Типы химических связей реферат

Обновлено: 05.07.2024

Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионная, водородная и металлическая

1.Металлическая связь.

. Металлическая связь, химическая связь, обусловленная взаимодействием электронного газа (валентные электроны) в металлах с остовом положительно заряженных ионов кристаллической решетки. Идеальная модель металлической связи отвечает образованию частично заполненных валентными электронами металла зон энергетических уровней, называемых зонами проводимости. При сближении атомов, образующих металл, атомные орбитали валентных электронов переходят в орбитали, делокализованные по кристаллич. решетке аналогично делокализованным p-орбиталям сопряженных соединений. Количественно описать металлическую связь можно только в рамках квантовой механики, качественно образование металлической связи можно понять исходя из представлений о ковалентной связи.

При сближении двух атомов металла, например Li, образуется ковалентная связь, при этом происходит расщепление каждого энергетич. уровня валентного электрона на два. Когда N атомов Li образуют кристаллическую решетку, перекрывание электронных облаков соседних атомов приводит к тому, что каждый энергетич. уровень валентного электрона расщепляется на N уровней, расстояния между которыми из-за большой величины N настолько малы, что их совокупность может считаться практически непрерывной зоной энергетических уровней, имеющей конечную ширину. Поскольку каждый атом участвует в образовании большего числа связей, чем, например, в двухатомной молекуле при том же числе валентных электронов, то минимум энергии системы (или максимум энергии связи) достигается при расстояниях больших, чем в случае двухцентровой связи в молекуле. Межатомные расстояния в металлах заметно больше, чем в соед. с ковалентной связью (металлич. радиус атомов всегда больше ковалентного радиуса), а координационное число (число ближайших соседей) в кристаллических решетках металлов обычно 8 или больше 8. Для наиболее часто встречающихся кристаллических структур координационные числа равны 8 (объемноцентрированная кубическая), 12 (гранецентрированная кубическая и гексагональная плотно-упакованная). Расчеты параметров металлических решеток с использованием ковалентных радиусов дают заниженные результаты. Так, расстояние между атомами Li в молекуле Li2 (ковалентная связь) равно 0,267 нм, в металле Li-0,304 нм. Каждый атом Li в металле имеет 8 ближайших соседей, а на расстоянии, в раз большем,-еще 6. Энергия связи в расчете на один атом Li в результате увеличения числа ближайших соседей увеличивается с 0,96.10-19 Дж для Li2 до 2,9.10-19 Дж для кристаллич. Li.

Во многих металлах металлическая связь между атомами включает вклады ионной или ковалентной составляющей. Особенности металлической связи у каждого металла могут быть связаны, например, с электростатическим отталкиванием ионов друг от друга с учетом распределения электрических зарядов в них, с вкладом в образование связи электронов внутренних незаполненных оболочек переходных металлов, с корреляцией движения электронов в электронном газе и некоторыми другими причинами.

Металлическая связь характерна не только для металлов и их сплавов, но и для интерметаллических соединений, она сохраняется не только в твердых кристаллах, но и в расплавах и в аморфном состоянии.

В 19 веке валентная связь изображалась чёрточкой между символами двух химических элементов. Природа этой связи была совершенно неизвестна. После открытия электрона делались многочисленные попытки развить электронную теорию химической связи. Наиболее успешными были работы Г. Н. Льюиса, который в 1916 году предложил рассматривать образование химической связи, называемой теперь ковалентной связью, как результат того, что пара электронов становится общей для двух атомов. Разработка квантовой механики (1925) и использование многих экспериментальных методов (молекулярной спектроскопии, рентгенографии кристаллов, газовой электронографии, методов изучения магнитных свойств) для определения длин связей (межатомных расстояний), углов между связями, числа неспаренных электронов и других структурных параметров молекул и кристаллов привели к более глубокому пониманию природы химических связей.

Основными параметрами химической связи является её длина, прочность и валентные углы, характеризующие строение веществ, которые образованы из отдельных атомов.

Длина связи - это межъядерное расстояние между химическими связанными атомами.

Угол между воображаемыми прямыми, проходящими через ядра химически связанных атомов, называется валентным углом. Энергия связи - энергия, необходимая для разрыва такой связи.

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов -- это внешние электроны, у d- элементов -- внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

Под химической связью в химии понимается взаимное сцепление атомов в молекуле и кристаллической решетке, в результате действия силы притяжения, существующей между атомами. Именно благодаря химическим связям происходит образование различных химических соединений, в этом заключается природа химической связи.


  1. Виды химической связи

    1. Металлическая связь

    При сближении двух атомов металла, например, Li - образуется ковалентная связь, при этом происходит расщепление каждого энергетического уровня валентного электрона на два. Когда N атомов Li образуют кристаллическую решетку, перекрывание электронных облаков соседних атомов приводит к тому, что каждый энергетический уровень валентного электрона расщепляется на N уровней, расстояния между которыми из-за большой величины N настолько малы, что их совокупность может считаться практически непрерывной зоной энергетических уровней, имеющей конечную ширину. Поскольку каждый атом участвует в образовании большего числа связей, чем, например, в двухатомной молекуле при том же числе валентных электронов, то минимум энергии системы (или максимум энергии связи) достигается при расстояниях больших, чем в случае двуцентровой связи в молекуле. Межатомные расстояния в металлах заметно больше, чем в соединениях с ковалентной связью (металлический радиус атомов всегда больше ковалентного радиуса), а координационное число (число ближайших соседей) в кристаллических решетках металлов обычно 8 или больше 8. Для наиболее часто встречающихся кристаллических структур координационные числа равны 8 (объёмно-центрированная кубическая), 12 (гранецентрированная кубическая и гексагональная плотноупакованная). Расчеты параметров металлических решеток с использованием ковалентных радиусов дают заниженные результаты. Так, расстояние между атомами Li в молекуле Li2 (ковалентная связь) равно 0,267 нм, в металле Li-0,304 нм. Каждый атом Li в металле имеет 8 ближайших соседей, а на расстоянии, в 6 раз больше. Энергия связи в расчете на один атом Li в результате увеличения числа ближайших соседей увеличивается с 0,96.10-19 Дж для Li2 до 2,9.10-19 Дж для кристаллического Li.

    В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп — соответственно, халькогенов и галогенов). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.


    Рис. 1. Ионная связь


    Рис. 2. Ионная связь в молекуле поваренной соли (NaCl)

    Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях.

    Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов. Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается. Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ОН-групп, в частности, триэтиламин N (С 2 Н 5 ) 3 ); растворимые основания называют щелочами.

    Водные растворы кислот вступают в характерные реакции:

    а) с оксидами металлов — с образованием соли и воды;

    б) с металлами — с образованием соли и водорода;

    в) с карбонатами — с образованием соли, СO 2 и Н 2 O.

    Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН. Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

    В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание — вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

    Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:


    Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

    Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте — сильное сопряженное основание.

    Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака — кислотой.

    1) СН 3 СООН + Н 2 O ↔ Н 3 O + + СН 3 СОО. Здесь молекула уксусной кислоты доминирует протон молекуле воды;

    2) NH 3 + Н 2 O ↔ NH 4 + + ОН. Здесь молекула аммиака акцептирует протон от молекулы воды.

    Таким образом, вода может образовывать две сопряженные пары:

    1) Н 2 O (кислота) и ОН (сопряженное основание)

    2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

    В первом случае вода доминирует протон, а во втором — акцептирует его.

    Такое свойство называется амфипротонностью. Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными. В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

    Сила этих взаимодействий зависит от природы молекул.

    Выделяют взаимодействия трех типов: постоянный диполь — постоянный диполь (диполь-дипольное притяжение); постоянный диполь — индуцированный диполь (индукционное притяжение); мгновенный диполь — индуцированный диполь (дисперсионное притяжение, или лондонские силы)


    Рис. 3. Вандерваальсовая связь

    Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3, SO 2, Н 2 O, C 6 H 5 Cl), причем сила связи составляет 1-2 Дебая (1Д = 3,338 × 10 30 кулон-метра — Кл × м).

    В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро — протон — оголяется и перестает экранироваться электронами.

    Поэтому атом превращается в крупный диполь.



    Рис.4. Водородная связь

    Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы — внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 4).


      1. Водородная связь

        1. Ковалентная связь

        • Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

        • Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.

        • Прочность ковалентной связи -- это свойства характер длинной связи (межъядерное пространство) и энергии энергией связи.

        • Насыщаемость ковалентной связи -- это способность атома участвовать только в определенном числе ковалентной связи, насыщаемость характеризует валентностью атома. Количественные меры валентности являются число не спаренных электронов у атома в основном и в возбужденном состоянии.

        • Гибридизация ковалентной связи -- при гибридизации происходит смещение атомных орбиталей, т.е. происходит выравнивание по энергии и по форме. Существует sp, sp2, sp3 --гибридизация. sp -- форма молекулы линейная (угол 1800), sp2 -- форма молекулы плоская треугольная (угол 1200), sp3 - форма тетраэдрическая (угол 109028).

        • Кратность ковалентной связи или делоколизация связи -- Число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия.

        1. Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

        1. Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).


        Рис. 6. Ковалентная полярная связь

        Маррел Дж., Кеттл С., Теддер Дж. Химическая связь. М.: Мир, 1980. 384 с.

        Пиментел Г., Спратли Р. Как квантовая механика объясняет химическую связь. Пер. с англ. М.: Мир, 1973. 332 с.

        Рюденберг К. Физическая природа химической связи. М.: Мир, 1964. 164 c.

        Яцимирский К. Б., Яцимирский В. К. Химическая связь. Киев: Вища школа, 1975. 304 c.

        Краснов К. С. Молекулы и химическая связь. 2-ое изд. М: Высшая школа, 1984. 295 с.

        Татевский В. М. Квантовая механика и теория строения молекул. М.: Изд-во МГУ, 1965. 162 с. (§§ 30-31)

        Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. 532 c. ISBN 5-03-003363-7 Глава 7. Модели химической связи.

        * Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

        Типы химических связей. Электростатическая, ковалентная связь. Ковалентная связь в органических соединениях. Строение метана. Строение молекул с N, O-атомами с неподеленной парой электронов. Строение и физико-химические свойства органических соединений.

        Связь между частицами лучше всего определять через энергию, которую система теряет при образовании соединения - аддукта.

        1. Электростатическая связь

        2. КОВАЛЕНТНАЯ СВЯЗЬ - связь, образованная двумя электронами

        3. Структуры Льюиса

        Связь между атомами обеспечивается электронными парами (американский химик Джилберт Льюис)

        Некоторые свойства ковалентных связей (длина связи, полярность связи и энергия связи)

        2 - участок притяжения, вызванного индуцированной поляризацией (дисперсионые силы Лондона).

        Половина расстояния, разделяющего атомы в точке 3, соответствует вандерваальсову радиусу.

        Атом или группа

        Вандерваальсов радиус, Е

        4.2 Полярность связи

        Диоксид углерода, представляющий собой линейную молекулу, имеет нулевой дипольный момент, а дипольный момент диоксида серы, нелинейной молекулы, равен 1,6 Д.

        Дипольный момент может быть рссчитан по формуле:

        l-расстояние между центрами положительных и отрицательных зарядов.

        Дипольный момент измеряют в дебаях (Д). 1 дебай равен 10-18 е·см

        Средняя величина дипольных моментов связей и функциональных групп

        Дипольный момент, Д

        4.3. Энергия связи

        X-Y ® X· + Y· гомолитическое расщепление

        Энергия, требующаяся для гомолитического расщепления отдельной связи и образования двух нейтральных атомов, называется энергией диссоциации (ккал/моль).

        Средняя величина энергии, необходимая для разрыва отдельной связи называется энергией связи.

        Энергия связей, ккал/моль

        Энергетический профиль образования А2

        атомные орбитали углерода

        Элементы пространства, в котором наиболее вероятно нахождение электрона, называют орбиталью. Орбитали отличаются формой и энергией.

        Рассмотрение электронного строения метана дает основание утверждать, что углерод 2-х валентен и должен образовывать соединения строения СН2, однако в метане углерод соединение 4 атомами углерода. Чтобы получить 4-х валентный углерод, необходимо иметь следующую схему распределения электронов:

        7. Строение молекул с n, o-атомами с неподеленной парой электронов

        Энергия связи 103 ккал/моль (431,24103Дж/моль)

        Энергия связи 103 ккал/моль (431,24103 Дж/моль)

        Наличие свободных электронов у аммиака и воды придает им основные свойства, более сильные у аммиака.

        8. Строение и физико-химические свойства

        Т пл., Т кип., растворимость.

        Физические свойства дают информацию о строении вещества. Строение позволяет предсказать физические свойства.


        Какая сила удерживает вместе атомы в молекуле вещества и почему они не разбегаются в разные стороны? Эта сила называется химической связью, школьники узнают о ней в 8 классе. Еще Ньютон предположил, что она имеет электростатическую природу, но подробнее в этом разобрались лишь в начале ХХ века. Сейчас расскажем, что такое химическая связь и какой она бывает.

        О чем эта статья:

        Статья находится на проверке у методистов Skysmart.
        Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

        Химическая связь и строение вещества

        Химическая связь — это взаимодействие между атомами в молекуле вещества, в ходе которого два электрона (по одному от каждого атома) образуют общую электронную пару либо электрон переходит от одного атома к другому.

        Как понятно из определения химической связи, при взаимодействии двух атомов один из них может притянуть к себе внешние электроны другого. Эта способность называется электроотрицательностью (ЭО). Атом с более высокой электроотрицательностью (ЭО) при образовании химической связи с другим атомом может вызвать смещение к себе общей электронной пары.

        Существует несколько систем измерения ЭО, но пользоваться для расчетов можно любой из них. Для образования химической связи важно не конкретное значение ЭО, а разница между этими показателями у двух атомов.

        Механизм образования химической связи

        Существует два механизма взаимодействия атомов:

        обменный — предполагает выделение по одному внешнему электрону от каждого атома и соединение их в общую пару;

        донорно-акцепторный — происходит, когда один атом (донор) выделяет два электрона, а второй атом (акцептор) принимает их на свою свободную орбиталь.

        Независимо от механизма химическая связь между атомами сопровождается выделением энергии. Чем выше ЭО атомов, т. е. их способность притягивать электроны, тем сильнее и этот энергетический всплеск.

        Энергией связи называют ту энергию, которая выделяется при взаимодействии атомов. Она определяет прочность химической связи и по величине равна усилию, необходимому для ее разрыва.

        Также на прочность влияют следующие показатели:

        Длина связи — расстояние между ядрами атомов. С уменьшением этого расстояния растет энергия связи и увеличивается ее прочность.

        Кратность связи — количество электронных пар, появившихся при взаимодействии атомов. Чем больше это число, тем выше энергия и, соответственно, прочность связи.

        На примере химической связи в молекуле водорода посмотрим, как меняется энергия системы при сокращении расстояния между ядрами атомов. По мере сближения ядер электронные орбитали этих атомов начинают перекрывать друг друга, в итоге появляется общая молекулярная орбиталь. Неспаренные электроны через области перекрывания смещаются от одного атома в сторону другого, возникают общие электронные пары. Все это сопровождается нарастающим выделением энергии. Сближение происходит до тех пор, пока силу притяжения не компенсирует сила отталкивания одноименных зарядов.

        Зависимость энергии системы от расстояния между ядрами атомов

        Основные типы химических связей

        Различают четыре вида связей в химии: ковалентную, ионную, металлическую и водородную. Но в чистом виде они встречаются редко, обычно имеет место наложение нескольких типов химических связей. Например, в молекуле фосфата аммония (NH4)3PO4присутствует одновременно ионная связь между ионами и ковалентная связь внутри ионов.

        Также отметим, что при образовании кристалла от типа связи между частицами зависит, какой будет кристаллическая решетка. Если это ковалентная связь — образуется атомная решетка, если водородная — молекулярная решетка, а если ионная или металлическая — соответственно, будет ионная или металлическая решетка. Таком образом, влияя на тип кристаллической решетки, химическая связь определяет и физические свойства вещества: твердость, летучесть, температуру плавления и т. д.

        Основные характеристики химической связи:

        насыщенность — ограничение по количеству образуемых связей из-за конечного числа неспаренных электронов;

        полярность — неравномерная электронная плотность между атомами и смещение общей пары электронов к одному из них;

        направленность — ориентация связи в пространстве, расположение орбиталей атомов под определенным углом друг к другу.

        Ковалентная связь

        Как уже говорилось выше, этот тип связи имеет два механизма образования: обменный и донорно-акцепторный. При обменном механизме объединяются в пару свободные электроны двух атомов, а при донорно-акцепторном — пара электронов одного из атомов смещается к другому на его свободную орбиталь.

        Ковалентная связь — это процесс взаимодействия между атомами с одинаковыми или близкими радиусами, при котором возникает общая электронная пара. Если эта пара принадлежит в равной мере обоим взаимодействующим атомам — это неполярная связь, а если она смещается к одному из них — это полярная связь.

        Как вы помните, сила притяжения электронов определяется электроотрицательностью атома. Если у двух атомов она одинакова, между ними будет неполярная связь, а если один из атомов имеет большую ЭО — к нему сместится общая электронная пара и получится полярная химическая связь.

        В зависимости от того, сколько получилось электронных пар, химические связи могут быть одинарными, двойными или тройными.

        Ковалентная неполярная связь образуется в молекулах простых веществ, неметаллов с одинаковой ЭО: Cl2, O2, N2, F2 и других.

        Посмотрим на схему образования этой химической связи. У атомов водорода есть по одному внешнему электрону, которые и образуют общую пару.

        Схема образования ковалентной неполярной связи

        Ковалентная полярная связь характерна для неметаллов с разным уровнем ЭО: HCl, NH3,HBr, H2O, H2S и других.

        Посмотрим схему такой связи в молекуле хлороводорода. У водорода имеется один свободный электрон, а у хлора — семь. Таким образом, всего есть два неспаренных электрона, которые соединяются в общую пару. Поскольку в данном случае ЭО выше у хлора, эта пара смещается к нему.

        Схема образования ковалентной полярной связи

        Другой пример — молекула сероводорода H2S. В данном случае мы видим, что каждый атом водорода имеет по одной химической связи, в то время как атом серы — две. Количество связей определяет валентность атома в конкретном соединении, поэтому валентность серы в сероводороде — II.

        Схема образования ковалентной полярной связи на примере сероводорода

        Число связей, которые могут быть у атома в молекуле вещества, называется валентностью.

        Характеристики ковалентной связи:

        Примеры ковалентных связей

        Ионная связь

        Как понятно из названия, данный тип связи основан на взаимном притяжении ионов с противоположными зарядами. Он возможен между веществами с большой разницей ЭО — металлом и неметаллом. Механизм таков: один из атомов отдает свои электроны другому атому и заряжается положительно. Второй атом принимает электроны на свободную орбиталь и получает отрицательный заряд. В результате этого процесса образуются ионы.

        Ионная связь — это такое взаимодействие между атомами в молекуле вещества, итогом которого становится образование и взаимное притяжение ионов.

        Разноименно заряженные ионы стремятся друг к другу за счет кулоновского притяжения, которое одинаково направлено во все стороны. Благодаря этому притяжению образуются ионные кристаллы, в решетке которых заряды ионов чередуются. У каждого иона есть определенное количество ближайших соседей — оно называется координационным числом.

        Обычно ионная связь появляется между атомами металла и неметалла в таких соединениях, как NaF, CaCl2, BaO, NaCl, MgF2, RbI и других. Ниже схема ионной связи в молекуле хлорида натрия.

        Схема образования ионной связи

        Все соли образованы с помощью ионных связей, поэтому в задачах, где нужно определить тип химической связи в веществах, в качестве подсказки можно использовать таблицу растворимости.

        Характеристики ионной связи:

        не имеет направленности.

        Ионная связь

        Ковалентная и ионная связь в целом похожи, и одну из них можно рассматривать, как крайнее выражение другой. Но все же между ними есть существенная разница. Сравним эти виды химических связей в таблице.

        Характеризуется появлением электронных пар, принадлежащих обоим атомам.

        Характеризуется появлением и взаимным притяжением ионов.

        Общая пара электронов испытывает притяжение со стороны обоих ядер атомов.

        Ионы с противоположными зарядами подвержены кулоновскому притяжению.

        Имеет направленность и насыщенность.

        Ненасыщенна и не имеет направленности.

        Количество связей, образуемых атомом, называется валентностью.

        Количество ближайших соседей атома называется координационным числом.

        Образуется между неметаллами с одинаковой или не сильно отличающейся ЭО.

        Образуется между металлами и неметаллами — веществами со значимо разной ЭО.

        Металлическая связь

        Свободные электроны мигрируют от одного иона к другому, временно соединяясь с ними и снова отрываясь в свободное плавание. Этот механизм по своей природе имеет сходство с ковалентной связью, но взаимодействие происходит не между отдельными атомами, а в веществе.

        Металлическая связь

        Характеристики металлической связи:

        Металлическая связь присуща как простым веществам — таким как Na, Ba, Ag, Cu, так и сложным сплавам — например, AlCr2, CuAl11Fe4, Ca2Cu и другим.

        Схема металлической связи:

        Схема образования металлической связи

        M — металл,

        n — число свободных внешних электронов.

        К примеру, у железа в чистом виде на внешнем уровне есть два электрона, поэтому его схема металлической связи выглядит так:

        Связь в молекуле железа

        Обобщим все полученные знания. Таблица ниже описывает кратко химические связи и строение вещества.

        Типы химической связи

        Водородная связь

        Данный тип связи в химии стоит отдельно, поскольку он может быть как внутри молекулы, так и между молекулами. Как правило, у неорганических веществ эта связь происходит между молекулами.

        Водородная связь образуется между молекулами, содержащими водород. Точнее, между атомами водорода в этих молекулах и атомами с большей ЭО в других молекулах вещества.

        Объясним подробнее механизм этого вида химической связи. Есть молекулы А и В, содержащие водород. При этом в молекуле А есть электроотрицательные атомы, а в молекуле В водород имеет ковалентную полярную связь с другими электроотрицательными атомами. В этом случае между атомом водорода в молекуле В и электроотрицательным атомом в молекуле А образуется водородная связь.

        Такое взаимодействие носит донорно-акцепторный характер. Донором электронов в данном случае выступают электроотрицательные элементы, а акцептором — водород.

        Графически водородная связь обозначается тремя точками. Ниже приведена схема такого взаимодействия на примере молекул воды.

        Схема образования водородной связи

        В отдельных случаях водородная связь может образоваться внутри молекулы. Это характерно для органических веществ: многоатомных спиртов, углеводов, белковых соединений и т. д.

        Характеристики водородной связи:

        Водородная связь

        Кратко о химических связях

        Итак, самое главное. Химической связью называют взаимодействие атомов, причиной которого является стремление системы приобрести устойчивое состояние. Во время взаимодействия свободные внешние электроны атомов объединяются в пары либо внешний электрон одного атома переходит к другому.

        Образование химической связи сопровождается выделением энергии. Эта энергия растет с увеличением количества образованных электронных пар и с сокращением расстояния между ядрами атомов.

        Основные виды химических связей: ковалентная (полярная и неполярная), ионная, металлическая и водородная. В отличие от всех остальных водородная ближе к молекулярным связям, поскольку может быть как внутри молекулы, так и между разными молекулами.

        Как определить тип химической связи:

        Ковалентная полярная связь образуется в молекулах неметаллов между атомами со сходной ЭО.

        Ковалентная неполярная связь имеет место между атомами с разной ЭО.

        Ионная связь ведет к образованию и взаимному притяжению ионов. Она происходит между атомами металла и неметалла.

        Водородная связь появляется при условии, что есть атом с высокой ЭО и атом водорода, связанный с другой электроотрицательной частицей ковалентной связью.

        Химическая связь и строение молекулы: типом химической связи определяется кристаллическая решетка вещества: ионная, металлическая, атомная или молекулярная.

        Читайте также: