Тепловой баланс земли реферат

Обновлено: 04.07.2024

Земная поверхность, поглощая солнечную радиацию и нагреваясь, сама становится источником излучения тепла в атмосферу и через нее в мировое пространство. Чем выше температура поверхности, тем выше излучение. Собственное длинноволновое излучение Земли большей частью задерживается в тропосфере, которая при этом нагревается и излучает радиацию - противоизлучение атмосферы. Разность между излучением земной поверхности и противоизлучением атмосферы называется эффективным излучением. Оно показывает фактическую потерю тепла поверхностью Земли и составляет около 20%.

Атмосфера в отличие от земной поверхности больше излучает, чем поглощает. Дефицит энергии компенсируется приходом тепла от земной поверхности вместе с водяным паром, а также за счет турбулентности (в процессе подъема нагретого у земной поверхности воздуха). Возникающие между низкими и высокими широтами температурные контрасты сглаживаются за счет адвекции - переноса тепла морскими и главным образом воздушными течениями от низких широт к высоким (правая часть рисунка).

Схема среднегодового радиационного и теплового баланса


Схема среднегодового радиационного и теплового баланса

Для общегеографических выводов важны также ритмические колебания радиации из-за смены времен года, так как от этого зависит тепловой режим конкретной местности. Отражательные свойства земных покровов, теплоемкость и теплопроводность сред еще больше усложняют перенос тепловой энергии и распределение теплоэнергетических характеристик.

Уравнение теплового баланса

Количество тепла описывается уравнением теплового баланса, которое у каждого географического района свое. Его важнейшим компонентом является радиационный баланс земной поверхности. Солнечная радиация расходуется на нагревание почвы и воздуха (и воды), испарение, таяние снега и льда, фотосинтез, почвообразовательные процессы и выветривание горных пород. Поскольку для природы всегда характерно равновесие, равенство наблюдается между приходом энергии и ее расходом, что выражается уравнением теплового баланса земной поверхности:

Уравнение теплового баланса

где R - радиационный баланс; LE - тепло, затрачиваемое на испарение воды и таяние снега или льда (L - скрытое тепло испарения или парообразования; Е - скорость испарения или конденсации); А - горизонтальный перенос тепла воздушными и океаническими течениями или турбулентным потоком; Р - теплообмен земной поверхности с воздухом; В - теплообмен земной поверхности с почвой и горными породами; F - расход энергии на фотосинтез; С - расход энергии на почвообразование и выветривание; Q+q - суммарная радиация; а - альбедо; I - эффективное излучение атмосферы.

На долю энергии, расходуемой на фотосинтез и почвообразование, приходится менее 1% радиационного бюджета, поэтому в уравнении эти составляющие часто опускаются. Однако в реальности они могут иметь значение, поскольку эта энергия обладает способностью аккумулироваться и преобразовываться в другие виды (превратимая энергия). Маломощный, но продолжительный (сотни миллионов лет) процесс накопления превратимой энергии оказал существенное влияние на географическую оболочку. В ней скопилось около 11 · 10 14 Дж/м2 энергии в рассеянном органическом веществе в осадочных породах, а также в виде каменного угля, нефти, сланцев.

Уравнение теплового баланса можно вывести для любого географического района и отрезка времени, учитывая специфичность климатических условий и вклад компонентов (для суши, океана, районов с льдообразованием, незамерзающих и др.).

Перенос и распределение тепла

Структура теплового баланса зависит от географической широты и типа ландшафта, который, в свою очередь, сам зависит от нее. Она существенно изменяется не только при движении от экватора к полюсам, но и при переходе с суши на море. Суша и океан различаются как по величине поглощенной радиации, так и по характеру распределения тепла. В океане летом тепло распространяется на глубину до нескольких сотен метров. За теплый сезон в океане накапливается от 1,3 · 10 9 до 2,5 · 10 9 Дж/м2. На суше тепло распространяется на глубину всего нескольких метров, и за теплый сезон здесь накапливается около 0,1 · 10 9 Дж/м2, что в 10-25 раз меньше, чем в океане. Благодаря большому запасу тепла, океан зимой охлаждается меньше, чем суша. Расчеты показывают, что разовое содержание тепла в океане в 21 раз превышает ее поступление к земной поверхности в целом. Даже в 4-метровом слое океанической воды тепла в 4 раза больше, чем во всей атмосфере.

До 80% энергии, поглощаемой океаном, расходуется на испарение воды. Это составляет 12 · 10 23 Дж/м2 в год, что в 7 раз больше аналогичной статьи теплового баланса суши. 20% энергии расходуется на турбулентный теплообмен с атмосферой (что также больше, чем на суше). Вертикальный теплообмен океана с атмосферой стимулирует и горизонтальный перенос тепла, благодаря чему оно частично оказывается на суше. В теплообмене океана и атмосферы участвует 50-метровый слой воды.

Тепловой баланс Земли Тепловой баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля — атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация , поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (Т. б. системы Земля — атмосфера).

Уравнение Т. б. земной поверхности: R + P + F 0 + LE = 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс (или остаточная радиация) R — разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F 0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью , тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F 0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в Т. б. земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет вид: R a + L r + P + F a = D W.

Т. б. атмосферы слагается из её радиационного баланса R a ; прихода или расхода тепла L r при фазовых преобразованиях воды в атмосфере (г — сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла F a , вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение T. б. атмосферы входит член DW, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля — атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Средние широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий они близки к нулю.

Для Земли как планеты, вместе с атмосферой, схема Т. б. представлена на рис. На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см 2 в год, из которых около ═отражается в мировое пространство, а 167 ккал/см 2 в год поглощает Земля (стрелка Q s на рис. ). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см 2 в год; 18 ккал/см 2 в год из этого количества отражается, а 108 ккал/см 2 в год поглощается земной поверхностью (стрелка Q ). Атмосфера поглощает 59 ккал/см 2 в год коротковолновой радиации, то есть значительно меньше, чем земная поверхность. Эффективное длинноволновое излучение поверхности Земли равно 36 ккал/см 2 в год (стрелка I ) , поэтому радиационный баланс земной поверхности равен 72 ккал/см 2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см 2 в год (стрелка I s ) . Таким образом, поверхность Земли получает около 72 ккал/см 2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE ) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р ) .

Эффективное радиационное возмущающее воздействие за период 1880-2003 гг. с учетом парниковых газов, атмосферного аэрозоля и других факторов

Интерактивный учет всех

радиационных возмущающих воздействий

Результаты оценок среднеглобальных значений радиационного баланса Земли подтверждают их дезориентирующий характер при выводах о состоянии пространственно-временной изменчивости его компонентов. Достаточно отметить, что при оценке радиационного возмущающего воздействия за счет косвенного влияния аэрозоля, составившего в 2003 г. 1.39 Вт/м2, погрешность составила примерно 50%. Согласно данным табл. 1, суммарное эффективное радиационное возмущающее воздействие составляет +1.8 Вт/м2 при главном вкладе парниковых газов и неопределенности ±0.85 Вт/м2; обусловленной исключительно аэрозолем. Таким образом, аэрозоль оказывается в фокусе проблемы неопределенностей оценок изменений глобального климата, хотя не вызывает сомнений, что это только часть проблемы. Более сложные задачи возникают при попытках оценить ведущую роль внутренней нелинейной динамики климатической системы в формировании климата Земли.

Наблюдавшиеся значения среднеглобальных возмущающих воздействий и эквивалентные изменения альбедо Земли (х103)

Усиление парникового эффекта атмосферы за время индустриальной эры (2.4 ± 0.2 Вт/м2)

Антропогенное аэрозольное радиационное возмущающее воздействие за время индустриальной эры

Оценки изменений альбедо по данным об отраженной Луной уходящей коротковолновой радиации (2000-2004 rr.)

Изменения альбедо по данным спутниковых наблюдений (2000-2004 гг.)

Изменения суммарной радиации: по спутниковым данным за период 1983-2001 гг.

— по данным наземных наблюдений за период 1985-2000 гг.

— по данным наземных наблюдений за период 1950-1990 гг.

Противоречивость полученных в результате наблюдений и рассчитанных с помощью моделей данных о соотношении радиационного баланса и альбедо подтверждается многочисленными публикациями по этой теме. Ряд данных обнаруживает уменьшение уходящей коротковолновой радиации примерно на 2 Вт/м2 за период с марта 2000 г. по февраль 2004 г., что эквивалентно спаду альбедо Земли на -0.006. В тоже время существуют оценки, которые говорят о значительном возрастании уходящего коротковолнового излучения на 6 Вт/м2 и, соответственно, о повышении альбедо на 0.17.

Влияние изменений альбедо на климат может проявляться по-разному. Если оно связано с вариациями свойств поверхности суши, аэрозоля, снежного или ледяного покровов, то при спаде альбедо Земля должна прогреваться, а при повышении альбедо — выхолаживаться. Альтернативная возможность состоит в существенном уменьшении среднеглобального среднегодового теплозапаса океана. Анализ данных наблюдений за 1992-2002 гг. показал наличие возрастания запаса тепла в Мировом океане на 0.7 ± 0.4 Вт/м2. Если принимать во внимание только изменение альбедо, то указанному значению должно соответствовать уменьшение уходящей коротковолновой радиации. В целом спутниковые наблюдения не выявили значимой роли облачности в повышении альбедо, что говорит о необходимости продолжения спутниковых наблюдений за облаками.

Анализ среднегодовых величин радиационного баланса показывает, что влияние облачности состоит в смещении длинноволнового радиационного выхолаживания в сторону внутритропической зоны конвергенции, способствуя стабилизации тропической атмосферы и усилению возмущающего воздействия на циркуляцию атмосферы за счет роста горизонтального градиента ее прогревания. Имеет место также смещение длинноволнового выхолаживания на большие высоты в зоне штормов средних широт.

В декабре 1999 г. был запущен спутник Terra, на борту которого установлено пять видов научной аппаратуры, предназначенной для дистанционного зондирования климатической системы. В комплекс аппаратуры входит многолучевой видеоспектрорадиометр MISR (Multiangle Imaging SpectroRadiometer), который обеспечивает измерения уходящей коротковолновой радиации на длинах волн 446, 558, 672 и 866 нм при пространственном разрешении 275-1100 м для девяти направлений визирования в пределах ±70° по отношению к траектории спутника. Подобные многолучевые данные наблюдений уходящего коротковолнового излучения могут быть использованы для восстановления характеристик атмосферного аэрозоля, подстилающей поверхности и облачного покрова, которые являются важным дополнением к результатам спутникового наблюдения по фиксированным направлениям. Проведенные расчеты радиационного баланса с учетом данных измерений с MISR и подспутниковых измерений в штате Оклахома (США) 3 марта 2000 г. позволили обнаружить существенное снижение погрешности до 4% при переходе от двумерной к трехмерной модели климата.

Новым этапом в развитии спутниковых наблюдений радиационного баланса Земли становятся разработки, связанные с использованием аппаратуры для измерения его компонентов, которая установлена на спутниках Meteosat второго поколения. Регулярные наблюдения, которые обеспечиваются этими спутниками с декабря 2002 г., позволяют получать данные об интегральной уходящей радиации в диапазоне длин волн 0.32-100.0 мкм и уходящей коротковолновой радиации на длинах волн 0.32-4.0 мкм через каждые 15 мин при пространственном разрешении около 40 м с погрешностью до 10%. Установленный на спутнике Meteosat-8 сканирующий многоканальный радиометр SEVERI (Spinning Enhanced Visible and Infra Red Imager) обеспечивает получение информации об обусловленном облачностью радиационном возмущающем воздействии при высоком пространственно-временном разрешении, что открывает перспективы более достоверного анализа факторов, влияющих на формирование радиационного баланса Земли.

Парадокс противоречивых оценок изменений климата состоит в том, что в ходе дискуссий о климате странным образом отходят на задний план некоторые фундаментальные и совершенно очевидные обстоятельства, которые, однако, были детально изучены во многих публикациях российских специалистов в области климатологии. К сожалению, факт, что многие международные организации, занимающиеся планированием и реализацией программ изучения климата, как бы не замечают публикаций российских специалистов, включая и те, что имеются на английском языке. А ведь именно многие российские ученые выдвигают конструктивные идеи для преодоления трудностей, возникающих при изучении климата. Об этом красноречиво говорят их доклады на Всемирной конференции по климату, проходившей в Москве в 2003

Метеорология и климатология развитие науки, географические факторы климата




























Наши дополнительные сервисы и сайты:

г. С аратов

Первый вопрос: Как отмыть лодку от тины и водорослей? Второй вопрос: Чем отмыть яхту от водорослей? Третий вопрос: Где купить эффективное средство для мытья катеров, лодок, яхт?

Метеорология и климатология развитие науки, географические факторы климата, климатические измерение, предсказание климата, предсказание погодных условий, географическое рапределение климата, тепловые и климатические процессы в атмосфере

Тепловой баланс системы Земля-атмосфера

1. Земля в целом, атмосфера в отдельности и земная поверхность находятся в состоянии теплового равновесия, если рассматривать условия за длительный период (год или, лучше, ряд лет). Средние температуры их от года к году изменяются мало, а от одного многолетнего периода к другому остаются почти неизменными. Отсюда следует, что приток и отдача тепла за достаточно длительный период равны или почти равны.

Земля получает тепло, поглощая солнечную радиацию в атмосфере и особенно на земной поверхности. Теряет она тепло путем излучения в мировое пространство длинноволновой радиации земной поверхности и атмосферы. При тепловом равновесии Земли в целом приток солнечной радиации (на верхнюю границу атмосферы) и отдача радиации с верхней границы атмосферы в мировое пространство должны быть равными. Иначе говоря, на верхней границе атмосферы должно существовать лучистое равновесие, т. е. радиационный баланс, равный нулю.

Атмосфера, отдельно взятая, получает и теряет тепло, поглощая солнечную и земную радиацию и отдавая свою радиацию вниз и вверх. Кроме того, она обменивается теплом с земной поверхностью нерадиационным путем. Тепло переносится от земной поверхности в воздух или обратно путем теплопроводности. Наконец, тепло затрачивается на испарение воды с подстилающей поверхности; затем оно освобождается в атмосфере при конденсации водяного пара. Все указанные потоки тепла, направленные в атмосферу и из атмосферы, за длительное время должны уравновешиваться.

Рис. 37. Тепловой баланс Земли, атмосферы и земной поверхности. 1 - коротковолновая радиация, //-длинноволновая радиация, III - нерадиационый обмен.

Рис. 37. Тепловой баланс Земли, атмосферы и земной поверхности. 1 - коротковолновая радиация, II -длинноволновая радиация, III - нерадиационый обмен.

Наконец, на земной поверхности уравновешиваются приток тепла вследствие поглощения солнечной и атмосферной радиации, отдача тепла путем излучения самой земной поверхности и нерадиационный обмен теплом между ней и атмосферой.

2. Примем солнечную радиацию, входящую в атмосферу, за 100 единиц (рис. 37). Из этого количества 23 единицы отражаются обратно облаками и уходят в мировое пространство, 20 единиц поглощаются воздухом и облаками и тем самым идут на нагревание атмосферы. Еще 30 единиц радиации рассеиваются в атмосфере и из них 8 единиц уходят в мировое пространство. 27 единиц прямой и 22 единицы рассеянной радиации доходят до земной поверхности. Из них 25 + 20 = 45 единиц поглощаются и нагревают верхние слои почвы и воды, а 2 + 2 = 4 единицы отражаются в мировое пространство.

Итак, с верхней границы атмосферы уходит обратно в мировое пространство 23 + 8 + 4 = 35 единиц солнечной радиации, т. е. 35 % ее притока на границу атмосферы. Эту величину (35%) называют, как мы уже знаем, альбедо Земли. Для сохранения радиационного равновесия на верхней границе атмосферы необходимо, чтобы через нее наружу уходило еще 65 единиц длинноволнового излучения земной поверхности.

3. Обратимся теперь к земной поверхности. Как уже было сказано, она поглощает 45 единиц прямой и рассеянной солнечной радиации. Кроме того, к земной поверхности направлен поток длинноволнового излучения из атмосферы. Атмосфера соответственно своим температурным условиям излучает 157 единиц энергии. Из этих 157 единиц 102 направлены к земной поверхности и поглощаются ею, а 55 уходят в мировое пространство. Таким образом, кроме 45 единиц коротковолновой солнечной радиации, земная поверхность поглощает еще вдвое большее количество длинноволновой атмосферной радиации. Всего же земная поверхность получает от поглощения радиации 147 единиц тепла.

Очевидно, что при тепловом равновесии она должна столько же и терять. Путем собственного длинноволнового излучения она теряет 117 единиц. Еще 23 единицы тепла расходуются земной поверхностью при испарении воды. Наконец, путем теплопроводности в процессе теплообмена между земной поверхностью и атмосферой поверхность теряет 7 единиц тепла (тепло уходит от нее в атмосферу в больших количествах, но компенсируется обратной передачей, которая только на 7 единиц меньше).

Всего, таким образом, земная поверхность теряет 117 + 23 + + 7=147 единиц тепла, т. е. столько же, сколько получает, поглощая солнечную и атмосферную радиацию.

Из 117 единиц длинноволнового излучения земной поверхностью 107 единиц поглощаются атмосферой, а 10 единиц уходят за пределы атмосферы в мировое пространство.

4. Теперь сделаем подсчет для атмосферы. Выше сказано, что она поглощает 20 единиц солнечной радиации, 107 единиц земного излучения, 23 единицы тепла конденсации и 7 единиц в процессе теплообмена с земной поверхностью. Всего это составит 20+107 + 23 + 7=157 единиц энергии, т. е. столько же, сколько атмосфера сама излучает.

Наконец, снова обратимся к верхней поверхности атмосферы. Через нее приходит 100 единиц солнечной радиации и уходит обратно 35 единиц отраженной и рассеянной солнечной радиации, 10 единиц земного излучения и 55 единиц атмосферного излучения, а всего 100 единиц. Таким образом, и на верхней границе атмосферы существует равновесие между притоком и отдачей энергии, притом здесь.- только лучистой энергии. Никаких других механизмов обмена тепла между Землей и мировым пространством, кроме радиационных процессов, не существует.

Все приведенные цифры подсчитаны на основе отнюдь не исчерпывающих наблюдений. Поэтому на них не нужно смотреть как на абсолютно точные. Они не раз подвергались небольшим изменениям, не меняющим, однако, существа расчета.

5. Обратим внимание, что атмосфера и земная поверхность, по отдельности взятые, излучают гораздо больше тепла, чем за то же время поглощают солнечной радиации. Это может показаться непонятным. Но по существу дела это взаимный обмен, взаимная радиации. Например, земная поверхность теряет в конечном счете вовсе не 117 единиц радиации, 102 единицы она получает обратно, поглощая встречное излучение; чистая потеря равна только 117-102=15 единицам. Лишь 65 единиц земной и атмосферной радиации уходят через верхнюю границу атмосферы в мировое пространство. Приток 100 единиц солнечной радиации на границу атмосферы как раз и уравновешивает чистую потерю радиации Землей путем отражения (35) и излучения (65).

для железнодорожного транспорта, сертифицированные ВНИИЖТ- "Фаворит К" и "Фаворит Щ", внутренняя и наружная замывка вагонов.

Читайте также: