Термодинамика и теплопередача реферат

Обновлено: 04.07.2024

Термодинамика является подразделом физики, который занимается исследование заимообразных изменений различных типов энергии, связанных с ее перемещением в формат тепла и работы.

Ключевое фактическое предназначение термодинамики представляется со способности рассчитывать тепловые процессы реакции, подготовительного указания вероятности либо невероятности реализации реакции, в том числе среду ее преодоления.

Тепловая передача считается физическим явлением, чья сущность будет являться в возможности передавать тепловую энергию. Обмен осуществляется меж двумя объектами или меж их системами. Необходимым требованием в данной ситуации будет возможность передавать теплоту от более разогретого объекта к менее разогретому.

Сущность термодинамики в физике

Термодинамика, считаясь комплексной частью тепловой техники, осуществляет исследования законов преобразования энергии в различных химических и физических явлениях, которые выполняются в макроскопических системах и препровождаются, в то же время, тепловыми процессами. Исследователи выделяют следующие виды энергии:

  • Тепловая энергия.
  • Электрическая энергия.
  • Химическая энергия.
  • Магнитная энергия, а также иные.

В роли ключевых заданий изучения в физике акцентируется внимание на термодинамике биосистем и технической термодинамике. Техническая термодинамика, в то же время, исследует закономерности взаимопревращений механической и тепловой энергии (в совокупности с теорией теплового обмена), и по данной причине, представляется в роли фундаментальной теории теплотехники. Отсутствие данного фундамента привело бы к невозможности рассчитывать и проектировать тепловые двигатели.

Методика, которая задействована в термодинамике, считается феноменологической. Процессы в термодинамике исследуются целиком. Взаимосвязь макроскопических показателей, которые определяют функционирование системы, осуществляется двумя законами термодинамики. В том числе в термодинамике есть важнейшее, как термодинамическая система, которую необходимо исследовать более тщательно, для хорошего восприятия явлений в термодинамике.

Не нашли что искали?

Просто напиши и мы поможем

Термодинамическая система

Термодинамическая система является совокупностью физических объектов, которые пребывают в состоянии механического и теплового взаимного воздействия меж собой, и в том числе, с внешними объектами, окружающими термодинамическую систему (говорится об окружающей среде).

Выбор системы в данной ситуации свободный, и будет продиктован требованиями предполагаемого задания. Объекты, которые не входят в систему, именуются внешней средой. Система же, при этом, отделена от внешней среды благодаря подконтрольной поверхности (специальной мембраной). Таким образом, для самой простой системы, к примеру, системы с газообразным веществом, заключенным в поршневом цилиндре, в роли окружающей среды будет воздушная масса, а подконтрольной поверхностью будут перегородки цилиндра, а также собственно поршень.


Взаимные воздействия механического и теплового вида системы в термодинамике выполняются благодаря подконтрольной поверхности. В ходе механического взаимного воздействия осуществляется работа, которая выполняется или непосредственно системой, либо данная работа осуществляется над системой. Во всеобщей ситуации на систему возможны воздействия определенных сил, к примеру, электромагнитных сил. Под влиянием данных сил системой будет осуществлена определенная работа. Эти типы работ, в том числе, будут учитываться в пределах термодинамики.

Тепловое взаимное воздействие представляется в пределах переноса тепла меж определенными объектами системы, в том числе, меж системой и окружением. В более часто встречающихся моделях систем тепло подводится к газообразному веществу благодаря цилиндрическим перегородкам. В более всеобщей ситуации система осуществляет обмен с окружением и веществом, что является разновидностью массообменного взаимного воздействия. Аналогичная система именуется открытой системой.

Паровые либо газообразные потоки в турбинах и трубопроводных системах являются образцом открытых систем. В ситуации не преодоления вещества через пределы системы, данная система будет именоваться закрытой.

Термодинамическая система, которая не обладает возможностью обмена теплом с внешней средой, именуется теплоизолированной (либо адиабатической). В роли образца аналогичной системы является газообразное вещество, которое пребывает в емкости. Перегородки емкости покрыты идеальной теплоизоляцией. Данная теплоизоляция исключает вероятность теплообмена между газообразным веществом, которое заключено в емкость, а также, внешними объектами (адиабатическая изоляционная оболочка).

Изолированная, либо как ее еще называют, замкнутая система является системой, которая не обладает возможностью обмена с окружающей средой ни энергией, ни веществом. В роли простой термодинамической системы представляется функционирующий объект, который способен выполнять взаимопревращение работы и тепла. В двигателе внутреннего сгорания, например, функционирующим объектом считается горючая смесь, изготовленная в карбюраторе, и которая состоит из паров бензина и воздуха.

Специфика процесса тепловой передачи


Тепловая передача является тем самым видом процесса, чье выполнение является возможным и в условиях непосредственного контакта, и во время наличия соединяющих стенок, где препятствиями возможно станут применяемые объекты, в том числе, материалы внешней среды. Осуществление явления теплопередачи является возможным в таких ситуациях, когда не просматривается ситуация теплового равновесного состояния. Иначе говоря, в то время, когда у первого предмета присутствует отличительная температура по сравнению с вторым предметом.

Исключительно в данной ситуации и выполняется теплопередача энергии. Завершится тепловая передача в тот момент, когда система осуществит переход в равновесное термодинамическое состояние. Явление перехода производится самостоятельно, без участия чьего-либо вмешательства. Об этом подтверждает второй закон термодинамики.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Методы тепловой передачи и тепловой проводимости

Явление тепловой передачи возможно распределить на очередные три метода, которым характерна основная природа, а в этих трех методах подчеркиваются конкретные категории с собственной свойственной спецификой:

  • Тепловая проводимость – это свойство конкретного физического объекта производить перенесение энергии от наиболее горячего к более холодному объекту.
  • Конвекция представляет собой специфическое явление теплопередачи, в процессе которого элементы веществ перепутаются меж собой. Аналогичный процесс просматривается в жидкостных и газообразных веществах.
  • Электромагнитное излучение является вероятным с помощью внутренней энергии объекта. Излучение имеет абсолютный спектр, интенсивность и максимальное положение зависит от температурных показателей объекта.

В основании процесса тепловой проводимости лежит принцип беспорядочного молекулярного перемещения (броуновское движение). Чем выше стают температурные показатели объекта, тем более интенсивно перемещаются молекулы, ввиду того, что они обладают большей кинетической энергией. В ходе тепловой проводимости довольно активно действуют атомы, электроны, молекулы. Осуществление теплопроводности производится в объектах, чьим различным участкам характерны разные температурные показатели.

В ситуации, когда объект обладает способностью проводить теплоту, возможно рассматривать наличие численных свойств.

В этой ситуации данная роль осуществляется коэффициентом тепловой проводимости. Аналогичное свойство представляет число тепла, проходящее через единичные параметры плоскости за определенный промежуток времени. В то же время, просматривается преобразование температурных показателей объекта точно на 1K.

Гост

ГОСТ

Термодинамика считается разделом физики, занимающимся изучением взаимных преобразований разнообразных видов энергии, взаимосвязанных с ее переходом в формат теплоты и работы.

Главное практическое значение термодинамики заключается в возможности расчетов тепловых эффектов реакции, предварительного указания вероятности или невероятности осуществления реакции и также условия ее прохождения.

Теплопередача является физическим процессом, чья суть будет заключаться в передаче тепловой энергии. Обмен производится между двумя телами либо их системой. Обязательным условием в таком случае станет передача тепла от сильно нагретых тел менее нагретым.

Суть термодинамики в физике

Термодинамика, являясь составной частью теплотехники, занимается изучением законов превращений энергии в разных химических и физических процессах, которые производятся в макроскопических системах и сопровождаются при этом тепловыми эффектами.

Известны такие разновидности энергии:

  • тепловая;
  • электрическая;
  • химическая;
  • магнитная и др.

В качестве основных задач исследований в физике выделяют термодинамику биосистем и техническую термодинамику.

Техническая термодинамика, в свою очередь, занимается исследованием закономерностей взаимных превращений механической и тепловой энергий (в комплексе с теорией теплообмена) и поэтому выступает в качестве теоретического фундамента теплотехники, отсутствие которого сделало бы невозможным расчет и проектирование теплового двигателя.

Метод, задействованный в термодинамике, является феноменологическим. Явление здесь рассматривается в целом. Связь макроскопических параметров, определяющих поведение системы, устанавливается двумя началами термодинамики.

Готовые работы на аналогичную тему

Также в термодинамике существует такое важное понятие, как термодинамическая система, которую следует рассмотреть более детально, для лучшего понимания процессов термодинамики.

Термодинамическая система

Рисунок 1. Термодинамическая система. Автор24 — интернет-биржа студенческих работ

Термодинамическая система представляет собой комплекс материальных тел, пребывающих в состоянии механического и теплового взаимодействий между собой и также – с внешними телами, которые окружают систему (речь идет о внешней среде).

Выбор системы в таком случае будет произвольным и диктоваться условиями предлагаемой для решения задачи. Не входящие в систему тела получили название окружающей среды. Сама система, в то же время, отделяется от окружающей среды посредством контрольной поверхности (специальной оболочки).

Так, для простейшей системы (например, газа), который заключен под поршнем в цилиндре, в качестве внешней среды выступит окружающий воздух, а контрольных поверхностей - стенки цилиндра и сам поршень.

Взаимодействие механического и теплового типа термодинамической системы осуществляются за счет контрольных поверхностей. В процессе механического взаимодействия будет совершаться работа, выполняемая либо самой системой, или над ней.

В общем случае на систему способны воздействовать магнитные, электрические и прочие силы, под чьим воздействием ею будет совершаться работа. Данные виды работ также могут учитываться в рамках термодинамики.

Тепловое взаимодействие будет заключаться в рамках перехода теплоты между отдельными телами системы, а также - между системой и окружающей средой. В наиболее распространенных примерах теплота может подводиться к газу за счет стенок цилиндра.

В наиболее общем случае система может производить обмен со средой и веществом (вид массообменного взаимодействия). Подобная система получила название открытой). Паровые или газовые потоки в турбинах и трубопроводах представляют собой примеры открытых систем. В случае не прохождения вещества сквозь границы системы, она будет называться закрытой.

Термодинамическая система, не способная обмениваться теплотой с окружающей средой, считается теплоизолированной (или адиабатной). В качестве примера подобной системы может выступить газ, пребывающий внутри сосуда, чьи стенки покрыли идеальной тепловой изоляцией, исключающей возможность теплового обмена между газом, заключенным в сосуде, и окружающими телами (адиабатная изоляционная оболочка).

Замкнутая (изолированная) система представляет собой систему, не обменивающуюся с внешней средой ни посредством энергии, ни за счет вещества.

В качестве простейшей термодинамической системы может выступать рабочее тело, способное осуществлять взаимное превращение работы и теплоты. В двигателе внутреннего сгорания, к примеру, рабочим телом будет являться горючая смесь, которая приготовлена в карбюраторе (состоящая из бензиновых паров и воздуха).

Особенности процесса теплопередачи

Рисунок 2. Процесс теплоотдачи. Автор24 — интернет-биржа студенческих работ

Теплопередача считается той самой разновидностью явления, чье осуществление возможно и в условиях прямого контакта, и при присутствии разделяющих перегородок (где преградами могут стать использованные тела, а также, материалы среды).

Происхождение процесса тепловой передачи становится вероятным в тех случаях, когда не наблюдается состояние теплового равновесия. Иными словами, когда у одного из объектов наблюдается большая или меньшая температура, сравнительно с другим. Только в таких случаях и осуществляется передача тепловой энергии.

Ее завершение произойдет тогда, когда сама система придет в состояние теплового (или термодинамического) равновесия. Процесс будет осуществляться самопроизвольно (о чем свидетельствует второе начало термодинамики).

Способы теплопередачи и теплопроводность

Процесс теплопередачи можно разделить на следующие три способа, которым присуща основная природа (а внутри них выделяются определенные подкатегории со своими характерными особенностями):

  • теплопроводность (свойство определенного материального тела осуществлять перенос энергии от более нагретой к той, что похолоднее);
  • конвекция (своеобразный процесс тепловой передачи, в ходе которого частицы веществ будут перемешиваться между собой, подобное действие наблюдается в жидкостях и газах);
  • излучение (электромагнитное излучение, чье возникновение становится возможным, благодаря внутренней энергии тела. Обладает сплошным спектром, интенсивность и расположение максимума которого зависимы от температуры тела).

В основе такого явления, как теплопроводность, положен принцип хаотичного движения перемещения молекул (что представляет так называемое броуновское движение). Чем большей становится температура тела, тем активнее в нем начинают двигаться молекулы (из-за обладания большей кинетической энергией).

В процессе теплопроводности активное участие принимают атомы, электроны, молекулы. Осуществляется она в телах, чьим разным частям свойственна неодинаковая температура.

В случае способности вещества проводить тепло, можно говорить о присутствии количественной характеристики. В данном случае эта роль выполняется коэффициентом теплопроводности. Подобная характеристика демонстрирует количество теплоты, которое пройдет через единичные показатели площади и длины за единицу времени. При этом наблюдается изменение температуры тела ровно на 1 К.

Оглавление
Введение…………………………………………………………………………. 3
1. Основные законы термодинамики…………………………………………….4
1.1. Первый закон термодинамики…………………………………………….4
1.2. Второй закон термодинамики……………………………………………..6
1.3. Третий закон термодинамики……………………………………………. 9
2. Применение в теплофизике…………………………………………………..11
Заключение……………………………………………………………………….12
Список литературы………….………………………………………………. 13

Введение
Термодинамика — раздел физики, изучающий наиболее общие свойства макроскопических систем [1] и способы передачи и превращения энергии в таких системах. Данный раздел занимается изучением состояний и процессов, которые определены разнообразными связями с температурой. Термодинамика во многом опирается на обобщение опытных фактов, то есть она является феноменологической наукой. Все термодинамические процессы описываются макроскопическими величинами. Основными из них являются следующие величины: температура, давление, концентрация компонентов. Они вводятся для описания систем, состоящих из большого количества частиц, при этом не применяются к отдельным составляющим вещества.
В данное время термодинамика относится к строгой теории, развивающейся на основе нескольких постулатов, которые имеют определенную связь со свойствами частиц и законами их взаимодействия. Это обусловлено не только процессами самой термодинамики, но и статической физикой. Именно статическая физика занимается выяснением границ применимости термодинамики [3].
Все законы термодинамики имеют общий характер и не зависят от определенных деталей строения вещества на молекулярном уровне, поэтому они применяются довольно-таки широком круге науки и техники, затрагивая самые разные области: энергетика, химия, теплотехника, машиностроение, материаловедение, инженерия и т.д. Для каждой области термодинамика имеет большое значение и находит свое применение в ней [2].
1. Основные законы термодинамики
1.1. Первый закон термодинамики
Закон о сохранении и превращении энергии для термодинамической системы является первым законом термодинамики. По его определению работа может совершаться за счет какого-либо существующего вида энергии, например теплоты. Поэтому работу и количество теплоты, как и энергию измеряют в одних единицах – Джоулях.
Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.
Первый закон термодинамики формулируется так: изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
ΔU = A + Q, где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.
Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, то A = 0 и Q = 0, а, следовательно, и ΔU = 0.
При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.
Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:
Q = ΔU + Á, где A' — работа, совершаемая системой (A' = -A).
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
Первый закон определяет собой невозможность существования вечного двигателя, который мог бы совершать работу исключительно за счет своей внутренней энергии, не используя сторонней.
Действительно, если к телу не поступает теплота (Q - 0), то работа A', согласно уравнению первый закон термодинамики, совершается только за счет убыли внутренней энергии А' = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.
Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.
1.2. Второй закон термодинамики
Второй закон термодинамики указывает на существование энтропии [4] как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры. То есть второе начало определяет начало об энтропии, а также её свойствах и признаках. Важно отметить, что энтропия, находясь в изолированной системе, остается либо неизменной, либо возрастает (в условиях неравновесных процессов). Энтропия достигает своего максимума при установлении термодинамического равновесия. Это определено законом возрастания энтропии. Частым образом в литературных источниках встречаются разнообразные формулировки второго закона термодинамики, являясь следствиями закона возрастания энтропии.
Второй закон тесно связан с понятием энтропии (S). Она порождается буквально всеми процессами и связана с потерей способности системы совершать работу. Рост энтропии является стихийным процессом. Изменения в системе увеличения энтропии происходят в том случае, если объем и энергия системы не являются постоянными. В обратном случае (если объем и энергия непостоянны) энтропия подвержена уменьшению.
Чтобы можно было использовать энергию, необходимо иметь в системе области с высоким и низким уровнем энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.
Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:
где S – энтропия; L – путь, по которому система переходит из одного состояния в другое.
В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.
Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:
где k – постоянная Больцмана; w – термодинамическая вероятность (она определяет количество способов реализации макросостояния системы). Таким образом, второе начало термодинамики определяется статическим законом, непосредственно связанным с описанием закономерностей теплового движения молекул (при этом движение является хаотическим). Данное движение молекул и составляет систему термодинамики.
Второй закон термодинамики имеет другие формулировки. Из них можно выделить две основных – формулировка Кельвина и формулировка Клаузнуса.
Формулировка Кельвина звучит следующим образом: невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Данная формулировка позволяет сделать вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:
где Tn – температура нагревателя; Th — температура холодильника; (T_n > T_h).
Формулировка Клаузиуса имеет следующий вид: невозможно создать круговой процесс, в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.
Таким образом, второй закон термодинамики обуславливает огромное различие между двумя формами передачи энергии, а именно между работой и теплотой [5]. Данный закон позволяет сделать вывод о том, что переход упорядоченного перемещения тела является необратимым процессом. Притом такое перемещение может переходить в хаотическое движение без каких-либо дополнительных процессов.
1.3. Третий закон термодинамики
Третий закон термодинамики носит и другое название – теорема Нернста. Она основана на физическом принципе, который определяет энтропию при приближении температуры к абсолютному нулю. Закон определен обобщением значительного количества экспериментальных данных по термодинамике гальванических элементов [6]. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю не должен сопровождаться изменением энтропии S, то есть изотерма T=0 совпадает с предельной адиабатой S0.
Данная теорема имеет несколько эквивалентных между собой формулировок:
- энтропия любой системы при температуре, значение которой приближено к абсолютному нулю, является универсальной постоянной и не зависящей от различных переменных параметров;
- при приближении к абсолютному нулю энтропия стремится к конкретному пределу, который не зависит от конечного состояния системы;
- приращение энтропии при приближении к абсолютному нулю не может зависеть от различных значений параметров термодинамики, всегда стремится к конечному определенному пределу;
- при процессах, происходящих при абсолютном нуле, система способна переходить из одного состояния равновесия в другое, при этом энтропия совершенно не изменяется [7].
Данный закон позволяет находить абсолютное значение энтропии. Этого нельзя сделать в рамках первого и второго закона термодинамики, поскольку в них энтропия определяется с точностью до произвольной аддитивной постоянной S0. Это не мешает исследованию и изучению термодинамических процессов, разность энтропий измеряется в различных состояниях.
Третий закон термодинамики имеет определенные следствия:
- абсолютный нуль температур не может достигаться ни в каких конечных процессах, связанных с изменением энтропии. К нулю можно приближаться лишь асимптотически;
- стремление теплоемкости к нулю при постоянном давлении и объеме. К нулю стремятся также коэффициенты теплого расширения и другие аналогичные величины [8].
Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при T=0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.
2. Применение в теплофизике
Каждый закон термодинамики имеет своё применение в теплофизике. Первый закон имеет практическое применение к различным процессам в физике. К примеру, благодаря ему можно вычислить идеальные параметры газа при самых разнообразных процессах, как тепловых, так и механических.
Применение второго закона имеет достаточно обширную область, поскольку относится ко всем процессам естествознания. Там, где встречается превращение нестройных видов энергии молекул и атомов в более стройную форму механической или электрической энергии, второй закон термодинамики проводит свою линию. Именно на его основах стоит физическая и теоретическая химия, а вместе с этим спектральный анализ и большая часть астрофизики.
Третий закон термодинамики иначе называется постулатом Нернста. В свою очередь его формулировка звучит следующим образом: с помощью конечного числа процессов нельзя достигнуть абсолютного нуля. Это говорит о том, что никаким способом невозможно остановить молекулы и атомы веществ. Этот процесс обусловлен постоянным теплообменом с окружающей средой. Рассмотрев закон, можно сказать, что уменьшение энтропии заключается в движении к абсолютному нулю. Данный вывод можно использовать в различных областях, применяя его во многих ситуациях. К примеру, для перевода парамагнетиков в ферромагнитное состояние при охлаждении.
Таким образом, применение трех законов термодинамики распространено во многих областях науки и жизни человека в целом. Во многом термодинамика упрощает жизнь, позволяет совершать новые открытия.
Заключение
Термодинамика в физике обусловлена существованием трех законов, каждый из которых имеет свою определенную формулировку. Она во многом имеет общую связь с процессами энтропии и её основными свойствами. Термодинамика играет большую роль в различных областях и сферах жизни человека. Её правила и закономерности оставляют след в следующих областях: теплотехника, энергетика, биология, машиностроение и другие. Кроме того термодинамика позволяет совершать новые открытия человечества. Это было бы невозможно без основных законов, открытых великими учеными в прошлом.
Таким образом, изучив и рассмотрев основные аспекты данной темы, можно сказать, что термодинамические процессы в физике являются немаловажными и играют большую роль в науке. Такой раздел физики, как термодинамика, всегда будет актуальным, поскольку он позволяет совершенствовать существующие аспекты науки и формировать новые.
Список литературы
Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с.
Воронин Г. Ф. Основы термодинамики. — М.: Изд-во Моск. ун-та, 1987. — 192 с.
Гиббс Дж. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — Изд. 2, сущ. перераб. и доп.. — М.: Едиториал УРСС, 2002. — 240 с.
Киттель Ч. Статистическая термодинамика. — М.: Наука, 1977. — 336 с.
Кубо Р. Термодинамика. М.: Мир, 1970.
Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с.
Ферми Э., Термодинамика. Харьков: Изд-во Харьковского ун-та, 1969. — 140 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Оглавление
Введение…………………………………………………………………………. 3
1. Основные законы термодинамики…………………………………………….4
1.1. Первый закон термодинамики…………………………………………….4
1.2. Второй закон термодинамики……………………………………………..6
1.3. Третий закон термодинамики……………………………………………. 9
2. Применение в теплофизике…………………………………………………..11
Заключение……………………………………………………………………….12
Список литературы………….………………………………………………. 13

Введение
Термодинамика — раздел физики, изучающий наиболее общие свойства макроскопических систем [1] и способы передачи и превращения энергии в таких системах. Данный раздел занимается изучением состояний и процессов, которые определены разнообразными связями с температурой. Термодинамика во многом опирается на обобщение опытных фактов, то есть она является феноменологической наукой. Все термодинамические процессы описываются макроскопическими величинами. Основными из них являются следующие величины: температура, давление, концентрация компонентов. Они вводятся для описания систем, состоящих из большого количества частиц, при этом не применяются к отдельным составляющим вещества.
В данное время термодинамика относится к строгой теории, развивающейся на основе нескольких постулатов, которые имеют определенную связь со свойствами частиц и законами их взаимодействия. Это обусловлено не только процессами самой термодинамики, но и статической физикой. Именно статическая физика занимается выяснением границ применимости термодинамики [3].
Все законы термодинамики имеют общий характер и не зависят от определенных деталей строения вещества на молекулярном уровне, поэтому они применяются довольно-таки широком круге науки и техники, затрагивая самые разные области: энергетика, химия, теплотехника, машиностроение, материаловедение, инженерия и т.д. Для каждой области термодинамика имеет большое значение и находит свое применение в ней [2].
1. Основные законы термодинамики
1.1. Первый закон термодинамики
Закон о сохранении и превращении энергии для термодинамической системы является первым законом термодинамики. По его определению работа может совершаться за счет какого-либо существующего вида энергии, например теплоты. Поэтому работу и количество теплоты, как и энергию измеряют в одних единицах – Джоулях.
Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.
Первый закон термодинамики формулируется так: изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
ΔU = A + Q, где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.
Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, то A = 0 и Q = 0, а, следовательно, и ΔU = 0.
При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.
Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:
Q = ΔU + Á, где A' — работа, совершаемая системой (A' = -A).
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
Первый закон определяет собой невозможность существования вечного двигателя, который мог бы совершать работу исключительно за счет своей внутренней энергии, не используя сторонней.
Действительно, если к телу не поступает теплота (Q - 0), то работа A', согласно уравнению первый закон термодинамики, совершается только за счет убыли внутренней энергии А' = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.
Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится определенное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.
1.2. Второй закон термодинамики
Второй закон термодинамики указывает на существование энтропии [4] как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры. То есть второе начало определяет начало об энтропии, а также её свойствах и признаках. Важно отметить, что энтропия, находясь в изолированной системе, остается либо неизменной, либо возрастает (в условиях неравновесных процессов). Энтропия достигает своего максимума при установлении термодинамического равновесия. Это определено законом возрастания энтропии. Частым образом в литературных источниках встречаются разнообразные формулировки второго закона термодинамики, являясь следствиями закона возрастания энтропии.
Второй закон тесно связан с понятием энтропии (S). Она порождается буквально всеми процессами и связана с потерей способности системы совершать работу. Рост энтропии является стихийным процессом. Изменения в системе увеличения энтропии происходят в том случае, если объем и энергия системы не являются постоянными. В обратном случае (если объем и энергия непостоянны) энтропия подвержена уменьшению.
Чтобы можно было использовать энергию, необходимо иметь в системе области с высоким и низким уровнем энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.
Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:
где S – энтропия; L – путь, по которому система переходит из одного состояния в другое.
В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.
Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:
где k – постоянная Больцмана; w – термодинамическая вероятность (она определяет количество способов реализации макросостояния системы). Таким образом, второе начало термодинамики определяется статическим законом, непосредственно связанным с описанием закономерностей теплового движения молекул (при этом движение является хаотическим). Данное движение молекул и составляет систему термодинамики.
Второй закон термодинамики имеет другие формулировки. Из них можно выделить две основных – формулировка Кельвина и формулировка Клаузнуса.
Формулировка Кельвина звучит следующим образом: невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Данная формулировка позволяет сделать вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:
где Tn – температура нагревателя; Th — температура холодильника; (T_n > T_h).
Формулировка Клаузиуса имеет следующий вид: невозможно создать круговой процесс, в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.
Таким образом, второй закон термодинамики обуславливает огромное различие между двумя формами передачи энергии, а именно между работой и теплотой [5]. Данный закон позволяет сделать вывод о том, что переход упорядоченного перемещения тела является необратимым процессом. Притом такое перемещение может переходить в хаотическое движение без каких-либо дополнительных процессов.
1.3. Третий закон термодинамики
Третий закон термодинамики носит и другое название – теорема Нернста. Она основана на физическом принципе, который определяет энтропию при приближении температуры к абсолютному нулю. Закон определен обобщением значительного количества экспериментальных данных по термодинамике гальванических элементов [6]. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю не должен сопровождаться изменением энтропии S, то есть изотерма T=0 совпадает с предельной адиабатой S0.
Данная теорема имеет несколько эквивалентных между собой формулировок:
- энтропия любой системы при температуре, значение которой приближено к абсолютному нулю, является универсальной постоянной и не зависящей от различных переменных параметров;
- при приближении к абсолютному нулю энтропия стремится к конкретному пределу, который не зависит от конечного состояния системы;
- приращение энтропии при приближении к абсолютному нулю не может зависеть от различных значений параметров термодинамики, всегда стремится к конечному определенному пределу;
- при процессах, происходящих при абсолютном нуле, система способна переходить из одного состояния равновесия в другое, при этом энтропия совершенно не изменяется [7].
Данный закон позволяет находить абсолютное значение энтропии. Этого нельзя сделать в рамках первого и второго закона термодинамики, поскольку в них энтропия определяется с точностью до произвольной аддитивной постоянной S0. Это не мешает исследованию и изучению термодинамических процессов, разность энтропий измеряется в различных состояниях.
Третий закон термодинамики имеет определенные следствия:
- абсолютный нуль температур не может достигаться ни в каких конечных процессах, связанных с изменением энтропии. К нулю можно приближаться лишь асимптотически;
- стремление теплоемкости к нулю при постоянном давлении и объеме. К нулю стремятся также коэффициенты теплого расширения и другие аналогичные величины [8].
Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при T=0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.
2. Применение в теплофизике
Каждый закон термодинамики имеет своё применение в теплофизике. Первый закон имеет практическое применение к различным процессам в физике. К примеру, благодаря ему можно вычислить идеальные параметры газа при самых разнообразных процессах, как тепловых, так и механических.
Применение второго закона имеет достаточно обширную область, поскольку относится ко всем процессам естествознания. Там, где встречается превращение нестройных видов энергии молекул и атомов в более стройную форму механической или электрической энергии, второй закон термодинамики проводит свою линию. Именно на его основах стоит физическая и теоретическая химия, а вместе с этим спектральный анализ и большая часть астрофизики.
Третий закон термодинамики иначе называется постулатом Нернста. В свою очередь его формулировка звучит следующим образом: с помощью конечного числа процессов нельзя достигнуть абсолютного нуля. Это говорит о том, что никаким способом невозможно остановить молекулы и атомы веществ. Этот процесс обусловлен постоянным теплообменом с окружающей средой. Рассмотрев закон, можно сказать, что уменьшение энтропии заключается в движении к абсолютному нулю. Данный вывод можно использовать в различных областях, применяя его во многих ситуациях. К примеру, для перевода парамагнетиков в ферромагнитное состояние при охлаждении.
Таким образом, применение трех законов термодинамики распространено во многих областях науки и жизни человека в целом. Во многом термодинамика упрощает жизнь, позволяет совершать новые открытия.
Заключение
Термодинамика в физике обусловлена существованием трех законов, каждый из которых имеет свою определенную формулировку. Она во многом имеет общую связь с процессами энтропии и её основными свойствами. Термодинамика играет большую роль в различных областях и сферах жизни человека. Её правила и закономерности оставляют след в следующих областях: теплотехника, энергетика, биология, машиностроение и другие. Кроме того термодинамика позволяет совершать новые открытия человечества. Это было бы невозможно без основных законов, открытых великими учеными в прошлом.
Таким образом, изучив и рассмотрев основные аспекты данной темы, можно сказать, что термодинамические процессы в физике являются немаловажными и играют большую роль в науке. Такой раздел физики, как термодинамика, всегда будет актуальным, поскольку он позволяет совершенствовать существующие аспекты науки и формировать новые.
Список литературы
Базаров И. П. Термодинамика. — М.: Высшая школа, 1991. — 376 с.
Воронин Г. Ф. Основы термодинамики. — М.: Изд-во Моск. ун-та, 1987. — 192 с.
Гиббс Дж. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
Квасников И. А. Термодинамика и статистическая физика. Т. 1: Теория равновесных систем: Термодинамика. — Изд. 2, сущ. перераб. и доп.. — М.: Едиториал УРСС, 2002. — 240 с.
Киттель Ч. Статистическая термодинамика. — М.: Наука, 1977. — 336 с.
Кубо Р. Термодинамика. М.: Мир, 1970.
Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с.
Ферми Э., Термодинамика. Харьков: Изд-во Харьковского ун-та, 1969. — 140 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Читайте также: