Углеводы и их обмен реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Углеводы в жизни ч еловека

Лихина Анастасия Дмитриевна

(фамилия, имя, отчество)

Воронаев Иван Геннадьевич

(фамилия, имя, отчество)

Про углеводы часто вспоминают с содроганием, считая, что они являются причиной лишнего веса и различных заболеваний. Если не злоупотреблять ими, ничего подобного не случится. Наоборот, роль углеводов в организме человека заключается в том, чтобы обеспечить его необходимой подзарядкой. Человек, не получающий их в достаточном количестве, выглядит болезненно и устало.

Что собой представляют углеводы для человека?

Углеводами принято называть соединения, образованные атомами углерода, кислорода и водорода. К ним относят крахмалосодержащие и сахаристые вещества. Каждый из них выполняет свою функцию. Ведь в их молекулах присутствуют разные элементы. Принято также классифицировать углеводы как:

простые, к которым относятся моносахариды и дисахариды;

сложные, в составе которых присутствуют полисахариды.

В первую группу входят: глюкоза; фруктоза; галактоза; лактоза; сахароза; мальтоза.

Их сладкий вкус в продуктах невозможно не заметить. Они стремительно растворяются в воде. Человеку эти вещества способны быстро дать энергию, т. к. усваиваются легко.

Во второй группе находятся крахмал, клетчатка, гликоген и пектин.

Функция в организме людей

Поступая в организм человека в основном из растительной пищи, углеводы не только позволяют высвободить из неё энергию. Их значение огромно! Существуют и другие немаловажные функции, которые выполняют углеводы организме человека:

Очистка желудочно-кишечного тракта. Не все вещества, входящие в продукты питания, полезны для организма человека. Благодаря клетчатке и другим углеводам, происходит самоочищение. В противном случае наступала бы интоксикация индивида.

Глюкоза позволяет питать ткани головного мозга, сердечной мышцы, участвует в образовании ключевого для работы печени компонента – гликогена.

Повышение иммунитета и защита организма. Гепарин предотвращает чрезмерную свёртываемость крови, а полисахариды способны наполнить кишечник необходимыми активными веществами для борьбы с инфекциями.

Строительство тела человека. Без углеводов невозможно появление некоторых видов клеток в организме. Синтез нуклеиновых кислот и клеточной мембраны является ярким примером.

Регуляция обменных процессов. Углеводы способны ускорять или замедлять окисление.

Помощь в расщеплении и усвоении белков и жиров, поступающих с пищей. Отметим, что принципы здорового питания учитывают сочетаемость различных видов углеводов с белками и жирами, чтобы их расщеплять было проще.

Чтобы углеводы помогали, а не вредили организму человека, необходимо употреблять их в ограниченном количестве.

Заболевания, вызванные переизбытком углеводов

Основная проблема, которую может получить человек при злоупотреблении углеводами, – нарушение обмена веществ. Он запускает уже другие нежелательные последствия, в частности:

уменьшение скорости расщепления питательных веществ;

нарушение гормонального фона;

повышение уровня отложения жиров за счёт перехода углеводов в жировые молекулы;

развитие или прогрессирование сахарного диабета, т. к. истощаются клетки поджелудочной железы, вырабатывающей инсулин.

Повышение уровня глюкозы в составе крови запускает ряд негативных изменений. В частности, увеличивается вероятность склеивания тромбоцитов, что приводит к образованию тромбов. Сами сосуды становятся хрупкими, что обостряет проблемы с сердцем и повышает риск инсульта или инфаркта.

В ротовой полости глюкоза и фруктоза в сочетании с кислотами способны создавать среду для развития патогенной микрофлоры. В итоге разрушается эмаль зубов, развивается кариес, а цвет становится непривлекательным.

Углеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты - пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы).

Содержание

1) Введение………………………………………………. 3
2) Углеводный обмен……………………………………….5
1. Синтез и превращения глюкозы в организме……. 5
2. Синтез и распад гликогена…………………………..6
3. Синтез и распад углеводсодержащих соединений. 7
4. Транспорт углеводов………………………………. 8
3) Заключение………………………………………………12

Вложенные файлы: 1 файл

анатомия реферат.doc

Краевое государственное бюджетное образовательное учреждение

среднего профессионального образования

по дисциплине: Анатомия

Углеводный обмен веществ в организме человека

  1. Синтез и превращения глюкозы в организме……. 5
  2. Синтез и распад гликогена…………………………..6
  3. Синтез и распад углеводсодержащих соединений. 7
  4. Транспорт углеводов………………………………. 8

Углеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты - пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы).

Моносахариды, основным из которых является глюкоза, всасываются в кровь и через воротную вену поступают в печень. Здесь фруктоза и галактоза превращаются в глюкозу. Внутриклеточная концентрация глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном поступлении в печень глюкозы она фосфорилируется и превращается в резервную форму ее хранения - гликоген. Количество гликогена может составлять у взрослого человека 150-200 г. В случае ограничения потребления пищи, при снижении уровня глюкозы в крови происходит расщепление гликогена и поступление глюкозы в кровь.

В течение первых 12 часов и более после приема пищи поддержание концентрации глюкозы крови обеспечивается за счет распада гликогена в печени. После истощения запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза - синтеза глюкозы из лактата или аминокислот. В среднем за сутки человек потребляет 400-500 г углеводов, из которых обычно 350 - 400 г составляет крахмал, а 50 - 100 r - моно- и дисахариды. Избыток углеводов депонируется в виде жира.

Синтез и превращения глюкозы в организме.

Один из наиболее важных углеводов — глюкоза — является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи — сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников. Этот процесс носит название глюконеогенеза и играет важную роль в поддержании гомеостаза. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.

Существуют два пути расщепления глюкозы в организме: гликолиз (фосфоролитический путь, путь Эмбдена — Мейергофа — Парнаса) и пентозофосфатный путь (пентозный путь, гексозомонофосфатный шунт). Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат – 6-фосфатглюконолактон – рибулозо-5-фосфат – рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление от углеродной цепи сахара по одному атому углерода в виде СО2. В то время как гликолиз играет важную роль не только в энергетическом обмене, но и в образовании промежуточных продуктов синтеза липидов, пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот (ряда коферментов).

Синтез и распад гликогена.

В синтезе гликогена — главного резервного полисахарида человека и высших животных — участвуют два фермента: гликогенсинтетаза (уридиндифосфат (УДФ) глюкоза: гликоген-4a- глюкозилтрансфераза), катализирующая образование полисахаридных цепей, и ветвящий фермент, образующий в молекулах гликогена так называемые связи ветвлении. Для синтеза гликогена необходимы так называемые затравки. Их роль могут выполнять либо глюкозиды с различной степенью полимеризации, либо белковые предшественники, к которым при участии особого фермента глюкопротеинсинтетазы присоединяются глюкозные остатки уридиндифосфатглюкозы (УДФ-глюкозы). Распад гликогена осуществляется фосфоролитическим (гликогенолиз) или гидролитическим путями. Гликогенолиз представляет собой каскадный процесс, в котором участвует ряд ферментов фосфорилазной системы — протеинкиназа, киназа фосфорилазы b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена обусловлен действием ряда ферментов, называемых амилазами (a-глюкозидазами). Известны a-, b- и g-амилазы. a-Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.

Синтез и распад углеводсодержащих соединений.

Синтез сложных сахаров и их производных происходит с помощью специфических гликозилтрансфераз, катализирующих перенос моносахаридов от доноров — различных гликозилнуклеотидов или липидных переносчиков к субстратам-акцепторам, которыми могут быть углеводный остаток, полипептид или липид в зависимости от специфичности трансфераз. Нуклеотидным остатком является обычно дифосфонуклеозид.

В организме человека и животных много ферментов, ответственных за превращение одних углеводов в другие, как в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях пентозофосфатного пути.

Ферментативное расщепление углеводсодержащих соединений происходит в основном гидролитическим путем с помощью гликозидаз, отщепляющих углеводные остатки (экзогликозидазы) или олигосахаридные фрагменты (эндогликозидазы) от соответствующих гликоконъюгатов. Гликозидазы являются чрезвычайно специфическими ферментами. В зависимости от природы моносахарида, конфигурации его молекулы (их D или L-изомеров) и типа гидролизуемой связи (a или b) различают a—D-маннозидазы, a—L-фукозидазы, ×b—D-галактозидазы и т.д. Гликозидазы локализованы в различных клеточных органеллах; многие из них локализованы в лизосомах. Лизосомные (кислые) гликозидазы отличаются от нейтральных не только локализацией в клетках, оптимальным для их действия значением рН и молекулярной массой, но и электрофоретической подвижностью и рядом других физико-химических свойств.

Гликозидазы играют важную роль в различных биологических процессах; они могут, например, оказывать влияние на специфический рост трансформированных клеток, на взаимодействие клеток с вирусами и др.

Имеются данные о возможности неферментативного гликозилирования белков in vivo, например гемоглобина, белков хрусталика, коллагена. Есть сведения, что неферментативное гликозилирование (гликирование) играет важную патогенетическую роль при некоторых заболеваниях (сахарном диабете, галактоземии и др.).

Переваривание углеводов начинается в ротовой полости при участии гидролитических ферментов слюны. Гидролиз ферментами слюны продолжается в желудке (сбраживание углеводов пищевого комка предотвращается соляной кислотой желудочного сока). В двенадцатиперстной кишке полисахариды пищи (крахмал, гликоген и др.) и сахара (олиго- и дисахариды) расщепляются при участии a-глюкозидаз и других гликозидаз сока поджелудочной железы до моносахаридов, которые всасываются в тонкой кишке в кровь. Скорость всасывания углеводов различна, быстрее всасываются глюкоза и галактоза, медленнее — фруктоза, манноза и другие сахара.

Транспорт углеводов через эпителиальные клетки кишечника и поступление в клетки периферических тканей осуществляются с помощью особых транспортных систем, функция которых заключается и переносе молекул сахаров через клеточные мембраны. Существуют особые белки-переносчики — пермеазы (транслоказы), специфические по отношению к сахарам и их производным. Транспорт углеводов может быть пассивным и активным. При пассивном транспорте перенос углеводов осуществляется по направлению градиента концентрации, так что равновесие достигается тогда, когда концентрации сахара в межклеточном веществе или межклеточной жидкости и внутри клеток выравниваются. Пассивный транспорт сахаров характерен для эритроцитов человека. При активном транспорте углеводы могут накапливаться в клетках и концентрация их внутри клеток становится выше, чем в окружающей клетки жидкости. Предполагают, что активное поглощение сахаров клетками отличается от пассивного тем, что последнее является Na+-независимым процессом. В организме человека и животных активный транспорт углеводов происходит главным образом в клетках эпителия слизистой оболочки кишечника и в извитых канальцах (проксимальных отделах нефрона) почек.

Регуляция углеводного обмена осуществляется при участии очень сложных механизмов, которые могут оказывать влияние на индуцирование или подавление синтеза различных ферментов У. о. либо способствовать активации или торможению их действия. Инсулин, катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез. Антагонист инсулина — глюкагон стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями. В регуляции глюконеогенеза принимают участие ацетил-КоА и восстановленный никотинамидадениндинуклеотид. Повышение содержания жирных кислот в плазме крови тормозит активность ключевых ферментов гликолиза. В регуляции ферментативных реакций У. о. важную цель играют ионы Са2+, непосредственно или при участии гормонов, часто в связи с особым Са2+-связывающим белком — калмодулином. В регуляции активности многих ферментов большое значение имеют процессы их фосфорилирования — дефосфорилирования. В организме существует прямая связь между У. о. и обменом белков , липидов и минеральных веществ .

Углеводный обмен или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
Синтез и распад гликогена в тканях (гликогенез и гликогенолиз), прежде всего в печени.

Прикрепленные файлы: 1 файл

Углеводный обмен.docx

Углеводный обмен или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:

Краткие сведения об углеводах

Переваривание и всасывание углеводов

Эпителиальные клетки кишечника способны всасывать только моносахариды. Поэтому процесс переваривания заключается в ферментативном гидролизе гликозидных связей в углеводах, имеющее олиго- или полисахаридное строение.

Переваривание углеводов в полости рта

В полости рта начинается расщепление крахмала (и гликогена) под действием фермента слюны — амилазы. Известны 3 вида амилаз, которые различаются главным образом по конечным продуктам их ферментативного действия:

  • α-амилаза
  • β-амилаза
  • γ-амилаза

α-Амилаза расщепляет в полисахаридах внутренние α-1,4-связи, поэтому её иногда называют эндоамилазой. Молекула α-амилазы содержит в своих активных центрах ионы Ca 2+ необходимые для ферментативной активности. Кроме того, характерной особенностью α-амилазы животного происхождения является способность активироваться одновалентными анионами. прежде всего Сl -

Структура α-амилазы слюнных желез. Катион кальция показан жёлтым цветом, анион хлора — зелёным.

Слюнная α-амилаза представляет собой смесь близких электрофоретически разделяемых изоферментов. Каждый из них — одноцепочечный полипептид (мол. масса 56000), к которому присоединен олигосахарид. Структура этого олигосахарида, а также число его молекул на одну молекулу белка и способ прикрепления к белку неизвестны. Удивительно, что не существует соответствующих ферментов в слюне некоторых приматов, например у бабуинов или резусов.

В ротовой полости не может происходить полное расщепление крахмала, так как действие фермента на крахмал кратковременно. Кроме того, амилаза слюны не расщепляет α- 1,6-гликозидные связи (связи в местах разветвлений), поэтому крахмал переваривается лишь частично с образованием крупных фрагментов — декстринов и небольшого количества мальтозы. Следует отметить, что амилаза слюны не гидролизует гликозидные связи в дисахаридах.

Под действием β-амилазы от крахмала отщепляется дисахарид мальтоза, то есть β-амилаза является экзоамилазой. Она обнаружена у высших растений где играет важную роль в мобилизации резервного (запасного) крахмала.

γ-Амилаза отщепляет один за другим глюкозные остатки от конца полигликозидной цепочки. Различают 2 вида γ-амилаз: кислые и нейтральные, в зависимости от того в какой области pH они проявляют максимальную активность. В органах и тканях человека и млекопитающих кислая γ-амилаза локализована в лизосомах, а нейтральная — в микросомах и гиалоплазме. Амилаза слюны является α-амилазой. Под влиянием этого фермента происходят первые фазы распада крахмала (или гликогена) с образованием декстринов (в небольшом количестве образуется и мальтоза). Затем пища смешанная со слюной попадает в желудок.

Желудочный сок не содержит ферментов расщепляющие сложные углеводы (например целлюлозу). В желудке действие α-амилазы слюны прекращается так как желудочное содержимое имеет очень кислую среду (pH 1,5 — 2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. Наиболее важная фаза распада крахмала (или гликогена) протекает в двенадцатиперстной кишке под действием α-амилазы поджелудочного сока. Здесь pH возрастает до нейтральных значений, при этих условиях α-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент завершает превращение крахмала и гликогена в мальтозу, начатое амилазой слюны.

Переваривание углеводов в кишечнике

Расщепление крахмала и гликогена до мальтозы в кишечнике происходит под действием 3-х ферментов:

  • панкреатической α-амилазы
  • амило-1,6-глюкозидазы
  • олиго-1,6-глюкозидазы

Образующаяся мальтоза оказывается только временным продуктом, так как она быстро гидролизуется под влиянием фермента мальтазы (α-глюкозидазы) на 2 молекулы глюкозы. Кишечный сок также содержит активную сахаразу, под действием которой образуются глюкоза и фруктоза.

Панкреатическая α-амилаза.

В двенадцатиперстной кишке рН среды желудочного содержимого нейтрализуется, так как секрет поджелудочной железы имеет рН 7,5-8,0 и содержит бикарбонаты (НСО3 - ). С секретом поджелудочной железы в кишечник поступает панкреатическая α-амилаза. Этот фермент гидролизует α-1,4-гликозидные связи в крахмале и декстринах.

Продукты переваривания крахмала на этом этапе — дисахарид мальтоза, содержащая 2 остатка глюкозы, связанные α-1,4-связью. Из тех остатков глюкозы, которые в молекуле крахмала находятся в местах разветвления и соединены α-1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, образуются олигосахариды, содержащие 3-8 остатков глюкозы, связанные α-1,4- и α-1,6-связями

α-Амилаза поджелудочной железы, так же, как α-амилаза слюны, действует как эндогликозидаза. Панкреатическая α-амилаза не расщепляет α-1,6-гликозидные связи в крахмале. Этот фермент также не гидролизует (3-1,4-гликозидные связи, которыми соединены остатки глюкозы в молекуле целлюлозы. Целлюлоза, таким образом, проходит через кишечник неизменённой. Тем не менее непереваренная целлюлоза выполняет важную функцию балластного вещества, придавая пище дополнительный объём и положительно влияя на процесс переваривания. Кроме того, в толстом кишечнике целлюлоза может подвергаться действию бактериальных ферментов и частично расщепляться с образованием спиртов, органических кислот и СО2. Продукты бактериального расщепления целлюлозы важны как стимуляторы перистальтики кишечника.

Мальтоза, изомальтоза и триозосахариды, образующиеся в верхних отделах кишечника из крахмала, — промежуточные продукты. Дальнейшее их переваривание происходит под действием специфических ферментов в тонком кишечнике. Дисахариды пищи сахароза и лактоза также гидролизуются специфическими дисахаридазами в тонком кишечнике.

Особенность переваривания углеводов в тонком кишечнике заключается в том, что активность специфических олиго- и дисахаридаз в просвете кишечника низкая. Но ферменты активно действуют на поверхности эпителиальных клеток кишечника.

Тонкий кишечник изнутри имеет форму пальцеобразных выростов — ворсинок, покрытых эпителиальными клетками. Эпителиальные клетки, в свою очередь, покрыты микроворсинками, обращёнными в просвет кишечника. Эти клетки вместе с ворсинками образуют щёточную каёмку, благодаря которой увеличивается поверхность контакта гидролитических ферментов и их субстратов в содержимом кишечника. На 1 мм 2 поверхности тонкой кишки у человека приходится 80-140 млн ворсинок.

Ферменты, расщепляющие гликозидные связи в дисахарида х (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Всасывание моносахаридов в кишечнике

Моносахариды образовавшиеся в результате переваривания, всасываются эпителиальными клетками тощей и подвздошной кишок с помощью специальных механизмов транспорта через мембраны клеток.

Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться разными способами: путём облегчённой диффузии и активного транспорта. В случае активного транспорта глюкоза и Na + проходят через мембраны с люминальной стороны, связываясь с разными участками белка-переносчика. При этом Na + поступает в клетку по градиенту концентрации, и одновременно глюкоза транспортируется против градиента концентрации (вторично-активный транспорт). Следовательно, чем больше градиент Na + , тем больше поступление глюкозы в энтероциты. Если концентрация Na + во внеклеточной жидкости уменьшается, транспорт глюкозы снижается. Градиент концентрации Na + , являющийся движущей силой активного сим-порта, создаётся работой Nа + ,К + -АТФ-азы. Перенос в клетки слизистой оболочки кишечника по механизму вторично-активного транспорта характерен также для галактозы.

После всасывания моносахариды (главным образом, глюкоза) покидают клетки слизистой оболочки кишечника через мембрану, обращённую к кровеносному капилляру, с помощью облегчённой диффузии. Часть глюкозы (более половины) через капилляры кишечных ворсинок попадает в кровеносную систему и по воротной вене доставляется в печень. Остальное количество глюкозы поступает в клетки других тканей.

Транспорт глюкозы из крови в клетки

Потребление глюкозы клетками из кровотока происходит также путём облегчённой диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента её концентрации. Исключение составляют клетки мышц и жировой ткани, где облегчённая диффузия регулируется инсулином (гормон поджелудочной железы). В отсутствие инсулина плазматическая мембрана этих клеток непроницаема для глюкозы, так как она не содержит белки-переносчики( транспортёры) глюкозы. Транспортёры глюкозы называют также рецепторами глюкозы. Например, описан транспортёр глюкозы, выделенный из эритроцитов. Это трансмембранный белок, полипептидная цепь которого построена из 492 аминокислотных остатков и имеет доменную структуру. Полярные домены белка расположены по разные стороны мембраны, гидрофобные располагаются в мембране, пересекая её несколько раз. Транспортёр имеет участок связывания глюкозы на внешней стороне мембраны. После присоединения глюкозы конформация белка изменяется, в результате чего глюкоза оказывается связанной с белком в участке, обращённом внутрь клетки. Затем глюкоза отделяется от транспортёра, переходя внутрь клетки. Считают, что способ облегчённой диффузии по сравнению с активным транспортом предотвращает транспорт ионов вместе с глюкозой, если она транспортируется по градиенту концентрации.

Нарушения переваривания и всасывания углеводов

В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:

  1. дефекты ферментов, участвующих в гидролизе углеводов в кишечнике;
  2. нарушение всасывания продуктов переваривания углеводов в клетки слизистой оболочки кишечника.

В обоих случаях возникает осмотическая диарея, которую вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды. Эти невостребованные углеводы поступают в дистальные отделы кишечника, изменяя осмотическое давление содержимого кишечника. Кроме того, оставшиеся в просвете кишечника углеводы частично подвергаются ферментативному расщеплению микроорганизмами с образованием органических кислот и газов. Всё вместе приводит к притоку воды в кишечник, увеличению объёма кишечного содержимого, усилению перистальтики, спазмам и болям, а также метеоризму.

Углеводы и их обмен ( реферат , курсовая , диплом , контрольная )

В результате изучения материала данной главы студент должен:

  • • определение, биологическую роль, принципы классификации углеводов;
  • • карбонильные и циклические формы моносахаридов;
  • • различия в строении восстанавливающих и невосстанавливающих углеводов и реакции для них;
  • • строение дисахаридов, гомои гетерополисахаридов;
  • • процессы, протекающие при переваривании и всасывания углеводов;
  • • основные этапы промежуточного обмена углеводов (дихотомический и аиотомичсский пути окисления глюкозы, брожение углеводов, биосинтез олигои полисахаридов);
  • • вопросы регуляции и патологии углеводного обмена;
  • • описывать химические свойства моно-, дии полисахаридов;
  • • объяснять динамические превращения углеводов в процессе обмена веществ с помощью уравнений реакций;
  • • ходом проведения опытов, обнаруживающих углеводы и их производные в различных биологических средах;
  • • методами определения массовой доли углеводов в различных биологических жидкостях и пищевых продуктах.

Углеводы получили свое название потому, что большинство из них обладает молекулярной формулой Cv(H20)y/, т. е. буквально — это гидраты углерода. Хотя для многих производных углеводов, например для аминоили дезоксисахаров, эта формула не приемлема, она наглядно иллюстрирует состав простых углеводов, которые синтезируются растительными организмами из С02 и Н20. Этот процесс катализируется растительным пигментом хлорофиллом и называется фотосинтез, так как протекает с использованием квантов солнечного света. Он описывается простой схемой:

Углеводы и их обмен.

Поглощенная солнечная энергия запасается в химических связях углеводов и используется в дальнейшем разными организмами для своей жизнедеятельности.

Углеводы часто называют сахарами, так как многие из них сладкие на вкус.

Углеводы выполняют энергетическую, структурную, защитную, гемостатическую, опорную, обезвреживающую и другие функции. Чтобы понять, как им удастся проявлять такое биохимическое разнообразие, следует разобраться в строении молекул углеводов и их основных свойствах.

Углеводы, поступающие с продуктами, обычно подразделяют на три группы, но числу структурных единиц (рис. 10.1).

Классификация пищевых углеводов по числу моносахаридных остатков.

Рис. 10.1. Классификация пищевых углеводов по числу моносахаридных остатков.

Mono- и дисахариды, состоящие из одного или двух углеводных остатков соответственно, имеют сладкий вкус и растворимы в воде. Они содержатся в ягодах, фруктах, овощах, соках, меде, молоке и молочных продуктах, кондитерских изделиях.

Читайте также: