэрогели — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
Наноаккумуляторы — в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов. Аккумуляторы с Li4Ti5O12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане. В марте 2006 Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля. В мае 2006 успешно завершились испытания автомобильных наноаккумуляторов. В июле 2006 Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей.
Самоочищающиеся поверхности на основе эффекта лотоса

Строительная индустрия – один из столпов современной цивилизации. В 2007 году, последнем перед мощным финансовым кризисом, сфера строительства в Европе имела валовый годовой оборот 350 млрд евро и представляла рабочие места каждому десятому трудоспособному гражданину. Ежегодно в мире производится порядка 1 м3 бетона на одного жителя планеты Земля. Естественно предположить, что даже небольшие изменения, например, появление новых материалов, в столь массивной отрасли хозяйства породят ощутимые эффекты для всемирной экономики.

Усталость материала – одна из основных причин разрушения стальных конструкций, подверженных циклическим нагрузкам (мосты, башни и т.п.). Даже напряжения намного меньшие, чем пороги разрушения, могут приводить при периодическом повторении к уменьшению времени жизни изделия. Современная философия строительства включает в себя три основных превентивных стратегии: резкое уменьшение допустимой нагрузки на конструкцию; значительное сокращение допустимого периода ее эксплуатации; регулярный мониторинг состояния. Все три подхода оказывают значительное влияние на стоимость строительства и эксплуатации конструкции.
Цементную плитку покрывают краской на основе нанокомпозита, что делает ее стойкой к непогоде
Исследования показали, что добавка к стали небольших наночастиц меди сглаживает неоднородность поверхности стали, уменьшая таким образом количество точек, в которых концентрируются напряжения. Дальнейшая разработка таких композиционных материалов позволит существенно увеличить безопасность металлических конструкций при одновременной экономии средств мониторинга их состояния.
Высотные конструкции требуют создания высокопрочных соединений, что предъявляет особые требования к используемым в таких соединениях болтам. Обычно их производят закаливанием стали и ее последующим отпуском. Когда сдвиговой модуль упругости мартенситной стали превышает 1200 МПа, даже очень малые количества водорода, попадающего на межзеренные границы, существенно охрупчают материал. Этот процесс, известный как отложенное разрушение, ограничивает сдвиговой модуль упругости используемых болтов в диапазоне 1000–1200 МПа. При добавке наночастиц ванадия или молибдена, связывающих атомы водорода и улучшающих микроструктуру материала замещением межзеренной цементитной фазы, порог отложенного разрушения стальных изделий значительно повышается.
Сварные швы и прилежащие к ним области часто охрупчаются и могут разрушиться при резкой динамической нагрузке, поэтому прочность сварных швов имеет большое значение для создания надежных металлических конструкций, особенно в сейсмоопасных зонах планеты. Последствия землетрясения в Лос-Анджелесе в 1994 году заставили ученых и конструкторов переосмыслить значение зон сварки.
Современные стратегии дизайна металлических конструкций включают в себя сознательное ослабление определенных зон с целью переноса областей повышенного напряжения как можно дальше от зон сваривания. Однако последние исследования показывают, что небольшие добавки наночастиц магния или кальция в пять раз уменьшают размер зерен в сварных швах, увеличивая существенно их прочность.
Самокомпактирующемуся бетону не нужна вибрация, он густеет благодаря наночастицам поликарбоксилата
Отметим, что перечисленные выше возможности применения наночастиц можно рассматривать не только с точки зрения безопасности, но и с точки зрения экологии: продление жизни конструкций поможет снизить нагрузки на природу, связанные с добычей и транспортировкой руды, производством стали.


В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение.
Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.
Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.
Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки.
Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм!
Описание нанотехнологии может показаться притянутым за уши, возможно, потому что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю применяются.
Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей.
Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.
Для достижения этих целей человечеству необходимо решить три основных вопроса:
1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.


Основная сложность с нанотехнологией - это проблема создания первого нанобота. Существует несколько многообещающих направлений.
Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомно-силового микроскопа и достижении позиционной точности и силы захвата.
Другой путь к созданию первого нанобота ведет через химический синтез. Возможно, спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.
И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и мы можем использовать их для создания более универсальных роботов.
Группа нанотехнологов из института предвидения заявила, что стремительный рост нанотехнологий выходит из-под контроля, но в отличие от Билла Джойа, вместо простого запрета на развитии исследований в этой области, они предложили установить правительственный контроль над исследованиями.
Такой надзор, может предотвратить случайную катастрофу, например когда наноботы создают сами себя (до бесконечности), потребляя в качестве строительного материала все на своем пути, включая заводы, домашних животных и людей.
Рей Курцвейл - к 2020 году появится возможность поместить внутри кровеносной системы миллиарды нанороботов размером с клетку, по оценкам Роберта Фрайтаса, ведущего ученого в области наномедицины, это случится не ранее, чем в 2030-2035 году.
Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами. Так ассеблеры практически сольются с нами.


В результате мы видим, что нанотехнологии, которые так активно развиваются человеком скоро на всех уровнях проникнут в жизнь человека. Нанороботы, созданные человеком, вскоре будут воспроизводить сами себя. Имея размер клетки, они будут находится в организме человека. Следя за его состоянием.
Наноматериалы, созданные человеком, имеют сверхпрочность и лёгкость. Созданные в медицинских целях, они имеют гораздо лучшие показатели, чем обычные материалы.

Читайте также: