Тепловой баланс двигателя реферат

Обновлено: 05.07.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Действительно ли история тепловых двигателей — это история прогресса?

Тепловые двигатели чрезвычайно важны для жизни человека, технологии, энергии и транспорта. Изобретение парового двигателя имело большое значение для перехода к механическому производству и позволило создать пароход (1807 г.) и паровоз (1814 г.). Изобретение паровой турбины позволило значительно увеличить мощность электростанций. Сегодня паровая турбина является важнейшим первичным двигателем на тепловых и атомных электростанциях.

Изобретение двигателя внутреннего сгорания оживило автомобильную и авиационную промышленность.

Тепловой двигатель — это устройство, которое может преобразовывать вырабатываемое тепло в механическую работу. Механическая работа в тепловых двигателях осуществляется расширением определенного вещества, так называемого рабочего тела. В качестве рабочих органов обычно используются газообразные вещества (пары бензина, воздуха, воды). Рабочий орган получает (или дает) тепловую энергию при теплообмене с органами, обладающими большим внутренним запасом энергии.

Однократное преобразование тепла в работу не интересует техника. Действительно существующие тепловые двигатели (паровые двигатели, двигатели внутреннего сгорания и т.д.) работают циклически. Процесс теплообмена и преобразования полученного количества тепла в работу повторяется периодически. Для этого рабочий орган должен выполнять круговой процесс или термодинамический цикл, в котором исходное состояние периодически восстанавливается.

Работа А, выполняемая рабочим органом за цикл, равна количеству тепла Q, получаемого за цикл. Отношение работы A к количеству тепла Q1, которое рабочий получает от нагревателя во время цикла, называется нагревательной машиной/эффективностью η.

Этот эолипир представлял собой полую сферу, которая могла быть вынуждена вращаться под ним огнем. Для этого в вертикальной плоскости была предусмотрена сфера с двумя диаметрально противоположными, изогнутыми, выступающими трубками, а под ней был помещен сосуд, частично заполненный водой. Когда под сосудом возник пожар, в нем кипела вода, и выпущенный пар проникал по паровым трубам во внутреннюю полость сферы и выходил из нее по изогнутым трубам, вызывая вращение сферы.

По сути, эолипир — это не более чем паровая турбина. Конечно, эолипир не подходит под определение теплового двигателя, потому что он ничего не приводит в движение, это просто красивая игрушка, но в нем тепло естественным образом преобразуется в механическую работу, а идея использования энергии пара при ускорении и подаче сопел в кольцевом направлении была впоследствии использована для создания паровых турбин.

В шестидесятых годах XVIII века. Век — замечательный человек, сформировавшийся в дикой природе Алтая. Изобретатель и конструктор, технолог и машиностроитель, проектировщик лесопильных и горно-металлургических предприятий, специалист по рудам и строительным материалам, опытный шахтер и металлург, механик и математик, физик и метеоролог, мастер тонких экспериментов и умелый приборостроитель, преподаватель и график — таков был этот выдающийся представитель российского технического мышления — И.И.Ползунов.

20 мая 1765 года уже были закончены сто десять частей завода, не считая котла с арматурой и налоговой ставкой. Отдельные части весили более ста семидесяти пуделей. Наибольший диаметр котла составлял 3,5 метра. Высота паровых цилиндров составляла 2,8 метра. В конце 1765 года было завершено строительство гусеничной тепловой станции. На берегу рабочего пруда находилось машиностроительное предприятие высотой более 18 метров.

В условиях феодального крепостничества паровая машина И. И. Ползунова, конечно, не могла быть универсально циркулирующей. Однако использование отдельных двигателей и в любом случае использование уже построенного двигателя было возможным и разумным. Это поняли ведущие российские личности. A. И. Порошин, который уже был старше и на пенсии, настаивал на продолжении дела Ползунова в 1767 году. Однако он не был поддержан ни кабинетом министров, отвечающим за Алтай, ни Академией наук. Определенную роль сыграл тот факт, что Паллас и Фалк увидели эту машину в природе и впервые описали ее в прессе, все перекрутилось, вплоть до имени создателя новой машины. Старт Паллас и Фалк завершил Ирман и Меллер и физически уничтожил машину Crawler.

Уатт Джеймс (19.1.1736, Гринок, Шотландия — 19.8.1819, Хитфилд, Англия), английский изобретатель, создатель универсального парового двигателя, член Лондонского королевского общества (1785). С 1757 года он работал механиком в Университете Глазго, где познакомился со свойствами пара, а сам с большой точностью исследовал зависимость температуры насыщенного пара от давления с помощью котла Д. Папена. В 1765 г. У. построил экспериментальную машину с цилиндром диаметром 16 см, а в 1768 г. — первый большой паровой двигатель.

В 1774 г. паровой двигатель был закончен, дальнейшие испытания показали, что этот двигатель более чем в два раза эффективнее лучших машин Newcomen. В 1782 году он получил английский патент на паровой двигатель с расширением. В. ввел первую единицу мощности — лошадиную силу (позже его имя было изменено на другую единицу мощности — ватт). Благодаря своей эффективности паровой двигатель U. получил широкое распространение и сыграл важную роль в переходе к машинному производству.

Карно (Никола Леонар) Сади (1796-1832), французский физик и инженер, один из основоположников термодинамики. Работа Карнота стала фактически первым серьезным теоретическим исследованием принципов термических машин. Хотя он воспользовался идеей, уже отвергнутой многими физиками в то время, что приток тепла вызывает нагрев материи, а отток — ее охлаждение, ему удалось обнаружить ряд определений, которые играют решающую роль в работе этих машин.

Попытки Carno связать эффективность (действенность) отопительной машины (что также является ее термином) непосредственно с температурой отопления и холодильника потерпели неудачу по той простой причине, что в то время не была известна абсолютная шкала температур.

Но он многое понял. Например, он подробно проанализировал, выгоднее ли использовать водяной пар или воздух в качестве рабочего материала в тепловой машине, доказал, что теоретически максимально возможная эффективность не зависит от конструкции тепловой машины, а определяется только температурой отопления и холодильника, и установил много других важных моментов.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия сжигания топлива в рабочей камере преобразуется в механическую работу.

Первый практически полезный постоянный ток газа был построен французским механиком Э. Ленуаром (1860). В 1876 году немецкий изобретатель Н. Отто построил более совершенный 4-тактный газовый D.V.s. По сравнению с паровым двигателем D.V.s. он принципиально проще, так как исключается одно звено в процессе преобразования энергии — паровая котельная установка. Это улучшение привело к большей компактности D.V.S., меньшей массе на привод и более высокому КПД, но при этом потребовало более качественного топлива (газа, масла).

В зависимости от вида топлива Д. В. С. делятся на жидкотопливные и газовые двигатели. По способу заполнения цилиндра свежим зарядом — для 4-х и 2-х тактных двигателей. По способу приготовления горючей смеси топлива и воздуха — для двигателей с наружной и внутренней смесью. Двигатели с внешней смесью включают в себя карбюраторные двигатели, в которых в карбюраторе образуется горючая смесь жидкого топлива и воздуха, и газовые смеси, в которых в смесителе образуется горючая смесь газа и воздуха. В ДВС с внешним перемешиванием рабочая смесь в цилиндре воспламеняется электрической искрой. В двигателях с внутренним перемешиванием (дизельные двигатели) топливо саморазжигается при впрыске в сжатый воздух, нагретый до высокой температуры.

Максимальная эффективная эффективность самого передового Ц.К.Е. составляет около 44%.

Основным преимуществом Д.В.С., как и других тепловых двигателей (например, реактивных), перед гидравлическими и электрическими двигателями, является независимость от постоянных источников энергии (водных ресурсов, электростанций и т.д.), в этом контексте заводы, оборудованные Д.В.С., могут свободно передвигаться и оседать где угодно. Это привело к широкому применению Д.В.С. на транспортных средствах (автомобилях, сельскохозяйственных и дорожно-строительных машинах, самоходной военной технике и т.д.).

Тепловые двигатели

Черепанов, русский изобретатель, крепостной заводчик Демидов: отец Ефим Алексеевич (1774-1842) и сын Мирон Ефимович (1803-49). Они построили первый в России паровоз.

В 1869 году братья Пьер и Эрнест Мишо создали первый мотоцикл во Франции. Это был мотоцикл с маленьким одноцилиндровым паровым двигателем. Блок двигателя был соединен с блоком на заднем колесе гибким кожаным ремнем.

АВТОМОБИЛЬНОЕ (от авто… и лат. мобильное — мобильное, легко передвигаемое), транспортное безрелезовая машина в основном на колесном приводе, приводимом в движение собственным двигателем (внутреннее сгорание, электрическое или паровое). Первый паровоз был построен в 1769-70 гг. Ж. Куно (Франция), с двигателем внутреннего сгорания Г. Даймлера, К. Бенца (Германия) 1885-86 г.г. Различают легковые автомобили (легковые и автобусные), грузовые автомобили, специальные автомобили (пожарные, санитарные и т.д.) и гоночные автомобили. Скорость движения легковых автомобилей до 300 км/ч, гоночных автомобилей до 1020 км/ч (1993 г.), грузоподъемность грузовых автомобилей до 180 тонн.

Создателем первого автомобиля является немецкий инженер Карл Бенц. Однако есть и более ранние модели самоходных машин, такие как подъемник улиток Demetrius от Фалерского, который был создан около 2000 лет назад.

В 1885 году Бенц построил трехколесный автомобиль с двигателем внутреннего сгорания собственной конструкции, но не выезжал за пределы завода. Когда 29 января 1886 года он подал заявку на патент на VRS 37435 для самоходного экипажа как такового, появилась возможность провести публичную демонстрацию своего изобретения. Отправка состоялась 3 июля 1886 года.

Механик-самоучка Иван Кулибин (1735-1818) родился в Нижнем Новгороде в 1735 году как сын семьи мелкого купца муки. Его отец был старообрядцем, который воспитывал сына по строгим правилам и приучал его к труду. После того, как он начал учебу, Иван не мог остановиться и приступить к ней, так как у него не было другой возможности самостоятельно изучать науки с помощью книг, в том числе и трудов Михаила Ломоносова.

Среди тепловых двигателей победителями стали паровые двигатели. Только они до сих пор служат на тепловых и атомных электростанциях и мощных кораблях!

Экологические проблемы тепловых двигателей

ЭКОЛОГИЧЕСКИЙ КРИСИС, нарушение связей в экосистеме или необратимые события в биосфере, вызванные антропогенной деятельностью, угрожающей существованию человека как вида. Неблагоприятная экологическая ситуация, экологическая катастрофа и экологическая катастрофа отличаются по степени угрозы природной жизни людей и развитию общества.

Загрязнение тепловыми двигателями:

  1. Химический.
  2. Радиоактивный.
  3. Тепловой.

КПД тепловых двигателей Заключение

Сжигание топлива сопровождается выбросом в атмосферу углекислого газа, азота, серы и других соединений.

Меры по предотвращению загрязнения:

  1. сокращение вредных выбросов.
  2. контроль выхлопных газов, модификация фильтров.
  3. сравнение эффективности и экологических показателей различных видов топлива, переход транспорта на газовое топливо

Перспективы использования электродвигателей, пневмоавтомобилей, автомобилей на солнечных батареях.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Теплота, выделяемая при горении топлива, не может быть полностью трансформирована в полезную работу, так как даже в соответствии со вторым законом термодинамики часть ее неизбежно отдается холодному источнику. Расходование теплоты сгорания топлива, внесенного в двигатель за определенней период времени, на полезную работу и различные потери характеризуется тепловым балансом.

С помощью теплового баланса можно определить степень совершенства конструкции и регулировок двигателя и наметить пути улучшения экономичности его работы.

Уравнение теплового баланса:

где Q – теплота сгорания топлива, поступившего в двигатель;

Qе – теплота, эквивалентная эффективной работе двигателя;

Qохл теплота, переданная в охлаждающую среду через стенки цилиндра;

QГ теплота, уносимая с отработавшими газами;

Qнс потери теплоты вследствие неполноты сгорания топлива;

Qост – остальные, не учтенные ранее тепловые потери.

В относительных величинах (%) уравнение теплового баланса можно записать в виде:

где qе = (Qе / Q) 100% , qохл = (Qохл / Q) 100% и т.д.

Теплоту сгорания Q (кДж/ч) определяют по часовому расходу топлива GТ (кг/ч) с учетом его низшей теплотворной способности Hu (кДж/кг):

Количество теплоты Qе (кДж/ч), эквивалентное эффективной мощности двигателя Ne (кВт):

Зная количество охладителя Gохл (кг/ч), проходящего через систему охлаждения в единицу времени, и температуры его на входе T1 и выходе из системы T2, можно определить Qохл (кДж/ч):

где сохл теплоемкость охладителя, кДж/(кг К).

При известном количестве воздуха (горючей смеси) Gсм (кг/ч), поступающего в двигатель в единицу времени, его температуре Tсм (К) и температуре отработавших газов TГ (К) количество теплоты (кДж/ч), уносимой с этими газами, находят по формуле:

где c ′′ p теплоемкость отработавших газов при постоянном давлении, кДж/(кг град);

cp теплоемкость горючей смеси при постоянном давлении, кДж/(кг град).

Потери теплоты вследствие химической неполноты сгорания топлива (кДж/ч) определяются только для карбюраторных двигателей при значении коэффициента избытка воздуха α

9. Виды испытаний автомобильных двигателей. Оборудование, применяемое при испытаниях двигателей.

Испытания двигателей проводят для оценки показателей их работы и сравнения, для определения качества проведенного ремонта, а также для проверки показателей двигателя после проведения необходимых регулировок. Анализ результатов испытаний двигателей позволяет оценить эффективность их конструктивных особенностей, качество изготовления или их техническое состояние.

Основные виды испытаний двигателей можно классифицировать по признакам, определяющим программу и методы их проведения.

По целевому назначению различают испытания поисковые, доводочные, приемочные (государственные, межведомственные), инспекционные (длительные контрольные и краткие, периодические), приемно-сдаточные, ресурсные (на надежность), сертификационные и исследовательские.

По применяемым средствам, условиям и месту проведения испытания подразделяют на стендовые, полигонные, дорожные, эксплуатационные, испытания в особых условиях (высокогорных, тропических и т.д.).

Основные характеристики автомобильных поршневых и роторно-поршневых двигателей внутреннего сгорания определяют методом стендовых испытаний.

Стенд для испытания двигателей содержит массивный бетонный фундамент с заделанными в него чугунными плитами, вертикальные стойки для закрепления двигателя на фундаментной плите, тормозное устройство для имитации нагрузки двигателя, промежуточный редуктор для согласования характеристик двигателя и тормоза, необходимые приборы для проведения измерений и органы управления двигателем. Стенд оборудуется системами питания двигателя топливом, охлаждения двигателя и отвода отработавших газов.

При испытаниях автотракторных двигателей наибольшее применение находят электрические и гидравлические тормоза.

Выбор тормоза производится по максимальным мощности и числу оборотов. Соответствие тормоза двигателю по мощностным и скоростным данным обычно устанавливают путем наложения внешней скоростной характеристики двигателя на внешнюю характеристику тормоза.

Испытательный стенд должен иметь оборудование для измерения следующих показателей: крутящего момента двигателя с точностью; частоты вращения коленчатого вала; расхода топлива, температуры охлаждающей жидкости; температуры масла; барометрического давления; давления масла; угла опережения зажигания или начала подачи топлива; давления наддува.

Частоту вращения можно измерять приборами двух типов: суммарными счетчиками, фиксирующими число оборотов за определенный отрезок времени, и тахометрами, которые дают текущее значение частоты вращения. В зависимости от принципа действия тахометры могут быть центробежными и электрическими.

Расход топлива определяют с помощью устройств, показывающих объемный или массовый расход. Продолжительность опытов должна быть не менее 30 с.

Расход воздуха замеряют с помощью специального расходомера (воздухомера) или устройств, имеющих на впускном тракте измерительную насадку.

Для определения температуры в зависимости от пределов ее изменения и расположения точки, температуру которой необходимо замерить, применяют следующие приборы; жидкостные термометры, термометры сопротивления, термопары и термометры манометрического типа.

Угол опережения зажигания или начала подачи топлива на стенде определяется с помощью стробоскопического устройства.

Условия стендовых испытаний автомобильных двигателей определяются ГОСТ 14846-81.

Расчет теплового баланса двигателя внутреннего сгорания. Разработка опытных конструкций, повышение мощностных и экономических показателей поршня, шатуна. Изучение принципа работы масляного радиатора и системы охлаждения двигателя внутреннего сгорания.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 05.11.2015
Размер файла 851,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Тепловой расчет двигателя

2. Построение индикаторных диаграмм

3. Расчет теплового баланса

4. Динамический расчет двигателя

5. Уравновешивание двигателя

6. Расчет и проектирование деталей двигателя

6.1 Расчет поршня

6.2 Расчет поршневого пальца

6.3 Расчет поршневого кольца

6.4 Расчет верхней головки шатуна

6.5 Расчет стержня шатуна

6.6 Расчет кривошипной головки шатуна

6.7 Расчет шатунных болтов

7. Расчет систем двигателя

7.1 Расчет системы смазки

7.2 Расчет масляного радиатора

7.3 Расчет системы охлаждения

На наземном транспорте наибольшее распространение получили двигатели внутреннего сгорания. Эти двигатели отличаются от других типов компактностью, высокой экономичностью, долговечностью и применяются во всех отраслях народного хозяйства. В настоящее время особое внимание уделяется снижению токсичности выбрасываемых в атмосферу газов, вредных веществ и снижению уровня шума работы двигателей.

Успешное применение двигателей внутреннего сгорания, разработка опытных конструкций, повышение мощностных и экономических показателей стали возможны в значительной мере благодаря исследованиям и разработке теории рабочих процессов в двигателях.

1. Тепловой расчет двигателя

Частота вращения коленчатого вала n=2700 об/мин;

Степень сжатия е=7,6;

Эффективная мощность (берется по стандартной скоростной характеристике двигателя для заданной частоты вращения) Ne=90кВт;

Коэффициент избытка воздуха б=0,90;

Топливо- бензин АИ-80 ГОСТ Р51105-97. Средний элементарный состав и молекулярная масса: С=85,5%, Н=14,5%, О=1%, =115 кг/кмоль. Низшая расчетная теплота сгорания топлива 43930 кДж/кг.

Параметры рабочего тела

Определяем теоретически необходимое количество воздуха для сгорания 1 кг топлива

l0= 1 / 0,23(8/3С + 8Н - О) (кг) или L0 = l0/мB =0,516 (кмоль).

Определяем количество свежего заряда

М1 =б L0,=0,464 кмоль.

Определяем общее количество продуктов сгорания

М2= б L0+Н/4+О/32=0,524 ,кмоль

Параметры окружающей среды и остаточные газы

Принимаем атмосферные условия:.р0=pk=0,1МПа, Т0=Tk=293К;

Принимаем ТГ =1000К;

Принимаем температуру подогрева свежего заряда

Определяем плотность заряда на впуске

где Rв=287 Дж/кг град - удельная газовая постоянная для воздуха.

В соответствии со скоростным режимом работы двигателя и качеством обработки внутренней поверхности принимаем коэффициент, а скорость движения заряда м/с.

Определяем потери давления на впуске в двигатель

Определяем давление в конце впуска

Определяем коэффициент остаточных газов

Определяем температуру в конце впуска

Определяем коэффициент наполнения

Определяем показатель адиабаты сжатия k1 в функции и Та, по номограмме.

Определяем показатель политропы сжатия n1 в зависимости от k1, который устанавливается n1=1,345 k1=1,3657

Определяем давление в конце сжатия

Определяем температуру в конце сжатия

Определяем среднюю молярную теплоемкость заряда (воздуха) в конце сжатия (без учета влияния остаточных газов)

Определяем число молей остаточных газов

Определяем число молей газов в конце сжатия до сгорания

Определяем среднюю молярную теплоемкость продуктов сгорания в карбюраторном двигателе при постоянном объеме, при 1

Определяем число молей газов после сгорания

Определяем расчетный коэффициент молекулярного изменения рабочей смеси

Принимаем коэффициент использования теплоты .

Тогда количество теплоты, передаваемое газом на участке cz индикаторной диаграммы при сгорании 1кг топлива определится, как

Температуру в конце сгорания определяют из уравнения сгорания

Определяем давление в конце процесса сгорания (теоретическое)

Определяем давление в конце процесса сгорания (действительное)

Определяем степень повышения давления

Показатель политропы расширения карбюраторного двигателя определяем по номограмме, учитывая, что его значение незначительно отличается от значения показателя адиабаты расширения k2.

Определение показателя политропы расширения производим следующим образом. По имеющимся значениям е и ТZ определяем точку пересечения. Через полученную точку проводим горизонталь до пересечения с вертикалью, опущенной из точки б=1, получая какое-то значение k2. Далее двигаемся по этой кривой k2 до пересечения с вертикалью, опущенной из заданного значения б. Ордината точки пересечения дает искомое значение n2=k2=1,2604.

Определяем давление процесса расширения

Определяем температуру процесса расширения

Проверяем правильность ранее принятого значения температуры остаточных газов (погрешность не должна превышать 5%).

Индикаторные параметры рабочего цикла

Определяем среднее индикаторное давление цикла для неокругленной индикаторной диаграммы

Принимаем коэффициент полноты индикаторной диаграммы

Определяем среднее индикаторное давление цикла для скругленной индикаторной диаграммы

Определяем индикаторный КПД

Определяем индикаторный удельный расход топлива

Эффективные показатели двигателя

Принимаем предварительно среднюю скорость поршня W=15 м/с.

Определяем среднее давление механических потерь учитывая, что , .

Определяем среднее эффективное давление

Определяем механический КПД

Определяем эффективный КПД

Определяем эффективный удельный расход топлива

Исходя из величин эффективной мощности, частоты вращения коленчатого вала, среднего эффективного давления и числа цилиндров определяем рабочий объем одного цилиндра

Определяем диаметр цилиндра

мм, а затем округляем его до целого цисла.

Определяем ход поршня S=D, мм,

Определяем площадь поршня Fп=D2/4, см2,

Определяем рабочий объем цилиндра

Определяем среднюю скорость поршня

сравниваем ее значение с ранее принятым.

Определяем значение расчетной эффективной мощности

Сравниваем полученное значение мощности с заданным значением

2. Построение индикаторных диаграмм

Построение свернутой индикаторной диаграммы ДВС производится по данным теплового расчета. Диаграмма строится в прямоугольных координатах Р-S, где S - ход поршня. Для построения используются следующие масштабы:

масштаб давления р=0,04МПа/мм.

масштаб перемещения поршня S=1 мм S/мм чертежа.

От начала координат в масштабе S по оси абсцисс откладывают значения приведенной высоты камеры сжатия Sс и хода поршня S. При этом

По оси ординат в масштабе р откладываются величины давлений в характерных точках а, с, z, z, b, r диаграммы, а также значение Ро.

Построение политроп сжатия и расширения осуществляется по промежуточным точкам (8. 10 значений). Значения давлений в промежуточных точках политропы сжатия подсчитываются по выражению

а для политропы расширения по выражению

Рассчитанные значения приведены в таблице 1.

Таблица 1 Значения давлений в промежуточных точках политропы сжатия и расширения

Для перестроения полученной индикаторной диаграммы в развернутом виде графоаналитическим методом под ней строят полуокружность радиусом R, имея в виду, что

Затем полуокружность делят на дуги, охватывающие углы 20о и точки соединяют радиусами с центром. Затем центр смещают вправо на величину мм (поправка Брикса). Из нового центра строят лучи, параллельные ранее проведенным радиусам. Из новых точек на окружности проводят вертикальные линии до их пересечения с линиями индикаторной диаграммы. Точки пересечения дают значения Ргазов при этих углах поворота кривошипа. Линию Ро свернутой диаграммы продолжают вправо, обозначая на ней значения углов поворота кривошипа в масштабе 1мм=2о. Значения Ргазов (МПа) берут от линии Ро и откладывают на развертке. Полученные точки соединяют плавной кривой.

3. Расчет теплового баланса двигателя

В общем виде тепловой баланс двигателя определяется из следующих составляющих

где -общее количество теплоты, введенной в двигатель с топливом, Дж/с;

-теплота, эквивалентная эффективной работе двигателя за время 1с, Дж/с;

-теплота, потерянная с отработавшими газами, Дж/с;

-теплота, передаваемая охлаждающей среде, Дж/с;

-теплота, потерянная из-за химической неполноты сгорания топлива, Дж/с;

-неучтенные потери теплоты, Дж/с.

Общее количество теплоты определится по формуле

где -часовой расход топлива,

Теплота эквивалентная эффективной работе двигателя, определится по формуле

Теплота, потерянная с отработавшими газами определится по формуле

-теплоемкость отработавших газов определяются по таблицам [3].

- теплоемкость свежего заряда.

Теплота, передаваемая окружающей среде, определится по формуле:

где с-коэффициент пропорциональности, с=0,45…0,53

m-показатель степени, m=0,5…0,7 для 4-х тактных двигателей.

Неучтенные потери теплоты определятся по формуле

Составляющие теплового баланса сводим в табл. 3.1

Таблица 3.1 Основные величины теплового баланса двигателя

Составляющие теплового баланса

Общее количество теплоты, введенной в двигатель с топливом

Теплота, эквивалентная эффективной работе

Теплота, потерянная с отработавшими газами

Теплота, передаваемая охлаждающей среде

Неучтенные потери теплоты

4. Динамический расчет двигателя

Для расчета деталей кривошипно-шатунного механизма на прочность и выявление нагрузок на трансмиссию машин необходимо определить величины и характер изменения сил и моментов, действующих в двигателе. С этой целью проводят динамический расчет кривошипно-шатунного механизма

1. Строится индикаторная диаграмма.

2. троится диаграмма фаз газораспределения, а под нею схема кривошипно-шатунного механизма с указанием точек приложения и знаков (+,-) действия сил.

3. Построенная скругленная индикаторная диаграмма, пользуясь методом Брикса, развёртывается в диаграмму избыточных сил давления газов Ргазов (МПа) по углу поворота коленчатого вала в масштабе 1мм=2о.

4. Строятся графики перемещения, скорости и ускорения поршня, ширина графиков равна 2R.

5. Руководствуясь найденными размерами двигателя (S и D), определяется масса частей, движущихся возвратно-поступательно, и масса частей, совершающих вращательное движение. Для этой цели задаемся конструктивными массами поршневой и шатунной группы, пользуясь табл.4.1.

Значение масс поршня, шатуна и коленчатого вала определяются по формуле

где - конструктивная масса детали, отнесенная к площади поршня, (табл. 4.1. /1/ ).

Производим расчет полного значения масс, кг

Масса частей, движущихся возвратно-поступательно:

Масса вращающихся деталей:

Для V-образного двигателя масса вращающихся деталей определяется по формул

Соответствие выбранных масс проверяем по формуле:

где R-радиус кривошипа, м;

-угловая скорость коленчатого вала, ;

-отношение радиуса кривошипа к длине шатуна.

Максимум удельной силы, для ЗМЗ - 5234 при n=2700 об/мин, не должен превышать =1,4…1,8 МПа;

Удельную силу инерции движущихся масс определяем по формуле

6 Производится расчёт сил, действующих в КШМ, Н:

Силы инерции возвратно-поступательно движущихся масс,

Центробежной силы инерции вращающихся масс,

Центробежная сила инерции вращающихся масс является результирующей двух сил:

- силы инерции вращающихся масс шатуна

- силы инерции вращающихся масс кривошипа

Суммарной силы, действующей на поршень,

где РГ -сила давления газов,

Нормальной силы, перпендикулярной к оси цилиндра,

Силы, действующей вдоль шатуна,

Нормальной силы, действующей вдоль радиуса кривошипа,

Тангенциальной силы, касательной окружности кривошипа,

Значения тригонометрических функций для выбранного значения берутся из таблиц /1/. Расчет всех действующих сил производим через двадцать градусов поворота коленчатого вала. В интервале резкого повышения давления (приблизительно от до п.к.в.) расчет ведется через

Данные расчетов сил для различных углов сводятся в таблицу 3.

Таблица 4.1 Числовые значения давлений и сил, действующих в КШМ

7. По рассчитанным данным строятся графики изменения сил, в зависимости от угла поворота коленчатого вала.

8. Для построения полярной диаграммы наносятся прямоугольные координаты силы Т по горизонтали и силы К по вертикали. Для принятых в расчетах величин углов поворота коленчатого вала строится полярная диаграмма силы S, то есть откладываются ее составляющие (Т - по горизонтали, К - по вертикали), получая последовательно концы вектора S. Полученные точки 1, 2 и т. д. последовательно в порядке углов соединяют плавной кривой.

9. Для нахождения результирующей силы RШ.Ш на шатунную шейку необходимо полюс О переместить по вертикали вниз на величину вектора

КR.Ш (КR.Ш ==-5,1.0,0485.282,6=2,47 кН-

центробежная сила действующая на шатун, постоянна по величине и направлению) и обозначить эту точку ОШ. Затем вокруг точки ОШ проводится окружность любого радиуса, удобнее - радиусом шатунной шейки RШ.Ш.min. Точка ОШ соединяется с точками 1, 2 и всеми остальными через 20о тонкими прямыми линиями, конец которых должен выходить за пределы окружности. Вектор ОШ- для каждого угла дает и направление и значение результирующей силы (нагрузки) RШ.Ш.=S+KR.Ш на шатунную шейку.

10. Для построения развертки диаграммы нагрузки RШ.Ш в прямоугольные координаты через точку ОШ проводится горизонтальная линия, служащая осью углов . Углы обозначаются через выбранные 30о в пределах 0-720о и через эти точки проводятся вертикали. Для каждого угла 0, 1, 2 и т.д. берется значение результирующей силы RШ.Ш с полярной диаграммы нагрузки и откладывается по вертикали, причем все значения RШ.Ш считаются положительными. Точки соединяются плавной кривой результирующей силы

На графике развертки обозначают точки (RШ.Ш)max, (RШ.Ш)min, (RШ.Ш)ср.

Средняя удельная нагрузка на подшипник, отнесенная к единице площади его диаметральной проекции, определится, как:

где: - диаметр шатунной шейки;

- рабочая ширина вкладыша (принимаем).

Если переместить центр ОШ вниз на значение силы КR, получим результирующую силу, действующую на колено вала.

11. Пользуясь полярной диаграммой, строим диаграмму износа шейки, дающую условное представление о характере износа в предположении, что износ пропорционален усилиям, действующим на шейку, и происходит в секторе 60о от мгновенного направления силы S.

Для этого ниже полярной диаграммы строится еще одна окружность, радиусом RШ.Ш.min. К внешней стороне окружности прикладываются векторы усилий, параллельные соответствующим векторам Ош- полярной диаграммы (параллельно силам S) так, чтобы линия действия их проходила через центр.

Значение усилий RШ.Ш. для каждого угла берется с развернутой диаграммы нагрузки, и под углом 60о к направлению каждого усилия в обе стороны проводятся кольцевые полоски, высота которых пропорционально этому усилию. Суммарная площадь этих полосок в итоге представляет собой условную диаграмму износа. На диаграмме износа шейки видна зона наибольших и наименьших давлений на нее. В месте наименьших давлений проводится осевая линия, где должно выводиться отверстие подвода масла к подшипнику.

12. Под графиком развернутой диаграммы нагрузки строят кривую суммарного индикаторного крутящего момента. Для этого по оси абсцисс откладывают значение угла поворота кривошипа в пределах от 0о до 720/8=90є.

По оси ординат откладывается значение крутящего момента, равное

Мi=ТR, в масштабе м=5 Нм/мм,

значение силы Т берется с построенного на листе 1 графика.

Предполагается, что крутящий момент в отдельных цилиндрах изменяется одинаково, лишь со сдвигом на угол =720/i. Поэтому берется участок силы Т в пределах от 0о до (720/i)о, значение ее умножается на радиус кривошипа и полученные значения крутящего момента откладываются на строящемся графике. Затем берется следующий равный участок силы Т и т.д. Таким образом, получается число кривых крутящего момента, равное i.

Кривая суммарного индикаторного крутящего момента многоцилиндрового двигателя на участке получается путем графического суммирования полученного числа i кривых крутящих моментов для отдельных цилиндров. Среднее значение индикаторного момента определится, как

где F1 и F2 - положительная и отрицательная площади диаграммы,

Ввиду того, что при построении диаграммы индикаторного крутящего момента двигателя не учитывались затраты на трение, привод вспомогательных механизмов и т.д., для получения значения действительного эффективного крутящего момента необходимо учесть величину механического КПД:

Полученное значение среднего эффективного крутящего момента следует сопоставить с расчетным значением

(Ме)расч. = 9554Nе/nном, Нм,

(Ме)расч. = 955490/2700=318,46 Нм.

Отклонение графически полученного значения момента от его расчётного значения не превышает ±5%.

На первом листе строятся также графики перемещения, скорости и ускорения поршня.

Результаты расчётов сводим в таблицу.

Таблица 4.2 Данные для построения графиков перемещения, скорости и ускорения поршня

Тепловой баланс и теплонапряженность двигателя

Тепловой баланс двигателя


Тепло, выделяющееся при сгорании топлива, не может быть полно­стью превращено в полезную работу, так как в соответствии со вторым законом термодинамики часть этого тепла должна быть передана хо­лодному источнику. В реально выполненных двигателях, работающих по действительному циклу, имеют место дополнительные потери тепла в охлаждающую воду, с отработавшими газами и др. Количественное распределение тепловой энергии топлива на полезную работу и потери при превращении тепла в механическую работу в цилиндрах двигателя носят название теплового баланса .
Все подведенное тепло, полученное от сгорания топлива ---100%

разделяется примерно на составные части согласно таблице.

В общем виде уравнение теплового баланса имеет следующий вид:

Q = Qe + Qω + Qg + Qx + Qs . ( 1)

Где Q —100 % подведенного тепла к двигателю при сгорании всего топлива

1.1) потери от неполноты сгорания вследствие плохого пере­мешивания топлива с воздухом;

1.2) потери, эквивалентные части работы трения в подшипниках и прочих механизмах (потери тепла на трение между поршнем и цилиндром поглощаются охлаждающей водой);

1.3) по­тери от лучеиспускания

1.4) потери, эквивалентные кинетической энер­гии отработавших газов. Кроме того, в остаточный член входит неизбеж­но получающаяся при экспериментировании неувязка теплового баланса. Суммарно остаточный член Qs теплового баланса составляет 5—10% от общего количества тепла, введенного в цилиндр двигателя. Практически Qs определяют как разность между количеством затраченного тепла в единицу времени Q T и следующими составляющими теплового баланса:

2. Тепло Qe , превращенное в полезную работу :

Qe=Ne дж/сек ( Qe=632Ne кал/ч) для дизелей составляет 45-55 %

3. Тепло Qω потерянное с охлаждающей водой:

Qω=Gв (tвых- tвх) Со, для дизелей составляет 15-28 %

где t вх и t вых — температура входящей и выходящей воды;

G B — количество воды, кг/ч;

Со — теплоемкость воды.

4. Тепло Qg , теряемое с отработавшими газами:

Qg = (М п.с mc p ’ Tr—M 1 mc p T a )G r ------- для дизелей составляет 25-42 %

где М п.с и M 1 — число молей продуктов сгорания и свежего заряда на 1 кг топлива;

mс’ р и mс р — молярные теплоемкости продуктов сгорания и свеже­го заряда при р= const;

Tr и Та — температура отработавших газов и свежего заряда;

G T — количество топлива.

По тепловому балансу можно оценить долю потерь каждой из со­ставляющих баланса и при доводке двигателя определить возможность снижения принципиально устранимых потерь тепла, имеющих место в двигателе сверх неизбежных потерь. Принципиально устранимые потери включены в следующие составляющие баланса: Qg, Qw, Qx , Qs вместе с неизбежными потерями, согласно второму закону термодинамики.

Как видно из формулы теплового баланса ( 1) наибольшие потери тепла составляют с выхлопными газами.

Для повышения КПД всей силовой установки это тепло используется вторично( утилизируется) ,например для подогрева воды в утиль котлах, бойлерах и т.д.


Теплонапряженность
Тепловое состояние ЦПГ, определяющее работоспособность и надежность ее деталей в эксплуатации, называется теплонапряженностью цилиндра. Температура нагрева деталей в районе камеры сгорания ( втулка цилиндра, дно крышки цилиндра, дно поршня, район 1-го поршневого кольца, тарелки клапанов газораспределения) имеют различную температуру по причине различных термических сопротивлений, подвода и отвода тепла. Неодинаково эти детали прогреваются в осевом и радиальном направлении, что приводит к высоким тепловым напряжениям и может привести к трещинам и полному разрушению.

Особенно актуально это для современных двигателей, которые характеризуются значительным увеличением форсировки рабочего процесса за счет наддува. Рост среднего эффективного давления в два раза привел к повышению тепловой напряженности. Для снижения теплонапряженности деталей применяют меры для интенсивного охлаждения ( сверление в опорном поясе втулок цилиндров дополнительных каналов охлаждения, то же самое в донышке поршня). Также увеличивают угол предварительного выпуска газов, что приводит к увеличению доли тепла ,отводимого с выпускными газами, а это позволяет повысить мощность турбокомпрессора.

Сохранение масляной пленки на стенках втулки цилиндров, в зоне первого поршневого кольца обеспечивается температурой не выше 200-220 С. Это значение обеспечивается контролем по косвенным показателям- температурой выхлопных газов и температурой охлаждения, средним эффективным давлением.

Ограничение этих показателей в эксплуатации исключает тепловую перегрузку деталей и обеспечивает надежную работу двигателя .

Ответить на следующие вопросы:
1. дать определение теплового баланса двигателя.

2. объяснить почему невозможно получить 100% полезной работы от подведенного топлива.

3. понятие теплонапряженности ДВС

4. какие конструктивные меры принимают для снижения теплонапряженности деталей.

5. какие эксплуатационные меры ограничивают теплонапряженность ДВС.
3.6 основы теории ДВС 2012

Определение пути,скорости и ускорения поршня.


В поршневых ДВС кривошипно-шатунный механизм преобразует поступательное движениерабочих поршней во вращательное движение коленчатого вала. В практике дизелестроения используют разные варианты конструкций КШМ, среди которых имеются и очень сложные.
В зависимости от особенностей требований к судовым дизелям применяют три типа КШМ:

центральный, или КШМ (рис. 88, а), в котором оси цилиндра коленчатого вала пересекаются, наиболее распространен в судовых ДВС. Обычно судовые дизели представлены однорядными вертикальными, двухрядными вертикальными и V-образными с центральным типом КШМ. У V-образного дизеля оси цилиндров одного ряда смещены относительно осей цилиндров другого ряда на ширину кривошипной головки шатуна, так как на одну шейку вала работают две кривошипные головки шатунов.
В дезаксиальном КШМ (рис. 88, б) оси цилиндра и коленчатого вала не пересекаются. Между этими осями имеется смещение а (дезаксаж) от оси цилиндра в направлении вращения вала. Обычно размер дезаксажа не превышает 10% хода поршня S. На рисунке красной стрелкой вверху указан кулачок впускного клапана более широкий,позволяющий увеличить угол открытия всасывающего клапана.
Дезаксаж способствует уменьшению давления поршня на стенку цилиндра во время рабочего хода и увеличению его во время хода сжатия. Это приводит к наиболее равномерному изнашиванию рабочей втулки цилиндра. Кроме того, у дизеля с дезаксиальным КШМ в районе ВМТ замедляется скорость поршня, что благоприятствует процессу сгорания топлива. Эту схему КШМ широко применяют у высокооборотных дизелей.
У КШМ с прицепным шатуном (рис. 88 в) два (или несколько) шатуна смонтированы на одной шейке коленчатого вала. Шатун, соединенный с шатунной шейкой, и соответствующий этому шатуну цилиндр называют главными. Шатун другого цилиндра, шарнирно соединенный с главным шатуном, называют прицепным, а соответствующий ему цилиндр - боковым. Такой тип КШМ применяют в некоторых конструкциях V-образных дизелей.
Движущиеся части КШМ имеют ускорения, возникают силы инерции, которые необходимо учитывать при расчетах деталей двигателя на прочность.

Задачей кинематики двигателей является определение пути, скорости и ускорения поршня, а также их графическое изображение, что в конечном счете позволит определить силы , действующие в КШМ в любой момент времени и при любом угле поворота кривошипа.

1. Определение пути ,пройденного поршнем,поправка Брикса


На рис. 244 OB = R— радиус кривошипа и AB=L— длина шатуна. Обозначим отношение L0 =L/R- называется относительной длиной шатуна, для судовых дизелейнаходится в пределах 3.5-4.5.

однако в теорииКШМ ИСПОЛЬЗУЮТ ОБРАТНУЮ ВЕЛИЧИНУ λ=R / L

Расстояние между осью поршневого пальца и осью вала при повороте его на угол а

АО = AD +DО=LcosB + Rcosa
Когда поршень находится в в. м. т., то это расстояние равно L+R.

Следовательно, путь, пройденный поршнем при повороте кривошипа на угол а, будет равен x=L+R-AO.

Путем математических вычислений получим формулу пути поршня

Угол наклона шатуна является функцией угла поворота кривошипа и после преобразований получим:


Х=R < 1- cosa +1/2 *λ sin 2 a > ( 2)
При помощи геометрических выкладок можно доказать, что при повороте кривошипа на какой-то угол от В.М.Т. поршень проходит путь больший, чем путь, проходимый поршнем при повороте кривошипа на такой же угол от Н.М.Т. при построении графического пути ,пройденного поршнем это учитывается с помощью поправки Брикса. Для определения пути поршня, соответствующего повороту кривошипа на угол а, по способу Брикса откладывают из центра О (рис. 246) в сторону, противоположную в. м. т., отрезок 00'=R 2 /2L=1/2λR , называемый поправкой Брикса.

Параллельно линии ОВ из точки О' проводят линию О'В'. Приближенно можно считать ﮟ ВВ≈ОО / sina=1/2λRsina

Из рис.246 имеем МД≈ВВ / sina=1/2λRsin 2 a ВоМ=ОВо-ОD+МD

или ВоМ=R-Rcosa+1/2λR sin 2 a=R(1-cosa) 1/2λR sin 2 a

Следовательно, отрезок ВоМ=х, т. е. пути поршня.Таким образом, для получения пути поршня с учетом косвенного влияния шатуна нужно поправку Брикса отложить в сторону н. м. т. и провести из точки О' линию О' В' параллельную положению кривошипа.

СКОРОСТЬ И УСКОРЕНИЕ ПОРШНЯ

Средняя скорость поршня Vm наряду с частотой вращения является показателем скоростного режима двигателя. Она определяется по формуле Vm = Sn/30, где S — ход поршня, м; п — частота вращения, мин-1. Считают, что для МОД vm = 4-6 м/с, для СОД vm = 6s-9 м/с и для ВОД vm > 9 м/с. Чем выше vm, тем больше динамические напряжения в деталях двигателя и тем больше вероятность их изнашивания — в первую очередь цилиндропоршневой группы (ЦПГ). В настоящее время параметр vm достиг определенного предела (15—18,5 м/с), обусловленного прочностью материалов, применяемых в двигателестроении, тем более, что динамическая напряженность ЦПГ пропорциональна квадрату значения vm. Так, при увеличении vm в 3 раза напряжения в деталях возрастут в 9 раз, что потребует соответствующего усиления прочностных характеристик материалов, применяемых для изготовления деталей ЦПГ.

Средняя скорость поршня всегда указывается в заводском паспорте ( сертификате) двигателя.
Истинная скорость поршня, т. е. скорость его в данный момент (в м/сек), определяется как первая производная пути по времени. Подставим в формулу (2) a= ωt, где ω- частота вращения вала в рад/сек , t- время в сек. После математических преобразований получим формулу скорости поршня:

C=Rω(sina+0.5 λ sin2a) (3)

где R— радиус кривошипа в м\

ω — угловая частота вращения коленчатого вала в рад/сек;

а — угол поворота коленчатого вала в град;

λ=R /L- отношение радиуса кривошипа к длине шатуна;

Со окружная скорость центра, кривошипной шейки в м/сек;

L длина шатуна в м.

При бесконечной длине шатуна (L=∞ и λ =0) скорость поршня равна

С ∞=Rω sin a.

Продифференцировав аналогичным образом формулу ( 1) получим

С= Rω sin (a +B) / cosB (4)

Значения функции sin (a +B) берут из таблиц приводимых в справочниках и пособиях взависимости от a и λ.

Очевидно, что максимальное значение скорости поршня при L=∞ будет при а=90° и а=270°:

Cмакс=sina.. Так как Со = πRn/30 и Cm=Sn/30=2Rn/30=Rn/15 то


Co/Cm= πRn15/Rn30=π/2=1,57 откуда Co=1,57 Cm

Следовательно, и максимальная скорость поршня будет равна . Смакс = 1,57 Ст.

Представим уравнение скорости в виде

С = Rωsin a +1/2λ Rωsin2a.

Графически оба члена правой части этого уравнения будут изображаться синусоидами. Первый член sina, представляющий скорость поршня при бесконечной длине шатуна, изобразится синусоидой первого порядка, а второй член 1/2λ sin2a —поправка на влияние конечной длины шатуна — синусоидой второго порядка.

построив указанные синусоиды и сложив их алгебраически, получим график скорости с учетом косвенного влияния шатуна.

На рис. 247 изображены: 1 — кривая sina,

2 — кривая 1/2λ sin2a

3 — кривая С .

Из графика видно, что СМакс при учете влияния конечной длины шатуна будет больше Со и что скорость достигнет максимума при нисходящем ходе поршня несколько раньше середины его хода, а при движении вверх — несколько , а при движении вверх — несколько позже.

определение ускорения поршня.


Известно из физики Fи= ma, т.е силы инерции зависят от массы и ускорения. Для уравновешивания сил поступательно и вращательно движущихся частей КШМ необходимо знать эти показатели.


известно, что ускорение есть производная скорости по
времени. Продифференцировав уравнение

C=Rω(sina+1/2λ sin2a)

и произведя преобразования, получим
ускорения поршня (в м/сек 2 )-

а = Rω 2 (cоsа + R/L cos 2а), ( 5 )
В в. м. т. а=0 0 и ускорение ао=Rω 2 (1+R/L) В н. м. т. а=180°:Следовательно, а 180=-Rω 2 (1-R/L)

В. в. м. т. ускорение направлено вниз, в сторону движения поршня, а в н. м. т. — вверх. Ускорение в в. м. т. по абсолютной величине будет больше ускорения в н. м. т.

Представим выражение а = Rω 2 (cоsа + R/Lcos 2а), в следующем виде: а =Rω 2 cоsа +λ Rω 2 cоs

Приняв для построения λ=1/4 и Rω 2 =1 получим λRω 2 =1/4

В произвольном масштабе по оси абсцисс откладывают углы поворота кривошипа от 0° через каждые 15° до 360°, а по оси ординат — соответствующие им значения Rω 2 cоsа и λ Rω 2 cоs . Соединив концы ординат, получим две косинусоиды (рис. 248)

Косинусоида 1 первого порядка является кривой ускорения поршня при L =∞, т. е. графически изображает первое слагаемое Rω 2 cоsа ,

а косинусоида 2 второго порядка — поправку на косвенное влияние шатуна, равную λ Rω 2 cоs a.

График действительного ускорения 3 получают путем алгебраического сложения ординат косинусоиды при L =∞ и косинусоиды, учитывающие поправку Брикса.

Из графика видно, что если учесть влияние конечной длины шатуна, то для нисходящего хода поршня а=0, когда поршень немного не дошел до середины хода, а для восходящего хода поршня а=0, когда поршень немного перешел за середину хода.

Читайте также: