Тиксотропия глинистых грунтов реферат

Обновлено: 04.07.2024

Факультет: Гидротехническое специальное строительство.

Р Е Ф Е Р А Т

По дисциплине: Механика грунтов.

2. Состав, строение и состояние грунтов.

2.1 Грунтовые основания. Происхождение грунтов.

2.2 Состав грунтов.

2.3 Форма, размеры и взаимное расположение частиц в грунте.

2.4 Структурные связи между частицами грунта.

3. Физические характеристики, классификация грунтов, строение оснований.

3.1 Основные физические характеристики грунтов.

3.2 Классификация грунтов.

3.3 О связи физических и механических характеристик грунтов.

3.4 Геологическое строение оснований.

Механика грунтов, основания и фундаменты вместе с инженерной геологией и охраной природной среды составляют особый цикл строительных дисциплин. Предметом его изучения являются материалы, как правило, природного происхождения – грунты и их взаимодействие с сооружениями. Если конструкционные материалы приготавливаются технологами так, чтобы они обладали заданными строительными свойствами, то грунты каждой строительной площадки имеют самостоятельную историю образования. Состав, строение и свойства грунтов разных строительных площадок определены природой и могут существенно различаться, требуя каждый раз специального изучения.

Поведение грунтов под нагрузками сопровождается сложными процессами, во многом отличающимися от поведения конструкционных материалов. Это потребовало разработки специальных экспериментальных методов и теоретического аппарата механики грунтов для описания процессов их деформирования и разрушения.

Нормальная эксплуатация здания или сооружения во многом зависит от того, насколько правильно запроектировано и осуществлено его взаимодействие с основанием. Это же в значительной мере влияет на стоимость и сроки строительства.

Поэтому цель настоящего курса – научить будущих инженеров-строителей обоснованию и принятию оптимальных решений по устройству оснований и фундаментов зданий и сооружений промышленного и гражданского назначения в различных инженерно-геологических условиях.

Курс состоит из двух частей.

Механика грунтов, основания и фундаменты неразрывно связаны с инженерной геологией, изучающей верхнюю часть земной коры как среду инженерной деятельности человека. Для понимания механики грунтов необходимо знать дисциплины механико-математического цикла: сопротивление материалов, теорию упругости, пластичности и ползучести, строительную механику, владеть методами математического анализа. Проектирование оснований и фундаментов требует также знания строительных конструкций, технологии строительного производства. Техники безопасности, экономики и организации строительства. Развитие автоматизированного проектирования фундаментов связано с умением специалистов работать с современными ЭВМ, прежде всего с персональными компьютерами.

2. Состав, строение и состояние грунтов.

2.1 Грунтовые основания. Происхождение грунтов.

Всякое сооружение покоится на грунтовом основании. В зависимости от геологического строения участка застройки строение основания даже расположенных вблизи сооружений может быть различным (рис. 1.1). Обычно основание состоит из нескольких типов грунтов, которые определенным образом сочетаются в пространстве (сооружения А, В, Г, Д на рис. 1.1). В частном случае основание может состоять из грунта одного типа (сооружение Б на рис. 1.1).

Сооружение и основание составляют единую систему. Свойства грунтов основания, их поведение под нагрузками от сооружения во многом определяют прочность, устойчивость и нормальную эксплуатацию сооружения. Поэтому инженер-строитель должен хорошо понимать, что представляют собой грунты, каковы их особенности по сравнению с другими конструкционными материалами (бетон, железобетон, металл, кирпич и т.п.), каким образом залегают грунты в основании сооружений, что определяет свойства грунтов и грунтовых оснований.

Грунтом называют всякую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводиться, или материала для сооружения.

Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом, структурой и текстурой.

Под с о с т а в о м подразумевают перечень минералов, составляющих породу. С т р у к т у р а - это размер, форма и количественное соотношение слагающих породу частиц. Т е к с т у р а - пространственное расположение элементов грунта, определяющее его строение.

Горная порода, а следовательно, и грунт представляют собой не случайное скопление минералов, а закономерную определенным образом построенную совокупность. Это имеет исключительно большое значение для строительства. Действительно, совокупностей минералов может быть много. Закономерно построенных совокупностей горных пород в природе выделяется большое, но ограниченное количество. Инженерная геология изучает закономерности образования и свойства горных пород как грунтов. Наличие в природе однотипных грунтов, широко распространенных в разных частях Земли, служит основанием для разработки стандартных приемов строительства и применения типовых конструкций фундаментов. Так. Существование слабых водонасыщенных грунтов – илов – уже в древности привело к идее устройства фундаментов; особые свойства не менее широко распространенного лессового грунта потребовали разработки специальных способов строительства и т.п. В связи с этим, прежде чем рассматривать методы расчета и проектирования оснований и фундаментов, необходимо изучить основные типы грунтов, их физические свойства, особенности строения оснований.

Закономерности состава и строения грунтов теснейшим образом связаны с условиями их происхождения. В инженерной геологии происхождение грунтов детально изучено в разных условий. Происхождение положено в основу классификации грунтов (ГОСТ 25100-82).

Все грунты разделяются на естественные – магматические, осадочные,

метаморфические – и искусственные – уплотненные, закрепленные в естественном состоянии, насыпные и намывные.

Магматические (изверженные) горные породы образуются при медленном остывании и отвердении огненно-жидких расплавов магмы в верхних слоях земной коры (интрузивные, или глубинные, породы-граниты, диориты, габбро и др.), а также при быстром остывании излившегося на поверхность земли расплава (эффузивные, или излившиеся, - бальзаты, порфиры и др.)

Осадочные горные породы образуются в результате выветривания, перемещения, осаждения и уплотнения продуктов разрушения исходных пород магматического, метаморфического или осадочного происхождения, образовавшихся ранее. В зависимости от степени упрочнения различают сцементированные (песчинки, доломиты, алевролиты и т.п.) и несцементированные осадочные породы (крупнообломочные, песчаные, пылевато-глинистые грунты, лессы, илы, торфы, почвы и т.п.).

Метаморфические горные породы образуются в недрах из осадочных, магматических или метаморфических пород путем их перекристаллизации под воздействием высоких давлений и температур в присутствии горячих растворов. Наиболее типичные метаморфические горные породы – сланцы, мраморы, кварциты, гнейсы.

Горные породы метаморфического, магматического происхождения и сцементированные осадочные породы обладают жесткими связями между частицами и агрегатами и относятся к классу с к а л ь н ы х г р у н т о в. Осадочные несцементированные породы не имеют жестких связей и относятся к классу н е с к а л ь н ы х грунтов.

В самых верхних слоях земной коры, называемых зоной современного выветривания. Под влиянием колебаний температуры, изменения состояния и химического состава воды, газов, деятельности растительных и животных организмов и т.п. развиваются процессы выветривания – физического, химического. Органического разрушения минералов и горных пород. Продукты разрушения верхних зон коры выветривания могут перемещаться водой или воздухом, переносится на большие расстояния и вновь откладываться на новых территориях. Различие условий происхождения и дальнейшего изменения являются причиной разнообразия строения, состава, состояния и условий залегания грунтов в верхних слоях земной коры.

К искусственным скальным грунтам относятся все природные грунты любого происхождения, специально закрепленные материалами, приводящими к возникновению жестких связей (цементные и глинисто-силикатные растворы, жидкое стекло и т.п.). К классу нескальных искусственных грунтов относятся несцементированные осадочные породы, подвергнутые специальному уплотнению в природном залегании, насыпные, намывные грунты, а также твердые промышленные отходы (шлаки, золы и т.п.).

2.2 Состав грунтов.

Состав грунтов в значительной мере определяет их физические и механические свойства. В связи с этим он достаточно хорошо изучен в разделе инженерной геологии – грунтоведения.

В общем случае, с физических позиций, грунт состоит из трех компонентов: твердой, жидкой, газообразной.

Иногда в грунте выделяют биоту – живое существо. Это оправдано с общенаучной точки зрения и полезно практически, так как жизнедеятельность организмов может оказывать существенное воздействие на свойства грунтов. Активизация жизнедеятельности бактерий, как правило, снижает прочность грунта, а их отмирание приводит к повышению его прочности. Однако пока свойства биоты не нашли отражения в моделях механики грунтов, и мы будем рассматривать грунт как трехкомпонентную систему.

Было бы сравнительно просто решать задачи фундаментостроения, если бы грунт можно было рассматривать как механическую систему, состоящую из твердого. Жидкого и газообразного веществ с фиксированными независимыми свойствами каждой компоненты. В действительности дело обстоит сложнее. На свойства грунта, как системы, значительное влияние оказывает минеральный и химический состав вещества, наличие биологически активной составляющей. Химические. Физические, физико-химические и биологические процессы в грунтах протекают в сложном взаимодействии, сливаясь в единый геологический процесс, который изменяет свойства грунта во времени до строительства, при строительстве и впоследствии при эксплуатации сооружений.

Твердые частицы грунтов состоят из породообразующих минералов с различными свойствами. Ч а с т ь м и н е р а л о в и н е р т н а по отношению к воде и практически не вступает во взаимодействие с растворенными в ней веществами (кварц, полевые шпаты, слюда, авгит, кремень, роговая обманка и др.). Эти минералы не меняют свойств не только при изменении содержания воды, но и в широком диапазоне температур. Очевидно, что грунты. Полностью сложенные такими минералами, обладают наиболее благоприятными строительными свойствами. Из инертных минералов состоят все магматические горные породы, подавляющее большинство метаморфических часть осадочных. Среди осадочных пород этими минералами сложены пески и крупнообломочные грунты, а также образующие из них при цементации песчинки и конгломераты.

Большое влияние на свойства грунтов оказывают р а с в о р и м ы е в в о д е м и н е р а л ы. К ним относятся галит NCl, гипс CaSO4 ̇ 2H2O, кальцит CaCO3 некоторые другие. Такие распространенные горные породы, как мрамор, известняк, гипс, сложены растворимыми минералами.

Г л и н и с т ы е м и н е р а л ы составляют третью группу. Они нерастворимы в воде в отличии от минералов предыдущей группы, но их никак нельзя приравнять к инертным минералам первой группы. В силу чрезвычайно малых размеров кристаллов глинистые минералы обладают высокой коллоидной активностью. К ним относятся каолинит. Монтмориллонит, иллит, и другие минералы, кристаллы которых имеют выраженное свойство гидрофильности. Из-за мельчайших размеров и высокоразвитой поверхности глинистые минералы активно взаимодействуют с жидкой составляющей грунтов. Поэтому уже малое содержание их в общей массе грунта резко изменяет его свойства.

О р г а н и ч е с к о е в е щ е с т в о в грунтах у поверхности земли находятся в виде микроорганизмов, корней растений и гумуса, а в глубоких горизонтах – в виде нефти. Бурого и каменного угля. Повсеместно на равнинных площадях с поверхности залегает почва, которая содержит 0,5…5% органических соединений. Коллоидная активность гумуса выше, чем даже глинистых минералов.

Жидкая составляющая грунтов. К р и с т а л и з а ц и о н н а я в о д а принимает участие в строении кристаллических решеток минералов и находится внутри частиц грунта. Удаление ее путем длительного нагревания грунта может привести к разложению минералов и значительному изменению свойств грунта.

Свободная вода в грунте подчиняется законам гидравлики. Она передает гидростатическое давление и может перемещаться под воздействием разности напоров. Часто свободную воду подразделяют на гравитационную и капиллярную. Практически вся вода, содержащаяся в трещиноватых скальных породах, крупнообломочных, гравелистых и крупных песках, относится к гравитационной. Капиллярная вода может содержаться в песках средней крупности, мелких и особенно пылеватых песках и глинистых грунтах.

Сложное и разнообразное взаимодействие твердых частиц грунта с водой очень сильно влияет на свойства грунта. Например. замерзание пылевато-глинистых грунтов происходит постепенно при понижении отрицательной температуры: сначала в лед переходит свободная вода, затем периферийные и, наконец, более глубокие слои рыхлосвязанной воды. Фильтрация свободной воды в грунте возникает сразу же после появления разности напоров. Однако для перемещения слоев даже рыхлозвязанной воды требуется приложение тем больших силовых воздействий, чем ближе эти слои находятся к поверхности частиц. В то же время, если по каким либо причинам. Например из-за перепада температур в зоне замерзания грунта, соседние частицы будут иметь разные по толщине слои связанной воды. Возможно возникновение м и г р а ц и и - перемещение связанной воды из более толстых пленок в более тонкие. Если зона замерзания грунта соединена капиллярной водой с уровнем подземных вод, то объем воды, подтягиваемой в зону замерзания, может быть весьма значительным. Здесь важно отметить. Что знание физико-химических особенностей взаимодействия твердых частиц с водой в грунте позволяет не только объяснить многие важные для практики строительства инженерные мероприятия.

Газообразная составляющая грунта. Содержание воды и газов в грунтезависит от объема его пор:чем больше порызаполнены водой, тем меньше в них содержится газов. В самых верхних слоях грунта газообразная составляющая представлена атмосферным воздухом, ниже – азоном, метаном, сероводородом и другими газами. Необходимо подчеркнуть, что метан, сероводород, угарный газ ядовиты, и могут содержаться в грунте в концентрациях, опасных для жизни работающих в слабо проветриваемых выемках. Интенсивность газообмена между атмосферой и грунтом зависит от состава и состояния грунта и повышается с увеличением содержания и размеров трещин, пустот, пор. В газообразной составляющей всегда присутствуют пары воды.

Газы в грунте могут быть в с в о б о д н о м с о с т о я н и и или р а с т в о р е н ы в в о д е. Свободный газ подразделяется на незащемленный сообщающийся с атмосферой, и защемленный, находящийся в контактах между частицами и пленками воды в виде мельчайших пузырьков в воде. В поровой воде всегда содержится то или иное количество растворенного газа. Повышение давления или понижение температуры приводит к увеличению количества растворенного газа.

Содержание в грунте защемленного и растворенного в воде газа существенно сказывается на свойствах грунта и протекающих в них процессах. Уменьшение давления вследствие разработки котлована или извлечения образца грунта на поверхность может привести к выделению пузырьков газа и разрушению природной структуры грунта. Наоборот, увеличение давления при передаче нагрузки от сооружения может сопровождаться повышением содержания растворенного в воде газа. В то же время увеличение содержания в воде пузырьков воздуха может увеличить сжимаемость воды в сотни раз и сделать ее соизмеримой со сжимаемостью скелета грунта.

Наблюдения показывают, что при подтоплении территории (повышении уровня подземных вод) в обводненном грунте на многие годы, если не на десятилетия, задерживается защемленный газ. Э то имеет большое значение, в частности при сейсмическом микрорайонировании. На обводненных грунтах сейсмическая бальность выше. Защемленный воздух поднимает ее дополнительно, так как снижает скорость прохождения сейсмических волн.

Итак, грунт состоит из твердой, жидкой и газообразной компонент. В каждой из трех компонент чаще в малом и незначительном, а иногда и в существенном количестве содержатся микроорганизмы. Из всех составляющих грунта наиболее стабильной является твердая компонента. Жидкая (вода0 при отрицательных температурах переходит в твердое состояние (лед), может истекать, испаряться. Газ при перемене условий растворяется, вытесняется жидкостью или другими газами. Очевидно, что свойства грунтов зависят от состава, состояния и взаимодействия слагающих его компонент.

2.3 Форма, размеры и взаимное расположение частиц в грунте.

Совокупность твердых частиц, состоящих из минерального вещества, образует как бы каркас, с к е л е т грунта. Поровая вода и газ как сплошная среда располагаются в порах и трещинах между частицами. Форма частиц может быть угловатой и округлой. Угловатая форма характерна для мельчайших кристаллов, которые не округляются при соударениях из-за их исключительно малой массы и значительной прочности. Среди крупных обломков выделяются угловые (глыбы, щебень, дресва) и окатанные (валуны, галька, гравий).

Для удобства классификации частицы, близкие по крупности, объединяются в определенные группы (гранулометрические фракции), которым присваиваются следующие наименования (табл. 1.1).

Тиксотропные превращения относятся к физико-химическим явлениям, связанным с механическими воздействиями на грунты. В результате таких воздействий — встряхивания, перемятая, вибрации и т. п. — возникают два следующих друг за другом процесса — разупрочнение и упрочнение. Процессы разупрочнения являются следствием механических воздействий, протекают весьма быстро. По прекращении внешнего воздействия немедленно начинается обратный процесс — упрочнение грунта. Упрочнение — процесс более медленный и протекает с неодинаковой скоростью. В первое время это восстановление идет сравнительно быстро, а затем замедляется. Для учета явлений тиксотропии при проектировании земляного полотна необходимо знать, при каких грунтах, их состояниях и характерах механических воздействий тиксотропное разупрочнение становится особенно опасным, а также является ли процесс упрочнения полностью обратимым, т. е. идет ли он до конца, а если и идет, то через какое время можно рассчитывать на полное восстановление первоначальных свойств грунтов. К сожалению на современной стадии исследований еще нельзя исчерпывающе ответить на поставленные вопросы, тем не менее имеющийся материал позволяет дать некоторые рекомендации.
Г. Фрейндлихом было установлено, что тиксотропия проявляется в грунтах, у которых содержание глинистых частиц превышает 2%. Высказывается мнение, что потенциально тиксотропными являются все глинистые грунты, но для конкретного проявления тиксотропии необходимы определенные условия и, в первую очередь, достаточно интенсивные внешние воздействия. Очевидно, что в расчет должна приниматься не только склонность грунтов к тиксотропным превращениям, но и размер этих превращений. При этом не должны допускаться такие превращения, при которых снижение прочности и сопротивляемости деформированию становится уже опасным.
Исследования позволяют полагать, что склонность грунтов к тиксотропии определяется его природой, состоянием, а также интенсивностью и характером внешних воздействий. Под природой грунтов, в первую очередь, понимается их гранулометрический состав и минералогический состав глинистой фракции.
Большинство исследователей полагает, что склонность грунтов к тиксотропии зависит от содержания в них глинистых частиц. При этом чем большее количество этих частиц грунт содержит, тем меньше его склонность к тиксотропному понижению прочности. А. И. Лагойский это объясняет тем, что при малом содержании глинистых частиц имеется относительно небольшое число связей между грунтовыми частицами и агрегатами. При большом же количестве глинистых частиц образуется жесткий каркас, который уже труднее поддается разрушению, хотя потенциальные возможности для этого и возрастают.

Тиксотропные изменения грунтов


Для определения не только качественной, но и количественной стороны влияния содержания в грунтах глинистых частиц на тиксотропные превращения были поставлены опыты. Исследовалось тиксотропное разупрочнение при одиночном ударном сотрясении грунта и при вибрационных нагрузках (рис. 17). Тиксотропное разупрочнение при одиночном ударе оценивалось по изменению скорости прохождения ультразвуковой волны. При этом был принят следующий показатель:

Тиксотропные изменения грунтов


где v1 и v2 — скорости прохождения ультразвуковой волны, измеренные соответственно до и после удара.
При вибрационном воздействии для этой цели был принят показатель

Тиксотропные изменения грунтов


где Е01 и E02 — модули деформации грунта, измеренные до вибрации и во время вибрационного воздействия.
Из рис. 17 можно заключить, что наибольшим тиксотропным превращениям подвержены супесчаные грунты с содержанием глинистых частиц 3—7%, а также пылеватые грунты. При вибрационных воздействиях сопротивляемость грунта внешним нагрузкам может быть утрачена на 60 и даже 90%. Таким образом, при неблагоприятных условиях может произойти практически полная потеря сопротивляемости этих грунтов внешним нагрузкам. Приведенные данные относятся к грунтам, влажности которых превосходят оптимальные значения (W=1,2/1,3W0).
С повышением содержания в грунтах глинистых частиц их склонность к тиксотропным превращениям, в общем, уменьшается. Однако при некотором количестве глинистых частиц интенсивность тиксотропных превращений снова возрастает. В данном случае это относится к глинистому грунту, содержащему 26% глинистых частиц; подобное явление наблюдалось в опытах, проведенных Г. И. Жинкиным и Л. П. Зарубиной, где таким грунтом оказался тяжелый суглинок с содержанием глинистых частиц 20%.
Из рис. 17 видно, что вибрационные воздействия более опасны, чем одиночные удары. При ударах с увеличением содержания в грунтах глинистых частиц тиксотропное разупрочнение монотонно убывает и потому для суглинков и особенно тяжелых оно практически уже не является опасным. Вибрационные воздействия могут быть опасными и для тяжелых грунтов.
По-видимому, минералогический состав глинистой фракции грунтов не оказывает решающего влияния на степень тиксотропного разупрочнения грунтов. Некоторые исследователи считают, что у монтмориллонита способность к тиксотропным превращениям выражена сильнее, чем у каолинита и гидрослюд. Имеется также мнение, согласно которому наибольшие тиксотропные превращения соответствуют каолинитовым грунтам, а наименьшие — монтмориллонитовым. Гидрослюда занимает промежуточное положение.
На тиксотропные превращения оказывают влияние плотность грунтов. Опыты позволили заключить, что наибольшим тиксотропным превращениям подвержены грунты, плотность которых находится в диапазоне (0,85—0,93)δmax. У более рыхлых и более плотных грунтов склонность к тиксотропным превращениям заметно уменьшается. Большое влияние на тиксотропные превращения оказывает влажность грунта (рис. 18). При влажности менее оптимальной и равной ей тиксотропные превращения наблюдаются только у супесей. С повышением влажности сверх ее оптимального значения интенсивность тиксотропных превращений заметно и непрерывно возрастает.

Тиксотропные изменения грунтов


При вибрационных нагрузках большое значение имеет частота колебаний. Изменяя постепенно частоту колебаний от нуля до нескольких сот герц и сохраняя неизменной интенсивность встряхивания грунта, которая в общем характеризуется амплитудными значениями ускорений его частиц, можно выделить два значения частот колебаний, при которых наблюдаются аномальные явления.
При размещении возбудителя колебаний с массой 2 т на насыпи при какой-то определенной для данных условий частоте колебаний, которая обычно находится в пределах 12—28 Гц, амплитуда колебаний возбудителя увеличивается и, кроме того, наблюдаются заметные сотрясения всего грунта с передачей этих сотрясений на значительные расстояния. Таким образом, при этих частотах наблюдается явление, сходное с тем, которое возникает при резонансных колебаниях упругих систем. Ввиду того, что грунт представляет собой систему с большим сопротивлением, где колебания затухают весьма быстро, то это явление, в отличие от резонансных упругих систем, можно назвать квазирезонансным. Интересно отметить, что при квазирезонансных частотах больших изменений в состоянии и свойствах грунта не происходит. Практически не происходят также и тиксотропные изменения грунтов. При таких колебаниях грунт представляет собой систему с относительно небольшим затуханием колебаний, вследствие чего они передаются на дальние расстояния.
Вторая характерная для данного вида и состояния грунта частота обусловливает локализацию колебательных движений в сравнительно небольшой зоне, но зато объем грунта, расположенный в этой зоне, претерпевает интенсивные тиксотропные превращения, которые сопровождаются обильным влаговыделением и, по существу, спонтанным уплотнением грунта, происходящим при весьма небольшой нагрузке, измеряемой в десятых, а иногда и в. сотых долях кгс/см2. Это явление, так же как и предыдущее, наблюдается лишь при грунтах, плотность которых находится в диапазоне (0,85—0,93) δmax.
Интенсивные тиксотропные превращения наблюдаются не при какой-то определенной частоте колебаний, а в широком интервале частот. Этот интервал оказался равным 175—300 Гц. Он относится к влажности грунта (1,0—1,3)W0. He было обнаружено-также явной зависимости этого интервала от гранулометрического состава грунтов. Возможно, что он находится в зависимости от нагрузки.
Наиболее опасны для устойчивости земляного полотна частоты, при которых происходят интенсивные тиксотропные превращения грунтов. Однако эти частоты велики и возникают весьма редко. Очевидно, их целесообразно создавать при уплотнении грунтов, что приведет к получению требуемой плотности при наименьших затратах механической работы.
В период эксплуатации дорог частота приложения внешней нагрузки, близкой к квазирезонансной, может возникнуть лишь только случайно, поэтому в большинстве случаев приходится иметь дело с нагрузками, при которых возникают частоты колебаний, по своей численной величине меньше квазирезонансных, либо несколько превышающие их.
Воздействие на грунты земляного полотна динамических нагрузок, вызывающих колебательные движения грунта, не исследовалось. По этому вопросу имеются некоторые данные, относящиеся к железным дорогам. Если земляное полотно возведено из увлажненных глинистых грунтов, при проходе груженого поезда с общей массой 4500—4800 т возникающие вибрации могут снизить модули сдвига грунтов на 45—48%. При проходе с той же скоростью (70 км/ч) порожнего поезда модуль уменьшается уже на 15—20%, а при пассажирском, т. е. более легком составе — на 8—16%. Таким образом, имеется зависимость тиксотропных превращений грунтов от интенсивности воздействия, которая в данном случае определяется массой движущегося поезда. По-видимому, такое же явление происходит и на автомобильных дорогах при движении автомобилей. Очевидно, что возникновению вибраций в грунтах способствуют колебательные движения подрессоренных масс и общей массы автомобиля в результате упругости рессор и шин. Возникновению таких колебаний способствуют неровности дорожного покрытия.
Большой практический интерес представляет восстановление первоначального состояния грунта, т. е. процесс тиксотропного упрочнения. Оказалось, что после прохода поезда этот процесс идет до конца, т. е. начальные свойства грунта полностью восстанавливаются. Восстановление происходит вначале быстро, а затем замедленно. Первоначальное значение модуля сдвига восстанавливается за 60—70 мин. Если периодичность движения поездов будет меньше этого времени, то возможно появление остаточных деформаций.
На магистральных автомобильных дорогах происходит интенсивное движение автомобилей, поэтому тиксотропные изменения грунтов приводят к остаточным деформациям грунта, а следовательно, и к деформациям дорожных покрытий. При движении автомобилей тиксотропные превращения грунтов наблюдаются всегда. Однако важно, чтобы они не вышли за допустимые пределы. Практически они уже не оказывают влияния на устойчивость грунтов в случаях, когда грунты уплотнены до плотности, превышающей 0,93δmах, и когда влажность их не выше оптимального значения. Следовательно, тщательное уплотнение грунтов и недопущение в них влаги является весьма эффективным средством снижения тиксотропных разупрочнений. Когда хотя бы одно из этих условий не соблюдается, во избежание разрушений дорожных покрытий, связанных с интенсивным увлажнением грунтов, приходится ограничивать или же полностью закрывать движение автомобилей.

Многие глинистые породы могут разжижаться пли размягчаться при встряхивании или под влиянием других механических воздействий, а затем после их прекращения вновь самопроизвольно с большей или меньшей скоростью восстанавливать свое состояние и прочность. Такие обратимые явления называют тиксотропными или тиксотропией (изменение при соприкосновении).

Свойством тиксотропии обладают самые различные глинистые породы — глинистые тонко- и мелкозернистые пылеватые пески, супеси, суглинки и глины с повышенной влажностью и неустойчивой консистенцией при нарушении естественного сложения. Тиксотропия характерна для глинистых пород текучей, вязкотекучей, липко- и вязкопластичной консистенции и, как свидетельствует Б.М. Гуменский, иногда может проявляться при интенсивной вибрации даже в породах полутвердых.

Тиксотропные изменения в глинистых породах протекают по-разному в зависимости от их дисперсности (глинистости), минерального состава тонкодисперсной (глинистой) части, физического состояния — влажности, плотности и консистенции, минерализации и состава поровых вод, а также интенсивности механических воздействий. Одни глинистые породы, например монтмориллонитовые гидрофильные, легко разжижаются и затем быстро восстанавливают свою прочность в полной мере, другие, например каолинитовые малогидрофильные, трудно размягчаются и разжижаются и медленно восстанавливают свое состояние и прочность. У многих пород после нарушения сложения прочность восстанавливается только частично. Как указывает Б.М. Гуменский, некоторые породы вообще не разжижаются, а только размягчаются, причем прочность их снижается, а восстанавливается лишь частично после прекращения механического воздействия. Следовательно, склонность разных глинистых пород к тиксотропным изменениям неодинакова, что связано с различным их физическим состоянием и особенностями структурных связей.

Тиксотропные изменения являются результатом разрушения структурных связей, уменьшения их прочности и расслабления породы (релаксация сил сцепления) и затем восстановления структурных связей и упрочнения породы. Такие обратимые явления характерны для пород, обладающих главным образом молекулярными, водородными и магнитными структурными связями, т. е. связями, обусловленными непосредственным взаимодействием частиц и агрегатов между собой. Такие связи отличаются малой прочностью, мобильностью и обратимостью, большое пластифицирующее влияние на них оказывает свободная иммобилизованная и физически связанная вода. Поэтому такие связи и называют коагуляционно-тиксотропными.

При инженерно-геологическом изучении глинистых пород учет и оценка их тиксотропных свойств имеет очень большое значение. Тиксотропия может резко изменять устойчивость и прочность глинистых пород при воздействии на них статических и динамических нагрузок и вызывать нарушение устойчивости сооружений, значительные их осадки, развитие оползневых явлений, увеличение давления пород на ограждения, ухудшение состояния проезжей части дорог и др. Расслабление и разжижение пород часто создают большие трудности при выполнении строительных работ. Однако тиксотропное упрочнение пород, восстановление их устойчивости и прочности со временем имеет и важное положительное значение, так как при этом улучшаются условия устойчивости склонов, откосов, а также условия строительства и эксплуатации сооружений. Поэтому при инженерно-геологических исследованиях необходимо учитывать и оценивать возможность развития тиксотропных явлений.


Выполнил:
Студент 2 курса
Факультет САДИ
Группа б2СТЗСз-21
Зотов И.В.
Проверил:Архангельский М.С.

Введение. 2
1. Происхождение глинистых пород. 4
2. Состав глинистых грунтов…………………………………………………….…………….7
3. Физико-химические свойства глинистых грунтов. 9
3.1. Липкость. 9
3.2. Набухаемость. 10
3.3. Усадочность. 13
3.4. Тиксотропия. 15
Заключение. 19
Список используемой литературы: 20

Введение.
Глинистый грунт – это грунт, которыйболее чем на половину состоит из очень мелких частиц размером менее 0,01 мм, которые имеют форму чешуек или пластин. Расстояния между этими частицами называется порами, они, как правило, заполняются водой, которая хорошо удерживается в глине, потому что сами частички глины воду не пропускают. Глинистые грунты имеют высокую пористость, т.е. высокое соотношение объема пор к объему грунта. Этосоотношение колеблется от 0,5 до 1,1 и является характеристикой степени уплотнения грунта. Глинистый грунт очень хорошо поглощает и удерживает ее в себе и никогда не отдает ее всю, даже при высыхании, поэтому является пучинистым грунтом. Влага, содержащаяся в грунте, при замерзании превращается в лед и расширяется, тем самым, увеличивая объем всего грунта. Все грунты, содержащие глину, подвержены этому негативномуявлению, и чем больше содержание глины, тем сильнее проявляется это свойство.

Поры глинистого грунта настолько малы, что капиллярные силы притяжение между частицами воды и глины оказываются достаточными, чтобы связывать их. Капиллярные силы притяжения в совокупности с пластичностью частиц глины обеспечивают пластичность глинистого грунта. И чем больше содержание глины, тем пластичнее будет грунт.Классификация глинистого грунта.
В зависимости от содержания частиц глины грунт классифицируют на супеси, суглинки и глину.
Супесь – это глинистый грунт, который содержит не более 10 % глинистых частиц, оставшуюся часть занимает песок. Супесь наименее пластичная из всех глинистых грунтов, при ее растирании между пальцами чувствуются песчинки, она плохо скатывается в шнур. Скатанный изсупеси шар рассыпается, если на него немного надавить. Из-за высокого содержания песка супесь имеет сравнительно низкую пористость – от 0,5 до 0,7. Соответственно она может содержать меньше влаги и, следовательно, быть меньше подвержена пучению. При пористости 0,5 (т.е. при хорошем уплотнении) в сухом состоянии несущая способность супеси составляет 3 кг/см2, при пористости 0,7 – 2,5 кг/см3.
Суглинок – этоглинистый грунт, который содержит от 10 до 30 процентов глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку, по краям которой образуются трещины. Пористость суглинка выше, чем супеси и колеблется от 0,5 до 1. Суглинок может содержать больше воды и больше, чем супесь, подвержен пучению. Сухойсуглинок с пористостью 0,5 имеет несущую способность 3 кг/см2, при пористости 0,7 – 2,5 кг/см2.
Глина – это грунт, в котором содержание глинистых частиц больше 30%. Глина очень пластичная, хорошо скатывается в шнур. Скатанный из глины шар сдавливается в лепешку без образования трещин по краям. Пористость глины может достигать 1,1, она сильнее всех остальных грунтов подвержена морозному пучению,потому что может содержать очень большое количество влаги. При пористости 0,5 глина имеет несущую способность 6 кг/см2, при 0,8 – 3 кг/см2

Читайте также: