Улучшение качества электроэнергии в электрических сетях реферат

Обновлено: 05.07.2024

Под термином "качество электрической энергии" понимается соответствие основных параметров энергосистемы установленным нормам производства, передачи и распределения электрической энергии.

Количественная характеристика качества электроэнергии выражается отклонениями напряжения и частоты, размахом колебаний напряжений и частоты, коэффициентом несинусоидальности формы кривой напряжения, коэффициентом несимметрии напряжения основной частоты.

Отклонение частоты - разность усредненная за 10 мин. между фактическим значением основной частоты и номинальным её значением. Отклонение частоты от номинального значения в нормальном режиме работы допускается в пределах ±0,1 Гц . Кратковременные отклонения могут достигать ±0,2 Гц .

Колебание частоты - разность между наибольшим и наименьшим значениями основной частоты в процессе достаточно быстрого изменения параметров режима, когда скорость изменения частоты не меньше 0,2 Гц в секунду. Колебания частоты не должны превышать 0,2 Гц сверх допустимых отклонений 0,1 Гц.

Электроприборы и оборудование предназначены для работы в определённой электромагнитной среде. Электромагнитной средой принято считать систему электроснабжения и присоединенные к ней электрические аппараты и оборудование, связанные кондуктивно и создающие в той или иной мере помехи, отрицательно влияющие на работу друг друга. При возможности нормальной работы оборудования в существующей электромагнитной среде, говорят об электромагнитной совместимости технических средств.

Единые требования к электромагнитной среде закрепляют стандартами, что позволяет создавать оборудование и гарантировать его работоспособность в условиях соответствующих этим требованиям. Стандарты устанавливают допустимые уровни помех в электрической сети, которые характеризуют качество электроэнергии (КЭ) и называются показателями качества электроэнергии (ПКЭ).

Показатели качества электроэнергии

Наиболее вероятная причина

установившееся отклонение напряжения

график нагрузки потребителя

размах изменения напряжения

потребитель с резкопеременной

Несимметрия напряжений в трёхфазной системе

коэффициент несимметрии напряжений

по обратной последовательности

потребитель с несимметричной

коэффициент несимметрии напряжений

по нулевой последовательности

Несинусоидальность формы кривой напряжения

синусоидальности кривой напряжения

потребитель с нелинейной нагрузкой

коэффициент n-ой гармонической

особенности работы сети, климатические

условия или природные явления

длительность провала напряжения

Большинство явлений, происходящих в электрических сетях и ухудшающих качество электрической энергии, происходят в связи с особенностями совместной работы электроприёмников и электрической сети. Семь ПКЭ в основном обусловлены потерями (падением) напряжения на участке электрической сети, от которой питаются потребители.

Потери напряжения на участке электрической сети (k) определяются выражением:

ΔUk = (Pk·Rk + Qk·Xk) / Uном

Здесь активное (R) и реактивное (X) сопротивление k-го участка сети, практически постоянны, а активная (P) и реактивная (Q) мощность, протекающая по k-му участку сети, переменны и характер этих изменений может быть различным:

-При медленном изменении нагрузки в соответствии с её графиком — отклонение напряжения;

-При резкопеременном характере нагрузки — колебания напряжения;

-При несимметричном распределении нагрузки по фазам электрической сети — несимметрия напряжений в трёхфазной системе;

-При нелинейной нагрузке — несинусоидальность формы кривой напряжения.

В отношении этих явлений потребители электрической энергии имеют возможность тем или иным образом влиять на её качество. Всё прочее, ухудшающее качество электрической энергии, зависит от особенностей работы сети, климатических условий или природных явлений. Поэтому, возможности влиять на это потребитель электрической энергии не имеет, он может только защищать своё оборудование специальными средствами, например, устройствами быстродействующих защит или устройствами гарантированного (бесперебойного) питания (UPS).

Отклонение напряжения — отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

Отклонение напряжения в той или иной точке сети происходит под воздействием медленного изменения нагрузки в соответствии с её графиком.

Влияние отклонения напряжения на работу электрооборудования:

ü При снижении напряжения существенно ухудшается технологический процесс, увеличивается его длительность. Следовательно, увеличивается себестоимость производства.

ü При повышении напряжения снижается срок службы оборудования, повышается вероятность аварий.

ü При значительных отклонениях напряжения происходит срыв

ü Снижается срок службы ламп освещения, так при величине напряжения 1,1·Uном срок службы ламп накаливания снижается в 4 раза.

ü При величине напряжения 0,9·Uном снижается световой поток ламп накаливания на 40 % и люминесцентных ламп на 15 %.

ü При величине напряжения менее 0,9·Uном люминесцентные лампы мерцают, а при 0,8·Uном просто не загораются.

ü При снижении напряжения на зажимах асинхронного электродвигателя на 15 % момент снижается на 25 %. Двигатель может не запуститься или остановиться.

ü При снижении напряжения увеличивается потребляемый от сети ток, что влечёт разогрев обмоток и снижение срока службы двигателя. При длительной работе на напряжении 0,9·Uном срок службы двигателя снижается вдвое.

ü При повышении напряжения на 1 % увеличивается потребляемая двигателем реактивная мощность на 3. 7 %. Снижается эффективность работы привода и сети.

Обобщённый узел нагрузки электрических сетей (нагрузка в среднем) составляет:

— 10 % специфической нагрузки (например, в Москве это метро — 11%);

— 30 % освещение и прочее;

— 60 % асинхронные электродвигатели.

Поэтому, ГОСТ 13109-97 устанавливает нормально и предельно допустимые значения установившегося отклонения напряжения на зажимах электроприёмников в пределах соответственно δUyнор= ± 5 % и δUyпред= ± 10 % номинального напряжения сети. Обеспечить эти требования можно двумя способами: снижением потерь напряжения и регулированием напряжения.

ΔU = (P·R + Q·X) / UЦП (ТП)

Снижение потерь напряжения (ΔU) достигается:

-Выбором сечения проводников линий электропередач (≡ R) по условиям потерь напряжения.

-Применением продольной емкостной компенсации реактивного сопротивления линии (X). Однако, это опасно повышением токов короткого замыкания при X→0.

-Компенсацией реактивной мощности (Q) для снижения ее передачи по электросетям, с помощью конденсаторных установок и синхронных электродвигателей, работающих в режиме перевозбуждения. Кроме снижения потерь напряжения, это является неплохим мероприятием энергосбережения, снижающим общие потери электроэнергии в сетях.

Регулированием напряжения U:

В центре питания регулирование напряжения (UЦП) осуществляется с помощью трансформаторов, оснащённых устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки (регулирование под нагрузкой — РПН). Такими устройствами оснащены 10 % трансформаторов. Диапазон регулирования ± 16 % с дискретностью 1,78 %. Напряжение может регулироваться на промежуточных трансформаторных подстанциях (UТП) с помощью трансформаторов, оснащённых устройством переключения отпаек на обмотках с различными коэффициентами трансформации (переключение без возбуждения — ПБВ, т.е. с отключением от сети). Диапазон регулирования ± 5 % с дискретностью 2,5 %. Ответственность за поддержание напряжения в пределах, установленных ГОСТ 13109-97, возлагается на энергоснабжающую организацию. Действительно, первый (R) и второй (X) способы выбираются при проектировании сети и не могут изменяться в дальнейшем. Третий (Q) и пятый (UТП) способы хороши для регулирования при сезонном изменении нагрузки сети, но руководить режимами работы компенсирующего оборудования потребителей, необходимо централизовано, в зависимости от режима работы всей сети, то есть энергоснабжающей организации.

Четвёртый способ — регулирование напряжения в центре питания (UЦП), позволяет энергоснабжающей организации регулировать напряжение в соответствии с графиком нагрузки сети.

ГОСТ 13109-97 устанавливает допустимые значения установившегося отклонения напряжения на зажимах электроприёмника. А пределы изменения напряжения в точке присоединения потребителя должны рассчитываться с учетом падения напряжения от этой точки до электроприёмника и указываться в договоре энергоснабжения.

Колебания напряжения — быстро изменяющиеся отклонения напряжения длительностью от полупериода до нескольких секунд. Колебания напряжения происходят под воздействием быстро изменяющейся нагрузки сети.

Источниками колебаний напряжения являются мощные электроприёмники с импульсным, резкопеременным характером потребления активной и реактивной мощности: дуговые и индукционные печи; электросварочные машины; электродвигатели при пуске.

Влияние колебаний напряжения на работу электрооборудования:

Отклонения напряжения, усугублённые резкопеременным характером, ещё более снижают эффективность работы и срок службы оборудования. Вызывают брак продукции. Способствуют отключению автоматических систем управления и повреждению оборудования. Так, например, колебания амплитуды и, в большей мере, фазы напряжения вызывают вибрации электродвигателя, приводимых механизмов и систем. В частности, это ведёт к снижению усталостной прочности трубопроводов и снижению срока их службы. А при размахах колебаний более 15 % могут отключаться магнитные пускатели и реле. Не менее опасна вызываемая колебаниями напряжения пульсация светового потока ламп освещения. Её восприятие человеком — фликер — утомляет, снижает производительность труда и, в конечном счёте, влияет на здоровье людей. Доза фликера — мера восприятия человеком пульсаций светового потока. Наиболее раздражающее действие фликера проявляется при частоте колебаний 8,8 Гц и размахах изменения напряжения δUt = 29 %. Причём, при одинаковых колебаниях напряжения отрицательное влияние ламп накаливания проявляется в значительно большей мере, чем газоразрядных ламп. Поэтому в ГОСТ 13109-97, размах изменения напряжения (δUt) жёстче нормируется для помещений с лампами накаливания повышенной освещённости, а доза фликера (Pt) для помещений с лампами накаливания, работа в которых требует значительного зрительного напряжения. В качестве вероятного виновника колебаний напряжения ГОСТ 13109-97 указывает потребителя с переменной нагрузкой.

Мероприятия по снижению колебаний напряжения:

-Применение оборудования с улучшенными характеристиками (снижение ΔQ). Применение электродвигателей со сниженным пусковым током и улучшенным cos φ при пуске. Или применение частотного регулирования электроприводов, а также устройств плавного пуска-останова двигателя.

-Подключение к мощной системе электроснабжения (увеличение Sкз)

Распространение колебаний напряжения в сторону системы электроснабжения происходит с затуханием колебаний по амплитуде. Причём, коэффициент затухания тем больше, чем мощнее система электроснабжения.

-Разнесение питания спокойной и резкопеременной нагрузок на разные трансформаторы или секции сборных шин. Размах изменения напряжения δUt на шинах спокойной нагрузки (- Q) снижается на 50. 60 %. "Минусы" — возрастают потери при неполной загрузке трансформаторов.

-Снижение сопротивления питающего участка сети. При увеличении сечения проводников линии снижается R, а применение устройств продольной компенсации снижает суммарное X. "Минусы" — увеличиваются капитальные затраты, а применение продольной компенсации опасно повышением токов короткого замыкания при X→0. На практике не обоснованно, но активно применяют последние два мероприятия.

Несимметрия напряжений — несимметрия трёхфазной системы напряжений. Несимметрия напряжений происходит только в трёхфазной сети под воздействием неравномерного распределения нагрузок по её фазам. В качестве вероятного виновника несимметрии напряжений ГОСТ 13109-97 указывает потребителя с несимметричной нагрузкой.

Источниками несимметрии напряжений являются: дуговые сталеплавильные печи, тяговые подстанции переменного тока, электросварочные машины, однофазные электротермические установки и другие однофазные, двухфазные и несимметричные трёхфазные потребители электроэнергии, в том числе бытовые. Так суммарная нагрузка отдельных предприятий содержит 85. 90 % несимметричной нагрузки. А коэффициент несимметрии напряжения по нулевой последовательности (K0U) одного 9-и этажного жилого дома может составлять 20 %, что на шинах трансформаторной подстанции (точке общего присоединения) может превысить нормально допустимые 2 %.

Влияние несимметрии напряжений на работу электрооборудования:

-Рост потерь электроэнергии в сетях, вызванный дополнительными потерями в нулевом проводе. Однофазные, двухфазные потребители и разные фазы трёхфазных потребителей электроэнергии работают на различных не номинальных напряжениях, что вызывает те же последствия, как при отклонении напряжения. В электродвигателях, кроме отрицательного влияния не несимметричных напряжений, возникают магнитные поля, вращающиеся встречно вращению ротора.

Обеспечение надежного качества электроэнергии ведет к повышению эффективности работы приемников электроэнергии и электроэнергетических систем.
Решение проблемы качества электроэнергии должно опираться на технико-экономическое сопоставление эффекта от мероприятий по улучшению качества и неизбежных при этом дополнительных затрат.

Прикрепленные файлы: 1 файл

показатели качества энергии.doc

Показатели качества электроэнергии и их влияние на работу электрооборудования

Обеспечение надежного качества электроэнергии ведет к повышению эффективности работы приемников электроэнергии и электроэнергетических систем.

Решение проблемы качества электроэнергии должно опираться на технико-экономическое сопоставление эффекта от мероприятий по улучшению качества и неизбежных при этом дополнительных затрат.

Качество электроэнергии оценивается по технико-экономическим показателям, учитывающим ущерб от некачественной электроэнергии:

- технологический ущерб, обусловленный недоотпуском продукции, расстройством технологического процесса потребителей электроэнергии – ущерб в системах электроснабжения потребителей;

- электромагнитный ущерб от некачественной электроэнергии, выражающийся в увеличении потерь электроэнергии и нарушении работы электрооборудования - ущерб в электроэнергетике.

Качество электроэнергии связано с надежностью, поскольку нормальным

считается режим электроснабжения, при котором потребители обеспечиваются электроэнергией нормированного качества, требуемого количества и бесперебойно.

Основные показатели качества электроэнергии

ГОСТ 13109-99 устанавливает показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей, или приемники электрической энергии (точки общего присоединения - ТОП).

Этот ГОСТ устанавливает 11 основных показателей качества электроэнергии (ПКЭ):

1) отклонение частоты δf;

2) установившееся отклонение напряжения δUу;

3) размах изменения напряжения δU 1

4) дозу фликера (мерцания или колебания) Рt;

5) коэффициент искажения синусоидальности кривой напряжения КU

6) коэффициент п-й гармонической составляющей напряжения КU(n)

7) коэффициент несимметрии напряжений по обратной последовательности К2U',

8) коэффициент несимметрии напряжений по нулевой последовательности К0U;

9) глубину и длительность провала напряжения δUn , ∆tn;

10) импульсное напряжение Uимп;

11) коэффициент временного перенапряжения КлерU.

1.1. Отклонение частоты

Отклонение частоты в электрической системе, Гц, характеризует разность между действительным и номинальным значениями частоты переменного тока в системе электроснабжения и определяется по выражению

Допустимые нормы по отклонению частоты составляют

δfнорм= ± 0,2 Гц, δfпред =± 0,4 Гц

Влияние: При возникновении дефицита генерируемой мощности в системе происходит снижение частоты до такого значения, при котором устанавливается новый баланс генерируемой и потребляемой мощности, при избытке генерируемой мощности, наоборот, частота повышается.

Частота переменного тока в электрической системе определяется скоростью вращения генераторов электростанций. Номинальное значение частоты 50 Гц (в некоторых странах 60 Гц) может быть обеспечено при наличии резерва активной мощности на электростанциях.

В первую очередь изменение частоты отрицательно влияет на работу электрических двигателей, которые представляют собой основную нагрузку энергосистемы. Снижение частоты ведет к уменьшению эффективности работы оборудования собственных нужд электростанции, уменьшению генерации активной мощности и, как следствие, к еще большему снижению частоты вплоть до полного отключения генераторов.

Рост частоты также увеличивает токи намагничивания, а следовательно, и нагрев сталесодержащих элементов двигателей и трансформаторов. Это в свою очередь приводит к преждевременному старению указанных устройств.

1.2. Отклонение напряжения

Отклонение напряжения характеризуется показателем установившегося отклонения текущего значения напряжения С/ от номинального значения С/ном:

Причина: Отклонения напряжения от номинальных значений происходят из-за суточных, сезонных и технологических изменений электрической нагрузки потребителей; изменения мощности компенсирующих устройств; регулирования напряжения генераторами электростанций и на подстанциях энергосистем; изменения схемы и параметров электрических сетей. Отклонение напряжения нормируется на выводах приемников электрической энергии:

Влияние: При отклонении напряжения от номинального значения потребители электроэнергии и электрические сети работают в худших условиях по сравнению с режимом номинальных напряжений.

При повышении напряжения:

- возникает опасность перегрева статоров асинхронных двигателей;

- уменьшается срок службы ламп накаливания (в 5 раз при увеличении

напряжения на 10 %);

- увеличивается ток холостого хода трансформаторов, что приводит к перегреву сердечников трансформаторов;

- увеличивается потребление реактивной мощности вентильными преобразователями (на 1…1,5 % при повышении напряжения на 1 %).

При снижении напряжения:

- уменьшаются вращающие моменты асинхронных двигателей (на 19 %

при снижении напряжения на 10 %);

- возможен перегрев роторов асинхронных двигателей, уменьшение их

пусковых и опрокидывающих моментов, что может повлечь за собой нарушение технологического процесса электроприемников;

- уменьшается световой поток ламп накаливания (на 30 % при снижении

напряжения на 10 %);

- возникает перерасход электроэнергии и ухудшается технологический

процесс электропечей (в 1,5 раза при снижении напряжения на 7 %).

Обеспечить эти требования можно двумя способами: снижением потерь напряжения и регулированием напряжения.

Снижение потерь напряжения (ΔU) достигается:

· Выбором сечения проводников линий электропередач по условиям потерь напряжения.

· Применением продольной емкостной компенсации реактивного сопротивления линии (X).

· Компенсацией реактивной мощности (Q) для снижения ее передачи по электросетям, с помощью конденсаторных установок и синхронных электродвигателей, работающих в режиме перевозбуждения.

Кроме снижения потерь напряжения, компенсация реактивной мощности является эффективным мероприятием энергосбережения, обеспечивающим снижение потерь электроэнергии в электрических сетях.

Регулирование напряжения U:

· В центре питания регулирование напряжения осуществляется с помощью трансформаторов, оснащённых устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки — регулирование под нагрузкой (РПН). Такими устройствами оснащены ~ 10 % трансформаторов. Диапазон регулирования ± 16 % с дискретностью 1,78 %.

· Напряжение может регулироваться на промежуточных трансформаторных подстанциях (UТП) с помощью трансформаторов, оснащённых устройством переключения отпаек на обмотках с различными коэффициентами трансформации — переключение без возбуждения (ПБВ), т.е. с отключением от сети. Диапазон регулирования ± 5 % с дискретностью 2,5 %.

1.3. Колебания напряжения

Колебания напряжения характеризуются размахом изменения напряжения δU1, , дозой фликера Рt.

Колебания напряжения — быстро изменяющиеся отклонения напряжения длительностью от полупериода до нескольких секунд. Колебания напряжения происходят под воздействием быстро изменяющейся нагрузки сети.

Источниками колебаний напряжения являются мощные электроприёмники с импульсным, резкопеременным характером потребления активной и реактивной мощности: дуговые и индукционные печи; электросварочные машины; электродвигатели при пуске.

Размах изменения напряжения - разность между следующими друг за другом действующих значений напряжения любой формы, т. е. между следующими друг за другом максимальным и минимальным значениями огибающей действующих значений напряжения.

Влияние колебаний напряжения на работу электрооборудования:

Отклонения напряжения ещё более снижают эффективность работы и срок службы оборудования. Вызывают брак продукции. Способствуют отключению автоматических систем управления и повреждению оборудования. Так, например, колебания амплитуды и фазы напряжения вызывают вибрации электродвигателя, приводимых механизмов и систем. В частности, это ведёт к снижению усталостной прочности трубопроводов и снижению срока их службы. А при размахах колебаний более 15 % могут отключаться магнитные пускатели и реле.

Не менее опасна, вызываемая колебаниями напряжения, пульсация светового потока ламп освещения. Её восприятие человеком — фликер — утомляет, снижает производительность труда и, в конечном счёте, влияет на здоровье людей. Мера восприятия человеком пульсаций светового потока — доза фликера. Наиболее раздражающее действие фликера проявляется при частоте колебаний 8,8 Гц и размахах изменения напряжения δUt = 29 %. Причём, при одинаковых колебаниях напряжения отрицательное влияние ламп накаливания проявляется в значительно большей мере, чем газоразрядных ламп.

В качестве вероятного виновника колебаний напряжения ГОСТ 13109-97 указывает потребителя с переменной нагрузкой.

Мероприятия по снижению колебаний напряжения:

· Применение оборудования с улучшенными характеристиками.

Применение электродвигателей со сниженным пусковым током и улучшенным cos φ при пуске. Применение частотного регулирования электроприводов, или устройств плавного пуска-останова двигателя.

· Подключение к мощной системе электроснабжения

Распространение колебаний напряжения в сторону системы электроснабжения происходит с затуханием колебаний по амплитуде. Причём, коэффициент затухания тем больше, чем мощнее система электроснабжения.

· Разнесение питания спокойной и резкопеременной нагрузок на разные трансформаторы или секции сборных шин.

Размах изменения напряжения на шинах спокойной нагрузки снижается на 50. 60 %.

„Минусы“ — возрастают потери при неполной загрузке трансформаторов.

· Снижение сопротивления питающего участка сети.

„Минусы“ — увеличиваются капитальные затраты, а применение продольной компенсации опасно повышением токов короткого замыкания.

1.4. Несинусоидальность напряжения

Несинусоидальность напряжения — искажение синусоидальной формы кривой напряжения.

Электроприёмники с нелинейной вольтамперной характеристикой потребляют ток, форма кривой которого отличается от синусоидальной. А протекание такого тока по элементам электрической сети создаёт на них падение напряжения, отличное от синусоидального, это и является причиной искажения синусоидальной формы кривой напряжения.

Например, полупроводниковые преобразователи потребляют ток трапециевидной формы, образно говоря — выхватывают из синусоиды кусочки прямоугольной формы.

Источниками несинусоидальности напряжения являются: статические преобразователи, дуговые сталеплавильные и индукционные печи, трансформаторы, синхронные двигатели, сварочные установки, газоразрядные осветительные приборы, офисная и бытовая техника и так далее.

Строго говоря, все потребители имеют нелинейную вольтамперную характеристику, кроме ламп накаливания, да и те запрещены.

Несинусоидальность напряжения характеризуется следующими показателями:

  • коэффициентом искажения синусоидальности кривой напряжения;
  • коэффициентом n-и гармонической составляющей напряжения.
  • Коэффициент искажения синусоидальности кривой напряжения Кu,

Влияние несинусоидальности напряжения на работу электрооборудования:

· Фронты несинусоидального напряжения воздействуют на изоляцию кабельных линий электропередач, — учащаются однофазные короткие замыкания на землю. Аналогично кабелю, пробиваются конденсаторы.

· В электрических машинах, включая трансформаторы, возрастают суммарные потери.

Так, при коэффициенте искажения синусоидальной формы кривой напряжения KU = 10 % суммарные потери в сетях предприятий, крупных промышленных центров, сетях электрифицированного железнодорожного транспорта могут достигать 10. 15 %.

· Возрастает недоучёт электроэнергии, вследствие тормозящего воздействия на индукционные счётчики гармоник обратной последовательности.

· Неправильно срабатывают устройства управления и защиты.

· Выходят из строя компьютеры.

Мероприятия по снижению несинусоидальности напряжения:

· Аналогично мероприятиям по снижению колебаний напряжения:

· Подключение к мощной системе электроснабжения.

· Питание нелинейной нагрузки от отдельных трансформаторов или секций шин.

· Снижение сопротивления питающего участка сети.

· Применение фильтрокомпенсирующих устройств.

L-С цепочка, включенная в сеть, образует колебательный контур, реактивное сопротивление которого для токов определённой частоты равно нулю. Подбором величин L и С фильтр настраивается на частоту гармоники тока и замыкает её не пропуская в сеть. Набор таких контуров, специально настроенных на генерируемые данной нелинейной нагрузкой высшие гармоники тока, и образует фильтрокомпенсирующее устройство (ФКУ), которое не пропускает в сеть гармоники тока и компенсирует протекание реактивной мощности

Не рассматривая неизбежные переходные процессы, приведенные на рис. 10.7, отметим, что длительное повышение или понижение напряжения питающей сети приводит к сокращению срока службы двигателей и источников питания. Понижение напряжения менее желательно из-за значительного роста тока потребления, нарушения и выхода из строя электроники и вычислительной техники. Отрицательное воздействие оказывает полное пропадание питающего напряжения. Кратковременные всплески и провалы напряжения вызываются переходными процессами в электрической системе, сопровождаясь высокочастотными помехами, приводящими к сбою электронной аппаратуры. Всплеск напряжения может привести к выходу из строя потребителя, если коммутационная и особенно защитная аппаратура не удовлетворяет требованиям по быстродействию и селективности.

Что влияет на качество электроснабжения

Повышение качества электроэнергии: методы, способы, причины

Проблема качества в отечественных электрических сетях очень специфична. Во всех промышленно развитых странах подключение мощных нелинейных нагрузок, искажающих форму кривых тока и напряжения электрической сети, допускается только при соблюдении требований по обеспечению качества электроэнергии и при наличии соответствующих корректирующих устройств. При этом суммарная мощность вновь вводимой нелинейной нагрузки не должна превышать 3…5% от мощности всей нагрузки энергокомпании. Иная картина наблюдается в нашей стране, где такие потребители подключаются достаточно хаотично.

В результате электрические сети России оказались перенасыщенными искажающим оборудованием.

В отдельных регионах сформировались уникальные по своей мощности и степени искаженности кривых тока и напряжения комплексы электрических сетей энергосистем и распределительных сетей потребителей, что существенно обострило проблему электроснабжения потребителей качественной электроэнергией.

Для определения соответствия значений измеряемых показателей качества электроэнергии нормам стандарта, за исключением длительности провала напряжения, импульсного напряжения, коэффициента временного перенапряжения, устанавливается минимальный интервал времени измерений, равный 24 ч, соответствующий расчетному периоду. Общая продолжительность измерений ПКЭ должна быть выбрана с учетом обязательного включения характерных для измеряемых ПКЭ рабочих и выходных дней. Рекомендуемая общая продолжительность измерения составляет 7 сут. Сопоставление ПКЭ с нормами стандарта необходимо производить за каждые сутки общей продолжительности измерений отдельно для каждого ПКЭ. Кроме того, измерения ПКЭ следует проводить по требованию энергоснабжающей организации или потребителя, а также до и после подключения нового потребителя.

Методов повышения качества электроэнергии

Существуют три основные группы методов повышения качества электроэнергии:

  1. рационализация электроснабжения, заключающаяся, в частности, в повышении мощности сети, в питании нелинейных потребителей повышенным напряжением;
  2. улучшение структуры 1УР, например обеспечение номинальной загрузки двигателей, использование многофазных схем выпрямления, включение в состав потребителя корректирующих устройств;
  3. использование устройств коррекции качества — регуляторов одного или нескольких показателей качества электроэнергии или связанных с ними параметров потребляемой мощности.

Экономически наиболее предпочтительной является третья группа, так как изменение структуры сети и потребителей ведет к значительным затратам.

Проектирование же новых сетей потребителей необходимо вести с учетом современных требований к качеству, ориентируясь на разработку регуляторов качества электроэнергии различных типов. Целенаправленное воздействие на изменение одного вида искажений вызывает косвенное воздействие на другие виды искажений. Например, компенсация колебаний напряжениявызывает снижение уровней гармоник и приводит к изменению отклонений напряжения.

Отклонения напряжения являются медленными и вызываются или изменением уровня напряжения в центре питания, или потерями напряжения в элементах сети (рис. 10.8). требования по отклонениям напряжения для последних электроприемников не выполняются изза значительных потерь напряжения в кабельной линии и на шинах питания. суммарные потери напряжения л /ц.п, %, определяют по выражению:

Повышение качества электроэнергии: методы, способы, причины

Анализируя эпюру (см. рис. 10.8), можно сделать вывод, что обеспечить требования по отклонениям напряжения можно за счет регулирования напряжения в центре питания (гпп, рп) и путем снижения потерь напряжения в элементах сети.

Повышение качества электроэнергии: методы, способы, причины

Регулирование реализуется с помощью изменения коэффициента трансформации питающего трансформатора. для этого трансформаторы оснащаются средствами регулирования напряжения под нагрузкой (рпн) или имеют возможность переключения отпаек регулировочных ответвлений без возбуждения (пбв), т. е. с отключением их от сети на время переключения ответвлений. трансформаторы с рпн позволяют регулировать напряжение в диапазоне от ±10 до ±15 % с дискретностью 1,25…2,50%. трансформаторы с пбв обычно имеют регулировочный диапазон ±5 %.

Снижение потерь напряжения в питающих линиях или кабелях может быть реализовано за счет снижения активного и (или) реактивного сопротивления. Снижение сопротивления достигается путем увеличения сечения проводов или применением устройств продольной компенсации (УПК).

Повышение качества электроэнергии: методы, способы, причины

Продольная емкостная компенсация параметров линии заключается в последовательном включении конденсаторов в рассечку линии, благодаря чему ее реактивное сопротивление уменьшается: Х’л= XL ХC

Из выражения (10.33) следует, что для снижения bU, необходимо уменьшить Хкз или набросы реактивной мощности нагрузки QH, для снижения которых должны применяться быстродействующие источники реактивной мощности, способные обеспечить скорости набросов реактивной мощности, соизмеримые с характером изменения нагрузки. При этом выполняется условие

Повышение качества электроэнергии: методы, способы, причины

Подключение ИРМ приводит к снижению амплитуд колебаний результирующей реактивной мощности, но увеличивает их эквивалентную частоту. При недостаточном быстродействии применение ИРМ может привести даже к ухудшению положения.

Для снижения влияния резкопеременной нагрузки на чувствительные электроприемники применяют способ разделения нагрузок, при котором наиболее часто применяют сдвоенные реакторы, трансформаторы трехобмоточные, с расщепленной обмоткой или питают нагрузки от различных трансформаторов. Эффект использования сдвоенного реактора основан на том, что коэффициент взаимоиндукции между обмотками сдвоенного реактора не равен нулю, а падение напряжения, уменьшающееся на 50…60 % за счет магнитной связи обмоток реактора, в каждой секции определяется по формулам:

Повышение качества электроэнергии: методы, способы, причины

где Км — коэффициент взаимоиндукции между обмотками секций реактора; XL — индуктивное сопротивление секции обмотки реактора.

Трансформаторы с расщепленной обмоткой позволяют подключать к одной ветви обмотки низшего напряжения резкопеременную нагрузку (источник искажений), а к другой — стабильную. Связь между изменениями напряжения в обмотках определяется по выражению

Повышение качества электроэнергии: методы, способы, причины

Снижение несимметрии напряжении достигается уменьшением сопротивления сети токам обратной и нулевой последовательностей и снижением значений самих токов. Учитывая, что сопротивления внешней сети (трансформаторов, кабелей, линий) одинаковы для прямой и обратной последовательностей, снизить эти сопротивления возможно лишь путем подключения несимметричной нагрузки к отдельному трансформатору.

Основным источником несимметрии являются однофазные нагрузки. При соотношении между мощностью короткого замыкания в узле сети SK 3 к мощности однофазной нагрузки больше 50 коэффициент обратной последовательности обычно не превышает 2 %, что соответствует требованиям ГОСТ.

Снизить несимметрию можно, увеличив SK3 на зажимах нагрузки. Это достигается, например, подключением мощных однофазных нагрузок через собственный трансформатор на шины 110 — 220 кВ. Снижение систематической несимметрии в сетях низкого напряжения осуществляется рациональным распределением однофазных нагрузок между фазами с таким расчетом, чтобы сопротивления этих нагрузок были примерно равны между собой. Если несимметрию напряжения не удается снизить с помощью схемных решений, то применяются специальные устройства.

В качестве таких симметрирующих устройств применяют несимметричное включение конденсаторных батарей (рис. 10.9, а) или специальные схемы симметрирования (рис. 10.9, б) однофазных нагрузок.

Повышение качества электроэнергии: методы, способы, причины

Если несимметрия меняется по вероятностному закону, тодля ее снижения применяются автоматические симметрирующие устройства, в схемах которых конденсаторы и реакторы набираются из нескольких небольших параллельных групп и подключаются в зависимости от изменения тока или напряжения обратной последовательности (недостаток — дополнительные потери в реакторах). Ряд устройств основан на базе применения трансформаторов, например трансформаторов с вращающимся магнитным полем, представляющим собой несимметричную нагрузку, или трансформаторов, позволяющих осуществить пофазное регулирование напряжения.

Как уменьшить несинусоидальность напряжения

Снижение несинусоидального напряжения достигается:

Повышение качества электроэнергии: методы, способы, причины

Развитие современной базы силовой электроники и методов высокочастотной модуляции привело к созданию устройств, улучшающих качество электроэнергии — активных фильтров, подразделяемых на последовательные и параллельные, на источники тока и напряжения. Это привело к получению четырех базовых схем (рис. 10.10).

Повышение качества электроэнергии: методы, способы, причины

В качестве накопителя энергии в преобразователе, служащем источником тока, используется индуктивность, а в преобразователе, служащем источником напряжения, используется емкость. Схема замещения силового резонансного фильтра приведена на рис. 10.11.

Сопротивление фильтра Z на частоте со равно При XL = Хс на частоте со наступает резонанс напряжений, означающий, что сопротивление фильтра для гармонической составляющей напряжения с частотой со равно 0.

При этом гармонические составляющие с частотой со будут поглощаться фильтром и не будут проникать в сеть. На этом явлении основан принцип построения резонансных фильтров.

Повышение качества электроэнергии: методы, способы, причины

В сетях с нелинейными нагрузками возникают, как правило, гармоники канонического ряда, порядковый номер которых v = 3, 5, 7,… Уровни гармоник с таким порядковым номером обычно убывают с увеличением частоты. Поэтому на практике применяют цепочки из параллельно включенных фильтров, настроенных на 3, 5, 7 и 11ю гармоники. Такие устройства называются узкополосными резонансными фильтрами. Если XL и Хс — сопротивление реактора и конденсаторной батареи на основной частоте, то, используя выражение (10.38), получаем

Фильтр, который помимо фильтрации гармоники будет генерировать реактивную мощность и компенсировать потери мощности в сети и напряжения, называется фильтрокомпенсирующим (ФКУ).

Если устройство помимо фильтрации высших гармоник выполняет функции симметрирования напряжения, то такое устройство называется филыросимметрирующим (ФСУ). Конструктивно ФСУ представляют собой несимметричный фильтр, включенный на линейное напряжение сети. Выбор линейных напряжений, на которые подключаются фильтрующие цепи ФСУ, а также соотношения мощностей конденсаторов*, включенных в фазы фильтра, определяются условиями симметрирования напряжения.

Таким образом, устройства типа ФКУ и ФСУ воздействуют одновременно на несколько показателей (несинусоидальность, несимметрия, отклонения напряжения). Такие устройства для повышения качества электрической энергии получили название многофункциональных оптимизирующих устройств (рис. 10.12). Целесообразность их разработки заключается в том, что резкопеременные нагрузки типа ДСП вызывают одновременное искажение напряжения по ряду показателей, что и потребовало комплексного решения проблемы.

К категории таких устройств относятся быстродействукшше статические источники реактивной мощности. По принципу регулирования реактивной мощности их можно подразделить на ИРМ прямой и косвенной компенсации. Такие устройства, обладая высоким быстродействием, позволяют снижать колебания напряжения. Пофазное регулирование и наличие фильтров обеспечивают симметрирование и снижение уровней высших гармоник.

Повышение качества электроэнергии: методы, способы, причины

При разработке стратегии повышения качества электроэнергии в электрических сетях и обеспечения условий электромагнитной совместимости следует учитывать, что для исправления положения необходимы значительные материальные ресурсы и достаточно продолжительный период времени. Разработка всего комплекса мероприятий требует технической и экономической оценки последствий пониженного качества, что затруднено в силу следующих обстоятельств:

  • воздействие качества электроэнергии на качество и количество выпускаемой продукции, а также на сроки службы электроприемников носит интегральный характер; изменения большинства показателей качества во времени являются стохастическими в силу их за висимости от режимов работы большого числа электроприемников;
  • последствия пониженного качества электроэнергии часто проявляются в окончательном продукте, на качественные и количественные характеристики которого воздействуют и другие факторы;
  • отсутствие данных отчетного характера, позволяющих установить причинноследственные связи между реальными показателями качества, с одной стороны, и работой электрооборудования и качеством выпускаемой продукции — с другой;
  • слабая оснащенность отечественных электрических сетей средствами измерения показателей качества электроэнергии.

Тем не менее для обеспечения требуемых ГОСТ 13109 — 97 показателей необходимо выполнение комплекса организационных и технических мероприятий, направленных на установление причин и источников нарушений и заключающихся в индивидуальном и централизованном подавлении помех с обеспечением повышенной помехозащищенности чувствительных к искажениям электроприемников.


Недостатки энергетической системы России связаны с малой пропускной способностью межсистемных линий передач, неустойчивостью величины напряжений в периоды уменьшения нагрузок, недостаточной степенью устойчивости линий электропередач и потерями в сетях из-за неоптимального распределения мощностей. Известно, что любые отклонения в сети электроснабжения, приводящие к изменению электрических параметров, регламентированных в ГОСТ 721─77 [1], ухудшают качество электроэнергии. Это может привести к сбоям в работе электрического оборудования и даже к его повреждениям. Для повышения качества электроэнергии необходимо ориентироваться на три основные составляющие, а именно, на бесперебойную передачу электроэнергии, распределение электроэнергии по устойчивым электрическим сетям и производство энергии высокого качества.

При передаче энергии в основном возникают следующие проблемы, связанные с: [4]

- устойчивостью передачи, в значительной степени связанной с величиной транспортного угла;

- устойчивостью контроля напряжений и ростом напряжения при отсутствии нагрузки;

- явлениями резонанса в сети, возникающими между различными элементами сети, например, фильтрами;

- явлением феррорезонанса, обусловленным нелинейными колебаниями, возникающими при насыщении силовых или измерительных трансформаторов;

- перенапряжениями при коммутации линий электропередач, возникающих вследствие подключения или отключения элементов сети, фильтров, конденсаторных батарей и трансформаторов;

Для решения этих проблем существуют известные методы со своими достоинствами и недостатками, но все эти методы не решают проблемы в полной мере. Поэтому, исследования в этом направлении представляются современными и актуальными.

Улучшение характеристик качества электроэнергии возможно как при ее распределении, так и непосредственно у потребителей. Для повышения качественных параметров электроэнергии на предприятиях существуют различные способы, такие как, использование конденсаторных батарей, синхронных двигателей и вентильных преобразователей.

Конденсаторные батареи используются как основное средство для компенсации реактивной мощности. Они применяются в качестве дополнительного источника реактивной мощности для обеспечения потребителя реактивной мощностью сверх того количества, которое возможно и целесообразно получить от энергосистемы. Их достоинствами являются низкая стоимость и малые собственные потери активной мощности. К недостаткам относят наличие остаточного заряда, отсутствие плавного регулирования и влияние на работу конденсаторных установок высших гармоник.

Основное преимущество синхронных машин — это возможность регулирования величины реактивной мощности. Они выполняются для работы с опережающим коэффициентом мощности, что частично компенсирует реактивную мощность в питающей сети. Их недостатки — сложность пусковой аппаратуры и высокая стоимость [4].

Вентильные преобразователи представляют собой устройства для преобразования напряжения и частоты электрического тока с помощью электронных или ионных вентилей [5]. Достоинства вентильных преобразователей следующие: отсутствие узлов, требующих обслуживания; большой допустимый пусковой момент; высокое быстродействие и значительный диапазон регулировок по частоте вращения электродвигателей. Их недостатки — высокая стоимость, массогабаритные показатели и не синусоидальность тока.

Проведенный анализ способов компенсации реактивной энергии показал, что все они, наряду со своими достоинствами обладают недостатками. Совместное же их применение позволяет частично устранить недостатки, но при этом возрастает стоимость таких комплексов. Однако системы компенсации реактивной мощности находят применение в распределительных сетях энергоснабжения с целью повышения качества передачи электроэнергии. Среди известных систем следует отметить устройства и технологии управления линиями переменного тока (FACTS).

К техническим средствам реализации относят статические преобразователи напряжения, конденсаторные батареи, электромашиновентильные комплексы (машины переменного тока со статическими преобразователями частоты) и микропроцессорные средства управления устройствами.

Существуют различные способы реализации FACTS систем:

1. Поперечная компенсация — STATCOM (STATic synchronous COMpensator — Статический синхронный компенсатор). Компенсаторы STATCOM (рис. 1) способны поглощать и возвращать реактивную мощность, обеспечивают возможность поглощения реактивной мощности при отсутствии нагрузки в сети [3]. Когда напряжение в точке подключения остается постоянным, компенсатор STATCOM ведет себя как компенсатор SVC [6].


Рис. 1. Схема STATCOM

Однако в режиме ограничения мощности компенсатор STATCOM становится источником тока, тогда как компенсатор SVC приобретает свойства конденсатора. Стандартными функциями этих компенсаторов является регулирование напряжения путем поглощения или возврата реактивной мощности и подавление подсинхронных колебаний. Недостаток STATCOM в том, что их применение обычно ограничивается статической компенсацией по причинам экономического характера.

2. Продольная компенсация — SSSC (Static Synchronous Series Compensator — Статический синхронный продольный компенсатор). В системах SSSC исключается недостаток систем TCSC (конденсаторная батарея с тиристорным управлением), который состоял в невозможности плавного перехода от емкостного режима к индуктивному. SSSC (рис. 2) может возвращать только реактивную мощность, за исключением тех случаев, когда контур постоянного тока получает подпитку от накопителя энергии. Их задачей является поддержка сети в рабочем состоянии при кратковременных возмущениях.


Рис. 2. Схема SSSC

3. Универсальная компенсация — UPFC (Unified Power Flow Controller — унифицированная система управления энергоподачами).

Мощности систем STATCOM и других типов SSSC настолько высоки, что использование их без применения накопителей энергии достаточной емкости затруднительно. Если такая возможность отсутствует, мы должны быть в состоянии управлять величиной транспортного угла, как в случае использования фазосдвигающего трансформатора [7], но со значительно более высоким быстродействием.

Система UPFC воплощает эту мечту в реальность без использования какого-либо накопителя энергии. Система UPFC представляет собой не что иное, как объединение систем STATCOM и SSSC (рис. 3).


Рис. 3. Схема установки UPFC

Система позволяет выполнять следующие функции:

- непосредственное управление напряжением. Сложение или вычитание напряжений, фазированных узлом поперечной компенсации. Эти действия производятся над реактивной мощностью;

- поперечный компенсатор: путем управления поперечным преобразователем с переводом последнего в режим поглощения или возврата реактивной мощности. Напряжение должно поддерживаться постоянным;

- продольный компенсатор: путем добавления последовательного напряжения со сдвигом на 90o по отношению к току связи. При этом необходимо управлять выходным напряжением и реактивной мощностью на выходе;

- одновременное использование всех функций — число степеней свободы системы позволяет это делать, когда необходимо управлять и реактивной, и активной мощностью [3].

Рассмотренные выше технологии являются относительно дорогостоящими, требуют обслуживания высококвалифицированными специалистами и используются только для установок большой мощности. А при создании автоматических систем стабилизации напряжения энергетических установок малой мощности приходится ориентироваться на классические системы компенсаторов, которым присущи недостатки, приведенные выше.

Для выхода из сложившегося положения предполагается решение, сущность которого заключается в следующем.

На предприятиях имеются различные устройства и установки, использование которых не только сказывается на потерях электроэнергии, но и вносит различного рода помехи в сеть энергоснабжения. Это помехи такого рода, как флуктуации (резкое изменение формы переменного напряжения на частотах 30–35Гц), искажения синусоидальности питающего напряжения, гармоники, генерируемые нелинейной нагрузкой, создающие дополнительные потери в трансформаторах. Существует необходимость контроля величины напряжений и сдвига фаз с последующим автоматическим восстановлением. Разрешение этих задач представляется возможным посредством систем контроля и управления параметрами электрической сети, схема структурная, которая приведена на рис.4.


Рис. 4. Система контроля и управления параметрами электрической сети

Данная система содержит входной буфер, предназначенный для согласования электрических цепей с электронной частью системы АЦП, обеспечивающего функции преобразования аналогового сигнала в цифровой код. Микропроцессор выполняет функции обработки информации, поступающей с АЦП с последующим управлением внешней периферией. Выходной буферный каскад обеспечивает согласование микропроцессора с силовыми блоками управления. Силовые блоки коммутации включают необходимые блоки компенсации реактивной мощности в силовые электрические линии.

Принцип работы системы заключается в следующем. Контроль электрических параметров отдельно по каждой фазе производится с помощью датчиков тока и многоканального АЦП. В каждую из фаз трехфазной сети электроснабжения включены три трансформатора тока, со вторичных обмоток которых можно получить нормализованный аналоговый сигнал с гальванической развязкой от электрической сети. Аналоговый сигнал с датчиков тока подается на входной буфер, роль которого заключается в согласовании уровней напряжения, подаваемого на вход АЦП. В зависимости от используемых датчиков, входной буфер может выполнять функции, как усиления амплитуд сигналов, так и уменьшения. АЦП работает в режиме мультиплексирования входов с последующей передачей информации непосредственно в микропроцессор, который подвергает анализу и проводит обработку информации по соответствующим алгоритмам с целью выявления отклонения напряжений в сети от границ установленного поля допуска. При фиксировании выхода за пределы границ поля допуска принимается решение о подключении вспомогательных устройств компенсации электрической энергии.

Построение такого рода системы становится возможным благодаря микропроцессорным устройствам и электронным переключателям типа IGBT, способных коммутировать цепи больших мощностей. Микропроцессор, совместно АЦП, и реализованные алгоритмы, анализирующие различные составляющие энергосети, позволяют контролировать параметры каждой фазы и при обнаружении отклонений от номинального значения электрических параметров оказывать требуемое противодействие посредством имеющихся конденсаторных батарей, синхронных машин и вентильных преобразователей. Предусмотрена возможность покаскадного включения конденсаторных батарей, плавного пуска синхронных двигателей и т. д., для эффективного подавления нежелательных возмущений.

При авариях или переходе приборов в нерабочее состояние достаточно много времени уходит на поиск неисправностей и причин их возникновения. Для частичного устранения этой проблемы в данной системе предусмотрена запись событий в привязке ко времени, о подключенных нагрузках и основных параметрах электрической сети. Это позволяет выявлять устройства с более высоким потреблением мощности, получать информацию о времени поломки и текущие на тот момент показатели энергосети, а также выявлять устройства, оказывающие паразитное влияние на электрическую сеть.

Такой подход построения системы позволяет решать круг задач по повышению качества электроэнергии непосредственно на предприятиях и иных объектах потребления электроэнергии. С экономической стороны стоимость такой системы будет превышать стоимость систем, основанных лишь на конденсаторных батареях и синхронных машинах, но ниже стоимости FACTS систем. Снижение потерь электроэнергии и способствование сохранению оборудования в рабочем состоянии положительно сказываются на сроках окупаемости системы.

Основные термины (генерируются автоматически): STATCOM, реактивная мощность, SSSC, FACTS, UPFC, электрическая сеть, SVC, система, входной буфер, недостаток.

Похожие статьи

Обзор методов повышения пропускной способности линий.

Компенсация реактивной мощности в электрических сетях 0,4кВ.

Основные термины (генерируются автоматически): STATCOM, реактивная мощность, SSSC, FACTS, UPFC, электрическая сеть, SVC, система, недостаток, входной.

Компенсация реактивной мощности в электрических сетях 0,4кВ

где - реактивная суммарная мощность БК по данным завода — изготовителя.

Заключается о том, что предлагаемая нами схема компенсации реактивной мощности в электрических сетях 0,4кВ отличаются в

Система управления статическим компенсатором реактивной.

Накопители электроэнергии как средство предотвращения.

Основные термины (генерируются автоматически): электрическая энергия, FACTS

Ключевые слова: электроэнергия, электрическая сеть, источники энергии, нагрузки сети.

Система UPFC воплощает эту мечту в реальность без использования какого-либо накопителя энергии.

Окупаемость мероприятий направленных на уменьшение потерь.

реактивная мощность, активная мощность, сеть, разрядное сопротивление, потребитель, полная мощность, коэффициент мощности

Проблема компенсации реактивной мощности (КРМ) вызвана высокой загрузкой элементов систем распределения электрической энергии.

Система управления статическим компенсатором реактивной.

Разработанная система управления статического компенсатора реактивной мощности обеспечивает снижение токов обратной

2. Кочкин В. И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий.

Применение пассивных фильтров для компенсации высших.

электрическая энергия, частотный преобразователь, система электроснабжения, учет работы, преобразователь частоты, параметр

Основные термины (генерируются автоматически): реактивная мощность, гармоника, ток, конденсатор, разгерметизация корпуса, сеть.

Меры по снижению потерь электроэнергии на промышленных.

источники энергии, электроэнергия, электрическая сеть, нагрузки сети, мощность энергии. Окупаемость мероприятий направленных на уменьшение потерь. Вся энергия имеет 2 составляющие: активная и реактивная энергии.

Управление мощностью в системах электроснабжения

Компенсация реактивной мощности в электрических сетях 0,4кВ.

Традиционно симметрирование токов в трёхфазных сетях осуществлялось путём с помощью конденсаторных батарей, соединённых по схеме треугольника [1]. Недостатком такого способа является.

Алгоритм для расчета потерь мощности в электрических сетях.

В статье рассматривается созданный алгоритм, который может быть использован для разработки программы для расчета потерь мощности с учетом несинусоидальности напряжения. Для разработки программы были использованы реальные данные полученные с помощью.

Похожие статьи

Обзор методов повышения пропускной способности линий.

Компенсация реактивной мощности в электрических сетях 0,4кВ.

Основные термины (генерируются автоматически): STATCOM, реактивная мощность, SSSC, FACTS, UPFC, электрическая сеть, SVC, система, недостаток, входной.

Компенсация реактивной мощности в электрических сетях 0,4кВ

где - реактивная суммарная мощность БК по данным завода — изготовителя.

Заключается о том, что предлагаемая нами схема компенсации реактивной мощности в электрических сетях 0,4кВ отличаются в

Система управления статическим компенсатором реактивной.

Накопители электроэнергии как средство предотвращения.

Основные термины (генерируются автоматически): электрическая энергия, FACTS

Ключевые слова: электроэнергия, электрическая сеть, источники энергии, нагрузки сети.

Система UPFC воплощает эту мечту в реальность без использования какого-либо накопителя энергии.

Окупаемость мероприятий направленных на уменьшение потерь.

реактивная мощность, активная мощность, сеть, разрядное сопротивление, потребитель, полная мощность, коэффициент мощности

Проблема компенсации реактивной мощности (КРМ) вызвана высокой загрузкой элементов систем распределения электрической энергии.

Система управления статическим компенсатором реактивной.

Разработанная система управления статического компенсатора реактивной мощности обеспечивает снижение токов обратной

2. Кочкин В. И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий.

Применение пассивных фильтров для компенсации высших.

электрическая энергия, частотный преобразователь, система электроснабжения, учет работы, преобразователь частоты, параметр

Основные термины (генерируются автоматически): реактивная мощность, гармоника, ток, конденсатор, разгерметизация корпуса, сеть.

Меры по снижению потерь электроэнергии на промышленных.

источники энергии, электроэнергия, электрическая сеть, нагрузки сети, мощность энергии. Окупаемость мероприятий направленных на уменьшение потерь. Вся энергия имеет 2 составляющие: активная и реактивная энергии.

Управление мощностью в системах электроснабжения

Компенсация реактивной мощности в электрических сетях 0,4кВ.

Традиционно симметрирование токов в трёхфазных сетях осуществлялось путём с помощью конденсаторных батарей, соединённых по схеме треугольника [1]. Недостатком такого способа является.

Алгоритм для расчета потерь мощности в электрических сетях.

В статье рассматривается созданный алгоритм, который может быть использован для разработки программы для расчета потерь мощности с учетом несинусоидальности напряжения. Для разработки программы были использованы реальные данные полученные с помощью.

Читайте также: